
SWEAT 
Snow Water Equivalent with 

AlTimetry 

Team Orange 
 

Alpbach Summer School 2016 
 

21th of July 2016  



Outline  

• Introduction 

• Scientific objectives and requirements 

• Measurement principle 

• Payload 

• System engineering 

 

 

 

2 



Outline  

• Introduction 

• Scientific objectives and requirements 

• Measurement principle 

• Payload 

• System engineering 

 

 

3 Introduction – Scientific objectives & requirements – Measurement principle – Payloads – System engineering 



Global Water Cycle 
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Snow Water Equivalent (SWE) 

• Volume of water stored 
in a volume of snow 

– This is the relevant 
variable (storage) 
regarding snow 

 

• 𝑆𝑊𝐸 = ℎ ∗
𝜌𝑠𝑛𝑜𝑤

𝜌𝑤𝑎𝑡𝑒𝑟
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Applications of SWE 

• Prediction models 

– Hydrological 

– Climate 

– Numerical weather prediction models (e.g. ECMWF) 

• Earth‘s energy balance (albedo) 

• Navigation (ships) 

• Flood prediction 

• Hydropower/dams 
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James Bay Project 

• Series of hydroelectric power 
stations on the La Grande River, 
north of Canada 

• Generating capacity 17000 MW 

– Revenue of ~ €4.85 billion 

– 1/3 of precipitation is snow 

• €1,600,000,000 due to snow 
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(http://www.hydroquebec.com/production/centrale-hydroelectrique.html) 
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Available SWE products 

• Observations 

– In-situ observations 

– Airborne (IceBridge) 

– Space missions (AMSR-E): RMSE of 11-32 cm 

• Combined product: GlobSnow (& H-SAF) with a 
RMSE of 10-30 mm 

 

 Gap between accurate but sparse in-situ 
observations and global coarse-scale inaccurate 
observations 
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Scales of snow information 
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     In-situ stations 
 

  SWEAT  
 

AMSR-E 

http://www.esa.int/
http://www.esa.int/


Users of GlobSnow 

1. International organisations 
– World Health Organization (WHO)      
– Food and Agriculture Organisation (FAO) 
– Strategic Planning for Geoscience for a sustainable Earth (BRGM) 
– International Gorilla Conservation Program (IGCO) 
– Earth Science Advisory Committee (ESAC) 
– Centre of Terrestrial Carbon Dynamics (CTCD) 
– Laboratory for Climate Sciences and the Environment (LSCE) 

2. Climate institutes such as the WCRP, ECMWF, EEA 
3. National institutes 

– MeteoSwiss 
– Swiss Agency for the Environment, Forests and Landscapes   
– National Observatory of Athens     
– National Oceanography Centre, Southampton (NOCS) 
– Italian National Research Council (CNR) 
– Flemish Water Authority (AWZ), Belgium  
– Netherlands Ministry of Agriculture, Nature and Food Quality 

4. Universities 
– University of Bremen 
– ... 
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Scientific objective 1: SWE from 
passive microwave algorithm 
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Initial assumption 

Grain size of 
snow 

Simulation 
of signal 

Radiative transfer model 

Observation 
of signal 

Error < ε  

Error = |simulated signal – observed signal| 

SWE 
Yes No 
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Scientific objective 1: SWE from 
passive microwave algorithm 

SO1: Improving estimation of global SWE from 
passive microwave products 
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Initial assumption 

Grain size of 
snow 

Simulation 
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Radiative transfer model 

Observation 
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SO1: 50 shades of snow 
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(Libbrecht, 2005) 
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(https://youtu.be/A_BX6C9crBU) (http://blogs.scientificamerican.com/expeditions/files/2012/04/Fig8replace.jpg) 
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Scientific objective 2 

SO2: Improve numerical snow and climate models 
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(Bice, 2016) 
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SO2: Snow in the energy balance 

(Edited figure from NSIDC) 

Ice with snow Bare Ice Open ocean 

𝛼 ≈ 0.9  𝛼 ≈ 0.5  𝛼 ≈ 0.06  

𝑄𝑅 = 𝑄 1 − 𝛼 + 𝐿𝑖𝑛 + 𝐿𝑜𝑢𝑡 Climate models are sensitive to the 
albedo α (Furtado et al., 2014) 
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SO2: Climate Model 

• Spatial resolution: ~100 km x 100 km grid 

• Snow parameterisation: 𝑆𝐶𝐹 = 𝑓(𝑆𝑊𝐸) 

 

 

(Thackeray et al., 2015) 
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(Dutra et al., 2010) 

𝑆𝐶𝐹 = min⁡ 1,
𝑆𝑊𝐸
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Snow Water Equivalent [kg/m2] 
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Snow scheme in ECMWF LSM 



SO2: Improve Land Surface Models 

 
 
 
 
 
 
 

 
 

 
 Shortwave radiation bias  
 Similar to the expected changes due to climate change 

 
• Validation: 10 Observations  SWEAT: 80 Observations 
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(Dutra et al., 2010) 
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Scientific objectives overview 

• Main goals:  
1. Improving estimation of global SWE from 

passive microwave products 

2. Improve numerical snow and climate 
models 

• Secondary goals: 
1. Improve understanding of relationship 

between microwave signals and snow 
evolution 

2. Reduce uncertainty in sea ice thickness 
measurements due to the snow pack 
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SWE on sea ice 
 
SWE on land 
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Scientific requirements 

21 

Scientific requirements 

2. SWE on land 
SR2.1 Temp. res. 3 d 
SR2.2 Spat. res. 1 km 
SR2.3 Coverage in polar regions 
SR2.4 Accuracy 10 % for SWE > 0.3 m 
SR2.5 Duration of 5 years 

1. SWE on sea ice 
SR1.1 Temp. res. 3 d 
SR1.2 Spat. res. 1 km 
SR1.3 Coverage in polar regions 
SR1.4 Accuracy 10 % for SWE > 0.3 m 
SR1.5 Duration of 5 years 
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Scientific requirements 

1. Temporal resolution: 3 days (ESA-GEWEX, 2015; Nghiem & Tsai, 2001) 

2. Spatial resolution: 1 km (ESA-GEWEX, 2015; NRC, 2007) 

3. SWE accuracy: (CoReH2O, 2012) 

– SWE > 0.3 m: 10% 

– SWE < 0.3 m: 3 cm 

4. Coverage in polar regions 
– Snow on land 

– Arctic seas 

5. Duration of 5 years: multiple-year statistics 
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How to measure SWE 

Emission 
- AMSR-E 

Backscatter 
- CoReH2O 

“Thickness” 
- SWEAT 

- Coarse resolution 
- Inaccurate 

- Grain size 
- Layering 

- Direct link  
   to SWE 
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Observation requirements 
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Scientific requirements Observation requirements 

2. SWE on land 
SR2.1 Temp. res. 3 d 
SR2.2 Spat. res. 1 km 
SR2.3 Coverage in polar regions 
SR2.4 Accuracy 10 % for SWE > 0.3 m 
SR2.5 Duration of 5 years 

1. SWE on sea ice 

SR1.1 Temp. res. 3 d 
SR1.2 Spat. res. 1 km 
SR1.3 Coverage in polar regions 
SR1.4 Accuracy 10 % for SWE > 0.3 m 
SR1.5 Duration of 5 years 

1. Freeboard height 

OR1.1 Vertical accuracy = 0.06 m 
relative to surface 

2. Snow surface height 

OR2.1 Vertical accuracy = 0.06 m 
relative to ground 

3. Ground height 

OR3.1 Vertical accuracy = 0.06 m 
relative to surface 
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Observation requirements 

• Minimal absolute accuracy on SWE: 0.03 m 
(relative accuracy of 10 % for SWE > 0.3 m) 

• ℎ = 𝑆𝑊𝐸
𝜌𝐻2𝑂

𝜌𝑠𝑛𝑜𝑤
 

• Maximum ρsnow = 500 kg/m3  hmin = 0.06 m 

 

 Determine snow height with accuracy of ± 0.06 m  
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New measurement principle from 
space 
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Snow 

Ground 

Ku-band (13 GHz) Ka-band (37 GHz) 

Δt ≈ SWE 
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New measurement principle from 
space 

• Based on Leinss et al. (2015) and Guneriussen et al. 
(2001) 

• Observable:        𝑆𝑊𝐸 = ℎ ∗ 𝜌 

• Measurement:   𝛥𝑡 = ℎ ∗
𝑛

𝑐
 

 
• Refractive index n: 𝑛2 = 1 + 1.7𝜌 + 0.63𝜌2⁡(Maetzler, 1987) 
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Snow 

Ground 

Ku-band (13 GHz) Ka-band (37 GHz) 

Δt ≈ SWE 

Ground : sea ice freeboard, ice, land soil, rocks 



Ka-/Ku-band Penetration 

  

Introduction – Scientific objectives & requirements – Measurement principle – Payload – System engineering 29 

Ku-band reflection from snow-ice interface.  
Corner Reflector as reference on above 

(Willat et al., 2011) 

Snow Depth from Ku/Ka-band   
height difference 

(Guerreiro et al., 2016)  

CryoSat2-Altika 
IceBridge 

Snow Depth 
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IceBridge / Snow Depth 



Coverage 

Reliable SWE estimation is limited to: 

• Köppen-Geiger climate zones with possible snow 

• Sparse vegetation (MODIS land cover map) 

• Slope ≤ 1° due to altimeter principles  
(GMTED slope map)  
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Coverage 
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60° N 

60° S 



Airborne campaign 

• Laser airborne campaign to complement the 
microwave measurements 
– When: First 2 winters, early, middle and late winter 

– Where: 
• Greenland 

• Arctic sea ice 

• Finland 

• LVIS Laser (Icebridge) (Blair et al., 2011) 

– Swath: 2 km 

– Hor. resolution: 20 m 

– Accuracy: 6 cm 
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Calibration/validation of SWE 

• Dedicated ground campaigns 

– In-situ measurements of  

• SWE 

• Density 

• Snow height  

• Snow microstructure 

• … 

– On land and sea-ice 

– In coordination with airborne laser altimetry 

– Example: CryoVex 
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Instrument requirements 
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Scientific requirements Observation requirements 

2. SWE on land 
SR2.1 Temp. res. 3 d 
SR2.2 Spat. res. 1 km 
SR2.3 Coverage in polar regions 
SR2.4 Accuracy 10 % for SWE > 0.3 m 
SR2.5 Duration of 5 years 

1. SWE on sea ice 

SR1.1 Temp. res. 3 d 
SR1.2 Spat. res. 1 km 
SR1.3 Coverage in polar regions 
SR1.4 Accuracy 10 % for SWE > 0.3 m 
SR1.5 Duration of 5 years 

1. Freeboard height 

OR1.1 Vertical accuracy = 0.06 m 
relative to surface 

2. Snow surface height 

OR2.1 Vertical accuracy = 0.06 m 
relative to ground 

3. Ground height 

Instrument requirements 

1. Ku-band altimeter 

IR1.1 Altimeter acc. = 70 ps 

2. Ka-band altimeter 

IR2.1 Altimeter acc. = 70 ps 

3. Ku-band altimeter 

IR3.1 Altimeter acc. = 70 ps 
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OR3.1 Vertical accuracy = 0.06 m 
relative to surface 



Instrument requirements 

• Relative vertical accuracy = 0.06 m between Ka- 
and Ku-band 

• But: 
– 0.03 m respectively  

– SNR and other uncertainties 

 Vertical accuracy = 0.01 m  
 

• ∆𝑡 =
2⁡𝑟

𝑐
 

 Accuracy of 70 ps needed for 1 cm accuracy 
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Bonus products 

• Sea ice freeboard: with the 
Ku-band 

• Ice sheet elevation: with 
the Ku-band 
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(ESA CryoSat) 
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Payload Description 

• Ku- and Ka-band altimeters 

 

• Bistatic system 

• Dual frequency 

 

• Instruments calibrated on-
board 

 

• Parabolic antennas 
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Limitations of altimetry on slopes 

• CryoSat limited to slopes below 
0.4° (T. Parrinello, personal communication) 

– To overcome this: Swath Processing 
(Foresta et al., 2014; Gray et al., 2013) 

– Exploiting the full waveform of 
CryoSat SARIn mode data (the entire 
swath)  

• Applicable to slopes between 0.5° 
and 2° 

• 2 orders of magnitude more data 
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Across track echo location  
(Interferometry) 
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Swath Processing 

Petermann Glacier – standard processing - 1 track 
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Swath Processing 
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Petermann Glacier – swath processing - 1 track 

Introduction – Scientific objectives & requirements – Measurement principle – Payload – System engineering 



Swath Processing 
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Petermann Glacier – standard processing 
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Swath Processing 
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Petermann Glacier – swath processing 
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Altimeter modes 
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Interferometric mode Synthetic Aperture mode 
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Altimeter modes 
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Interferometric mode Synthetic Aperture mode 

Use on: flat surfaces 
• Ice sheet interior 
• Sea-ice 

Use on: surfaces with 
gentle slope 
• Ice sheet margin 
• Over land 
• Coastal sea-ice 
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Ku-band altimeter 

• Function: SO1 & SO3  
 Measurement of the 
snow/ground interface 

• Heritage: CryoSat-2/ 
SIRAL 

• Frequency range:  
~ 13.2 to 13.7 GHz 

• Half angle: 0.6° 

• Footprint: 1.7 km 

46 

Parameter Information: 

Mass incl. 1.2 m antenna (kg) 96 

Power / Output power (W) 149/25 

Data rate (kbit/s) 12 

PRF (kHz) 17.8 

Pulse length (µs) 50 

Bandwidth (MHz) 320 

Thermal operating range (°C) -35 to  
-5 
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Ka-band altimeter 

• Function: SO2  
 Measurement of the 
snow surface  

• Heritage: SARAL/AltiKa  

• Frequency range:  
 ~ 35 to 37 GHz  

• Half angle: 0.3° 

• Footprint: 1.4 km 
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Parameter Information: 

Mass incl. 1.2 m antenna (kg) 45 

Power / Output power (W) 75 / 2 

Data rate (kbit/s) 43 

PRF (kHz) 4 

Pulse length (µs) 110 

Bandwidth (MHz) 500 

Thermal operating range (°C) -40 to 
+85 
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Calibration/validation for altimeter 

• Active microwave transponders 

– ESA site in Svalbard (Fornari et al.,2013) 

– Gavdos, Greece (Hausleitner et al., 2012) 

 

• Conventional sea-surface calibration  
(Mitchum, 2000) 

 

• Cross-calibration with other altimeters 
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System requirements 
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Instrument requirements 

1. Ku-band altimeter 

IR1.1 Altimeter acc. = 70 ps 

2. Ka-band altimeter 

IR2.1 Altimeter acc. = 70 ps 
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System requirements 
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Instrument requirements 

1. Ku-band altimeter 

IR1.1 Altimeter acc. = 70 ps 

2. Ka-band altimeter 

IR2.1 Altimeter acc. = 70 ps 

System requirements 

2. Thermal operating range 

SYR2.1 -35 °C < Top < -5 °C 
SYR2.2 -40 °C < Top < 85 °C 

1. Pointing accuracy 
 
SYR1.1 Pointing accuracy < 0.1° 
SYR1.2 Pointing stability < 0.005° 
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De-orbit Launch 
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3-day revisit time (SR1.1 & SR2.1) 

Mission profile 
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Life-time of 5 years (SR1.5 & SR2.5) 



Target orbit 

• SR1.1 & SR2.1  3 days revisit time 

 

• Limited number of orbits due to fast revisit time 

 

• Characteristics: 

• Orbit height: 761.4 km 

• Orbit period: 100.1 min 

• Eccentricity: 0 - circular 

• Rev/day: 14.37 

• Repeating cycle: 43 

• Maximum eclipse ratio: 35% 

• Inclination: 90° - polar (SR1.3 & 2.3) 

53 Introduction – Scientific objectives & requirements – Measurement principle – Payload – System engineering 

2.99 days revisit time 



Target orbit 
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Target orbit 
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Coverage after 3 days of revisit 
time (i=90°) 

 

 13.2% coverage of area of 
interest 

Coverage after 3 days of revisit 
time (i=92°) – CryoSat-2 
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Spacecraft overview 

2
.5

m
 

Ku/Ka antennas 

0.55m 

Batteries X-band S-band 

2
.3

m
 

2.5 m 

Solar array 

3.6 m 

1
 m

 

1
.2

m
 

2
.2

 m
 

Radiator 

y 
z 

x 
z 

x 
y 

Thrusters 

56 



Attitude & Orbit Control System 

• SYR1.1  3-axis control 

• Sensors: 
– 3x star tracker (Terma HE-5AS) – cold redundancy 

– Sun sensor 

– 3-axis magnetometer 

– GPS/Galileo unit 

– Laser Retro-Reflectors 

• Actuators: 
– 3x magneto torquer 

– 4x momentum wheel 

– 6x thrusters 
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Attitude & Orbit Control System 

YAW MANEUVER 

β=0° Model: Grace β=74° Model: Grace 



Thermal Control System  

• Payload: 
– SYR2.1 & SYR2.2  no active thermal control required 

– Radiator & heat pipes 

– Louvers 

 

• Platform: 
– Heat pipes 

– Multi-layer insulation 

– Thermal coatings 

– Active heaters for batteries (20°C – 40°C) 
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Power budget 
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Subsystem Power (W) 

Payload 

Ku-band 149 

Ka-band 75 

Attitude & Orbit Control System 361 

Thermal control system 5 

Power 115 

Telemetry, Tracking & Control 

S-band receiver 4 

S-band transmitter 14 

X-band 45 

Emergency UHF 1 

On-Board Data Handling 5 

Propulsion 5 

Total 779 

Total including system margin (20%) 



Power budget 
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Subsystem Power (W) Duty cycle per 
orbit (%) 

Average power per 
orbit (W) 

Payload 

Ku-band 149 40% 59.6 

Ka-band 75 40% 30 

Attitude & Orbit Control System 361 100% 361 

Thermal control system 5 100% 5 

Power 115 100% 115 

Telemetry, Tracking & Control 

S-band receiver 4 100% 4 

S-band transmitter 14 25% 3.5 

X-band 45 25% 11.25 

Emergency UHF 1 100% 1 

On-Board Data Handling 5 100% 5 

Propulsion 5 100% 5 

Total 779 588.55 

Total including system margin (20%) 706.26 



Power 

• Solar arrays 
– Triple-junction GaAs solar cells 

– Efficiency end-of-life, including power control system: 
20% 

– Total size & mass: 13 m2 & 54 kg 

• Batteries 
– Li-ion batteries 

– Redundancy 

– Capacity & mass: 110 Ah & 26 kg for each battery 

• Power control system 
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Mass budget 
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Subsystem Mass including margin (kg) 

Payload 

Ku-band 96 

Ka-band 45 

Structure 50 

Thermal control system 13 

Power 186 

Telemetry, Tracking & Control 50 

On-Board Data Handling 2 

Attitude & Orbit Control System 168 

Propulsion 0.23 

Total dry mass 610.23 

Total dry mass including system margin (20%) 732.68 

Propellant 34 

Total wet mass 766.28 

Launch adapter 77 

Total launch mass 843.28 



Telemetry, Tracking & Control 

• Payload: X-band 

–Downlink: 8.025 – 8.4 GHz, 10 - 300 Mbit/s 

• Housekeeping: S-band 

–Uplink: 2.025 – 2.11 GHz, 64 – 1024 kbit/s 

–Downlink:  2.2 – 2.29  GHz, 1024 – 6250 kbit/s 

• Emergency UHF 
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Payload Data volume 
per orbit (Mbit) 

Ku 23776 

Ka 63402 

Total 87178 

Spacecraft Data volume 
per orbit (Mbit) 

Housekeeping 872 

Total 872 
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On-Board Data Handling 

• Microprocessor: ERC32 
– Cryosat-2 heritage 

– Redundancy 

 

• Mass memory: 
– Assumption: 3 orbits without ground station contact 

– 3.1 GB required 
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Propulsion 

• Hydrazine thrusters 
– Attitude & orbit control 

– Collision avoidance 

– De-orbit 

– Isp = 225 s 

• Delta_V budget 
– De-orbit: 79 m/s 

– Fuel mass: 34 kg (including margins) 
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Propulsion 
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Launcher 

• SWEAT 

– Launch mass: 843 kg 

– Volume: 20.1 m3 

 

• Vega launcher: 

– Payload mass: 1430 kg 

– Volume inside fairing: 41.8 m3 
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SWEAT 
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Operations & ground segment 

• Mission control centre: ESOC 
 

• Estrack ground stations located close to poles: 

–Troll, Antarctica 

–Svalbard, Norway 

–Prince Albert, Canada 
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Operations & ground segment 

Troll (Antarctica) 

Prince Albert (Canada) Svalbard (Norway) 
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Operations & ground segment 

• Required downlink time per orbit: 

– Payload: 15 min 

– Housekeeping: 3 min 

• Mean total access time per orbit: 23 min 
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S-band up S-band down X-band down 

Frequency range [GHz] 2.025-2.210 2.2-2.29 8.085-8.4 

Data rate [bit/s] (64-1024)k (1024-6250)k (10-500)M 

Transmit power [W] 5000 2.2 5 

EB/EN (Svalbard) [dB] 60.8 29.5 23.3 
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Development schedule 
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Risk assessment 

• Ku-band altimeter 

– TRL = 6 

– Heritage: Cryosat-2 

• Ka-band altimeter 

– TRL = 6 

– Heritage: SARAL 

 

• No other critical technology identified 
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Risk assessment 
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Low Severe 

Moderate Critical 

Event Severity Likelihood Total 
Risk 

Mitigation 

Obsolescence 3 B 6 Longer phase 0-A-B1 

Something not 
built to 

specifications 

3 B 6 Severity could range from development 
delays to impaired data gathering 

AOCS fails 4 B 8 Redundant system 

Development of 
hydrological 

models reduce 
scientific value 

4 A 4 No known missions are currently 
planned to investigate SWE in the same 
way as SWEAT 



ROM cost breakdown 

Item Cost (M €) 

(Instrument development (before start)) 15 

Industrial cost spacecraft (Heritage Cryosat) 100 

Payload 80 

Vega Launcher 45 

Scientific data processing (high data rating processing intensive)  35 

Operational cost  45 

Airplane campaign   1 

Project Team (10% of industrial cost + scientific data processing + 
operational cost) 

25 

Contingency (15 % of industrial cost + scientific data processing + 
operational cost + project team)  

43 

Overall cost 389 
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Outreach & education possibilities 

• Public theme day to improve 
awareness of SWE 

• Involve students in engineering 
process 

• Mascot & promotional merchandising 
(e.g. paper model) 

• Communication via social networks 

• Distribute downlinked data via 
internet (free data access) 

76 Introduction – Scientific objectives & requirements – Measurement principle – Payload – System engineering 



Summary 

• Snow Water Equivalent (SWE) is very important in 
hydrological and climate processes 

• SWEAT: 

– Measuring SWE directly from space at high spatiotemporal 
resolution 

– Generating data to improve current SWE products  

– Using a novel technological combination of Ku- and Ka-
band radar altimeters 
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Thank you for your attention 
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Go Team Orange! 


