
Summer School Alpbach 2019

Mission and System Design Peter Falkner (ESA)

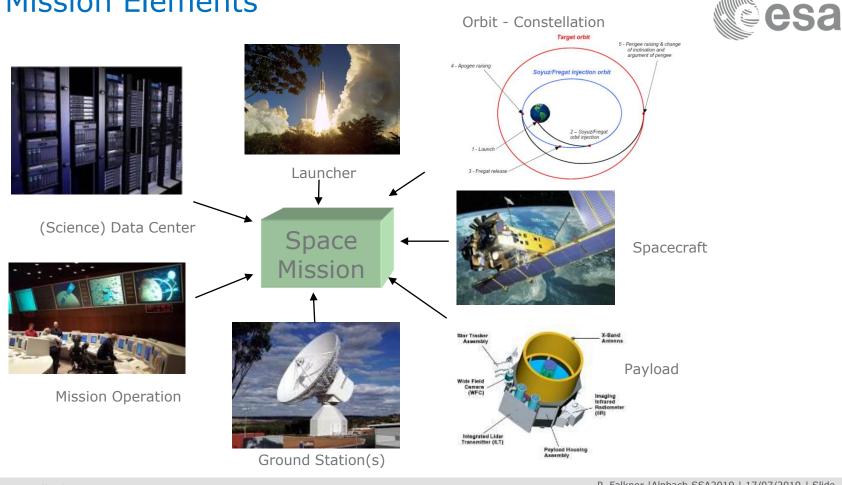
17-July 2019

→ SUMMER SCHOOL ALPBACH 2019

Geophysics from Space using Micro- or Nano-Satellite Constellations 16–25 July 2019 | Alpbach/Tyrol – Austria Details and further information: www.summerschoolalpbach.at

ESA UNCLASSIFIED - For Official Use

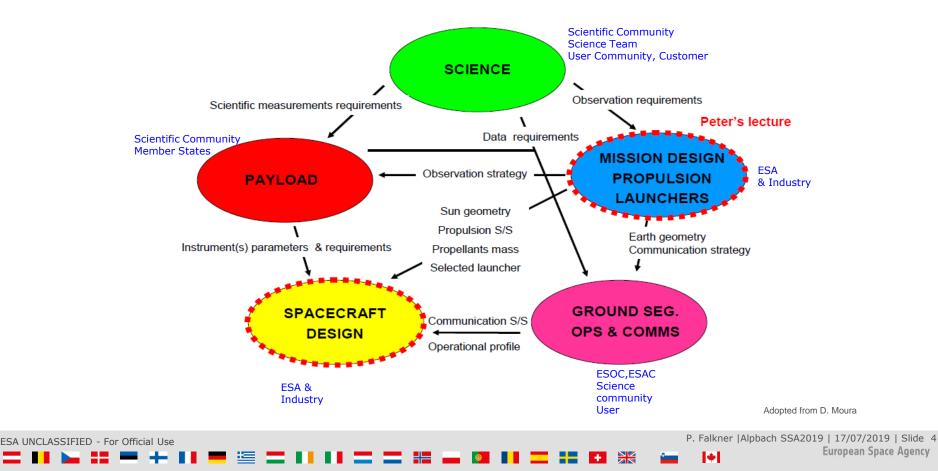
European Space Agency


Content

- Mission Elements
- Mission Design Process
- Launcher
- Orbits & Environment
- Spacecraft Subsystems
- Operations
- Programmatics (Cost, Risk, Schedule)

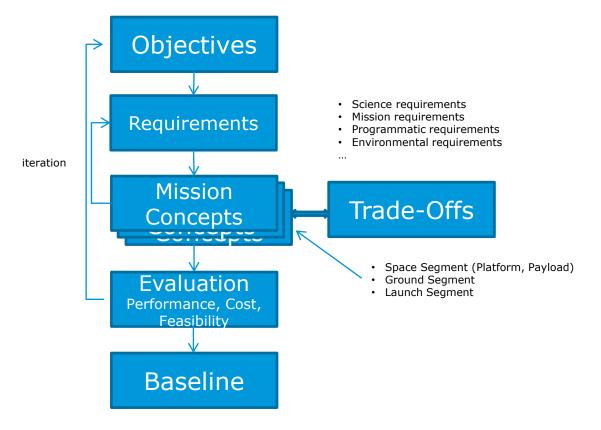
ESA UNCLASSIFIED - For Official Use

Space Mission Elements



ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 3 European Space Agency


Mission Design Process

Mission Design Process

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 5 European Space Agency

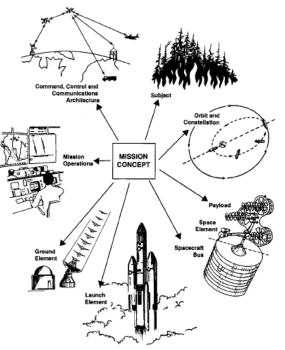
Hints for the Mission Design

- Kiss principle = Keep it Simple (Stupid)
- Avoid Christmas trees (by adding unneeded stuff to make it attractive)

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 6 European Space Agency

System Design / End-to-End view



Study Phase 0:

- Analysis of Mission Objectives
- Analysis of Mission Constraints
- Definition of Science & Measurement Requirements
- Definition of Mission Architecture (s)
- Definition of Payload / Performance
- Analysis of Environment
- Iteration / Trade phase !
- Cost, Risk, Schedule, Technology Development

<u>Goal:</u>

- feasible mission profile
- satisfying requirements <u>and</u> constraints

SMAD E3 , p. 13 Space Mission Architecture

Launch Vehicle

The new ESA launcher

Next generation ESA launcher: ⇒ VEGA-C, Ariane 62 and 64 ⇒ Before maiden flight (2020) ⇒ Some performance uncertainty

lei	
	Provide access to space
	Main trade: performance/reliability/cost
	Trade: direct transfer vs. optimisation of launcher insertion orbit
	(spacecraft design dependent)
	<u>Attention (!):</u> launch environment/constraints (incl. launch site)
	 <u>Cost:</u> Soyuz Fregat-2B (75 M€), Ariane 5 ECA (165M€), VEGA (45M€) *
esa	Ariane 62 (~75M€), Ariane 64 (~150M€), VEGA-C (~40M€)*
	* <u>Note</u> : LV cost indicative for the purpose of Alpbach SSA 2019 costing exerc
	• Possibility of sharing launch (e.g. Herschel / Planck, Smart-1, ARIEL, shared GTO) ⇒ Cost sharing
Contract of the second	 <u>Performance</u>: SF-2B ~ 3.200 kg to GTO (~ 5.000 kg A62)
	A5 ECA ~ 10.000 kg to GTO (~ 11.000 kg A64)
	 For details ⇒ <u>see launcher user manuals (web or Alpbach Server//Peter Falkner)</u>
Ariane 6 variants	• For A62/A64: use SF-2B/A5 performance + scaling (from GTO performance)

Launcher Vega Ariane-5 Generic Ariane-5 ECA Soyuz Orbit SSO/LEO GTO GT0 GTO Payload mass, kg 1500 (700 km) 3000 6600 10000 SSO/LEO: Sun Synchronous Orbit/Low Earth Orbit, GTO: Geostationary Transfer Orbit Vega performance Orbit Lift mass 700 km circ., i=90° 1430 kg 400 km SSO, i=97.03° 1480 kg

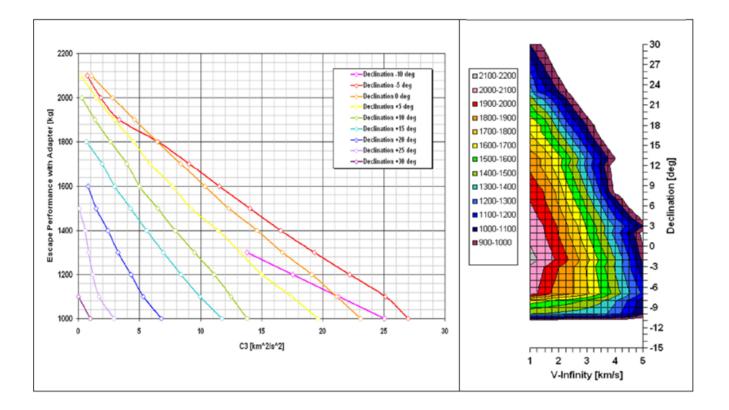
1325 kg

1140 kg

700 km SSO, i=98.19°

1000 km SSO, i=99.48°

P. Falkner | Alpbach SSA2019 | 17/07/2019 | Slide 8 **European Space Agency** 1+1


₩

same for VEGA-C (vs. VEGA) scaling based on LEO performance

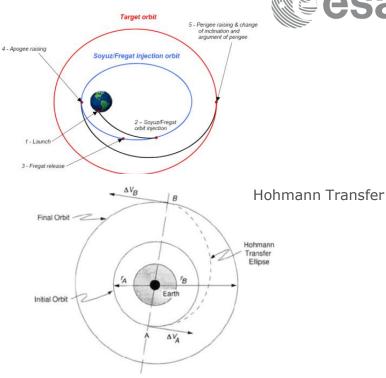
ESA UNCLASSIFIED - For Official Use

LV example: Soyuz performance for escape

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 9 European Space Agency

×


Orbit Design ⇒ see lecture by Marcus Hallmann (DLR)

Mission Analysis

- Launch and transfer from Earth
- Insertion into target orbit
- Orbit and maintenance
- End-of-Life disposal (space debris regulation!)
- \Rightarrow All manoeuvres to be summarized in Δv -budget
- ⇒ use "rocket equation" to calculate propellant need

Important: analysis of perturbations

- e.g. third bodies perturbations (lunar, solar,..)
- solar radiation pressure (translation, rotation)
- micrometeorites, space debris
- for LEO,LVO,LMO: atmospheric drag, J-factors

Atmospheric drag & Solar radiation pressure:

Hohmann Transfer. The Hohmann Transfer ellipse provides orbit transfer between two circular, co-planar orbits.

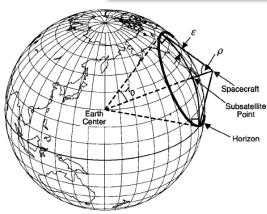
$$a_D = -(1/2)\rho \, (C_D \, A/m) V^2$$

 $a_R \approx -4.5 \times 10^{-6} (1+r) A/m$

ESA UNCLASSIFIED - For Official Use

ρ is atmospheric density, A is the satellite's cross-sectional area, m is the s/c mass, V is the satellite's velocity with respect to the atmosphere, and C_D is the drag coefficient

Solar radiation: A is the satellite cross-sectional area exposed to the Sun in m², m is the satellite mass in kg, and r is a reflection factor.


P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 10 European Space Agency

Orbit Selection

Driven by (contradicting) requirements:

- Target observability, resolution, revisit time, link budgets, visibility from ground stations, eclipse duration, radiation, stability,...
- Cost of orbit acquisition and maintenance (e.g. drag, J-term perturbations, 3rd body perturbations etc...)
- Consider Space debris regulations !

Relationship Between Geometry as Viewed from the Spacecraft and from the Center of the Earth. See also Fig. 5-12.

Definition of the Keplerian Orbital Elements of a Satellite In an Elliptic Orbit.

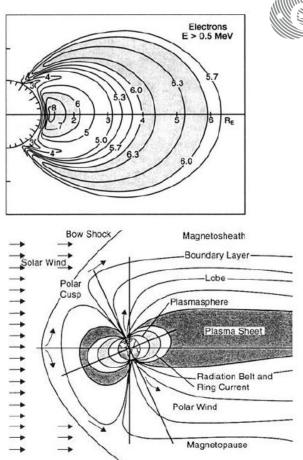
ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 11 European Space Agency

Some Examples

Earth O	Earth Orbit		Earth Trailing		
XMM- Newton	48h, 7000x114000km, 39°, RD[3]	NASA Spitzer	Drift-away 0.1AU y ⁻¹	SoHO	Only libration mission by ESA, L ₁ , RD[6]
Integral	72 h, 9000x153000 km, 51.6°, RD[4]			Herschel	Large-amplitude orbit (quasi-halo), launch 2008, 3-axis platform, RD[7]
Corot	900 km circular polar LEO			Planck	15° Lissajous orbit, co- launch with Herschel, spinner, RD[7]
ISO	24 h 1000x70500 km, 5.3°, RD[5]			GAIA	15° Lissajous orbit, launch on Soyuz 2-1b from Kourou, spinner, RD[8]
HST	600 km circular 28° LEO				

ESA UNCLASSIFIED - For Official Use

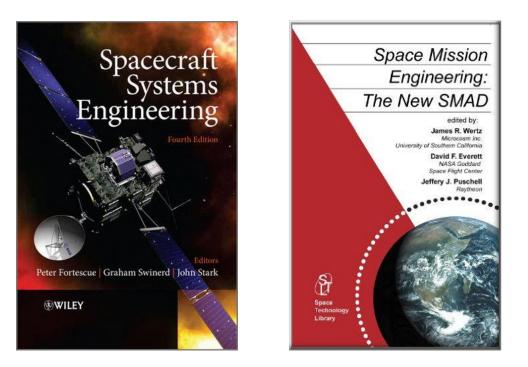

i E

+ 1

Space Environment

- <u>Solar cycle (</u>11-years) ⇒ flares Solar Protons: 1 MeV to > 1 GeV
- <u>Radiation belts</u> of Earth, Jupiter,...
 electrons, protons
 ⇒ SEU, total dose, background,...
- <u>Cosmic rays</u>
- <u>Spacecraft charging</u>
- <u>Magnetic field</u>
- <u>Solar radiation pressure (SRP)</u>
- <u>Thermal environment</u> (solar flux, albedo, eclipses, drag, (re-)entry,...)
- Vacuum, atomic oxygen in the upper atmosphere
- Radiation effects electronics, materials and increase noise in detectors (background)

⇒ Extensive testing during development needed !

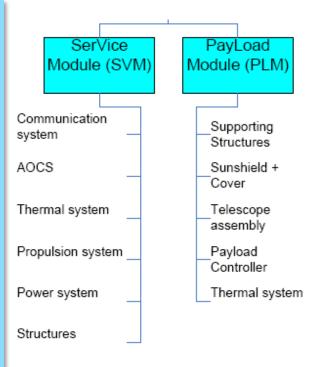


Spacecraft Subsystems

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 14 European Space Agency

Spacecraft Subsystems



- 1. Structures & Mechanism
- 2. Propulsion
- 3. AOCS
- 4. Thermal Control System
- 5. Power
- 6. Onboard Computer & Data Handling
- 7. Telemetry, Tracking & Commanding (TT&C)
- 8. Payload

Important:

Interrelation and mutual dependence of subsystems

⇒ concurrent design

Product tree

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 15 European Space Agency

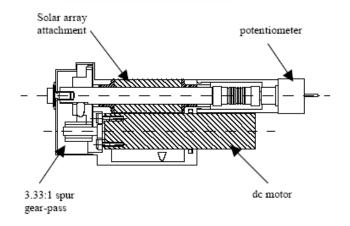
(1) Structures & Mechanism

Distinguish:

- Primary structures (carrying s/c major loads, interface to launcher)
- Secondary structures (carrying equipment) & appendages
- Structure need to provide stiffness in all mission modes <u>at lowest possible mass</u> (most driving: launch, main propulsion manoeuvres, separation of stages, pyros firing etc.)
- Sizing parameters: acceleration, shock, vibration, acoustic noise (large surfaces!)
- **Critical parameter**: Strength, stiffness, density, thermal characteristics (expansion, conductivity), handling (machining), cost
- Thermal deformations / co-alignment requirements ⇒ important for Payload !
- Eigen frequencies > launcher induced frequencies = driving stiffness

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 16 European Space Agency

(1) Structures & Mechanism


Moving parts:

- Reliability is critical (lubrication in space, long storage, thermal range)
- Introduce vibrations, shock, shift of CoG

Examples:

- Launch lock mechanism (hold down release mechanism (HDRM))
- Deployment of structure, appendages and booms (e.g. solar panel, sun shield, antennae, ...)
- Separation mechanism (separation of stages, multiple s/c,..)
- Pointing mechanism (e.g. payload, HG-antenna, panels)
- Reaction wheels, Flywheels,...
- Deployable instrument covers
- Motors and gears: e.g. Maxon
- Active Cooler
- Frangibolt actuator
- Mechanism are a source of mechanical noise (micro-vibrations)

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 17 European Space Agency

ESA UNCLASSIFIED - For Official Use

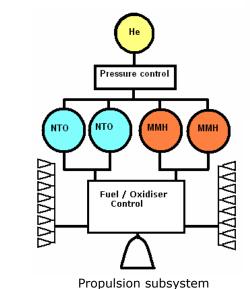
(2) Propulsion

Provides: acceleration and torques transfer, orbit insertion, attitude For: maincorrection and orbit corrections

Main engines (e.g. 400 N engine, I_{sp} ~320s)

- large delta-v, large I_{sp}, drive propellant need
 chemical (solid, liquid mon-, bi-prop),
- electrical (I_{sp} ∼3000-4500s)

RCS-thruster and micro-thrusters


- Chemical
- Electrical
- Cold gas
- Propulsion tanks + pressurant tanks
- Harness, piping

$$m_p = m_f \left[e^{\left(\Delta V / I_{sp} \, \mathrm{g} \right)} - 1 \right]$$

Rocket equation: m_f=dry mass, m_p=propellant Isp=specific impulse, Δv=delta v

INCLASSIFIED - For Official Use

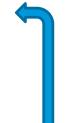
Propulsion Technology	Typical Steady State I _{sp} (S)
Cold Gas	30-70
Solid	280-300
Liquid	
Monopropellant	220-240
Bipropellant	305-310
Dual mode	313-322
Hybrid	250-340
Electric	300-3,000

main engine

RCS Thruster

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 18 European Space Agency

*


Delta-v budget (example)

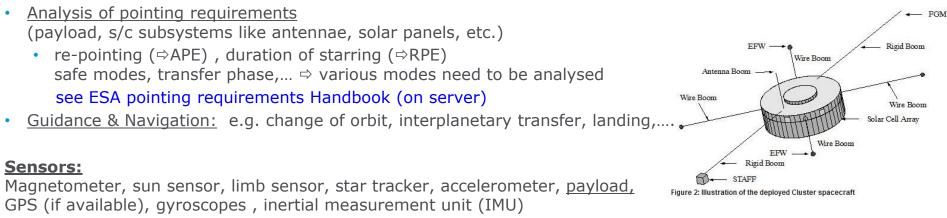
- <u>Mission Analysis</u> provides total delta-v (m/s) (dispersion, corrections, transfers, insertions, station keeping, orbit changes, wheel unloading, drag compensation,...)
 ⇒ <u>selection of appropriate prop.</u> system (main engine/thruster,
 - chemical/electric/cold gas,...)
- \Rightarrow Use of rocket equation \Rightarrow propellant mass \Rightarrow sizing of tanks,...

 \Rightarrow Re-iteration when needed !

Manoeuvre	Delta-V	Margin	Total	Source	Notes
Launcher Dispersion	35.0	5%	36.8	Mission	
Orbital Transfer	4.0	5%	4.2	Mission	
Stationkeeping	12.0	5%	12.6	Mission	
Re- or De-Orbiting	0.0		0.0	Mission	
Trajectory Margin	0.0		0.0	Mission	
Cover Ejection Compensation	0.01	100%	0.02	AOCS	Compensate for 45 N force
RW Desaturation	4.9	100%	9.9	Propulsion	Cumulative over 6 years
Field Change Manoeuvre	0.0		0.0	AOCS	Use reaction wheels (no propellant)
Step-and-Stare Manoeuvres	0.0		0.0	AOCS	Use reaction wheels (no propellant)
Safe Mode Reserve	5.0	0%	5.0	Propulsion	
TOTAL			68.45	m/s	

m _p =	= m _f	$e^{\left(\Delta V/I_{sp}\mathrm{g}\right)}-1$	
------------------	------------------	--	--

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 19 European Space Agency



(3) AOCS (attitude and orbit) / GNC (guidance and navigation control)

Stabilizes the spacecraft against external (and internal*) disturbances & Orbit control and maintenance

• <u>3-axis or spin stabilized ('gyroscopic stiffness')</u>

Actuators:

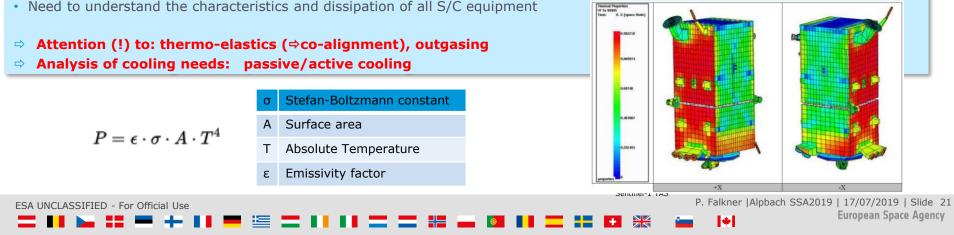
thruster (hot gas, cold gas, electric) ⇒ propulsion system reaction or momentum wheels, control-moment gyros, magnetic-torquers, 'natural' perturbations, nutation dampers

<u>* Internal disturbances</u>: CoG uncertainty, thruster misalignment, thrust level mismatch, rotating mechanism (pumps, wheels,..), sloshing, dynamically flexible bodies, thermal shocks (eclipses)

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 20 European Space Agency

(4) Thermal Control System (TCS)


Controls spacecraft thermal environment (within operational, non-operational ranges) in various mission modes:

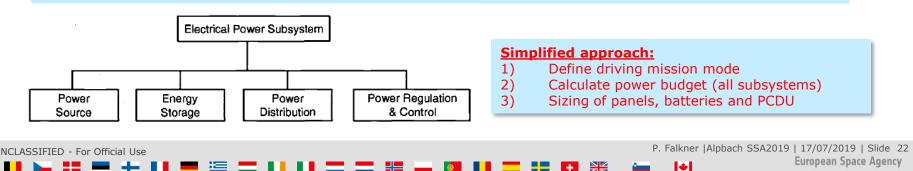
- TCS is driven by equipment and payload requirements
- Ground, Jaunch, transfer, science mode, safe mode, eclipse, etc. must be considered
- Needs careful analysis of all mission modes (internal dissipation and external input) under various aspect angles and for all mission phases.

Sensors: temperature sensors

Control Components: Coatings, MLI, paint, radiators, sun shields, foam, heat pipes, optical reflectors, louvers, fillers, thermal insulators, cooler, cold plates, phase change devices, electrical heaters & thermostats, RHU's,

- Use of emission (ϵ), absorption (α) properties of materials to control temperature \Rightarrow paints, MLI, surface polish, ...
- Requires: Geometrical Mathematical Model (GMM) and Thermal Mathematical Model (TMM) e.g. ESATAN
- Need to understand the characteristics and dissipation of all S/C equipment

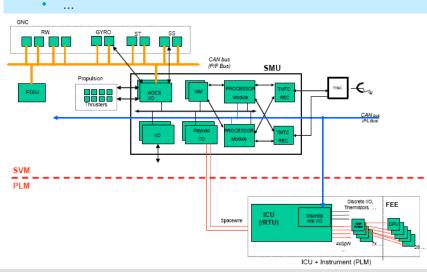
(5) Power



Provides: electrical power to S/C bus and payload

- Solar Panel (e.g. triple-junction cell ~28-32% eff.)
 - panels require pointing to the sun (cos (a) dependence) (dependent on orbit characteristics ⇒ pointing mechanism needed, with 1-2 DOF?)
 - body mounted (typ. spinner) or panel type (3-axis)
 - input at Earth: ~1370 W/m² solar flux (otherwise ~1/r² , r=distance from sun)

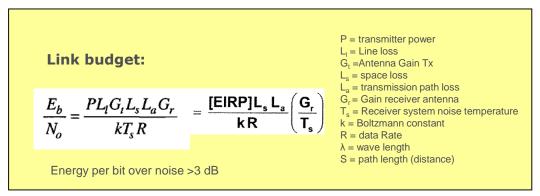
• Batteries


- Primary (up to ~300 Wh/kg) and Secondary (re-chargeable, e.g. Li-Ion ~120 Wh/kg)
- Energy storage
- needed for emergency (safe mode), eclipses, or when panels cannot be pointed to sun,...
- Alternative energy sources
 - Nuclear Power (RTG, RHU's, ASRG's), ... ⇒ very important e.g. for missions beyond Jupiter
- Power Control and Distribution Unit (PCDU)

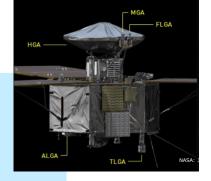
(6) Data Handling & Control

Onboard Computer System and Mass Memory

- Command interpretation and execution
- Data Handling, Processing and Storage
- Housekeeping handling
- AOCS control algorithm
- Control functions (power, thermal, payload)
- Failure Detection Isolation and Recovery (FDIR)


<u>Sizing:</u>

- Processing need (MIPS, MFLOPS)
- Memory need (data production vs. download)
- Control complexity
- Redundancy concept
- Centralised/distributed concept


P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 23 European Space Agency

(7) Communication and Tracking

- Provides communication (RF-/optical link) for:
 - Commanding, housekeeping
 - Data download
 - Radio-Science
 - Tracking (location (range), velocity (doppler))
- Ground station to/from/between spacecraft
- For longer range: X- or Ka-band (others S, UHF)
- Understanding of required data rates
 ⇒ drives RF system (and memory)

VHF:	30 - 225 MHz
UHF:	225 - 1000 MHz
-Band:	1.0 - 2.0 GHz
S-Band:	2.0 - 4.0 GHz
C-Band:	4.0 - 8.0 GHz
X-Band:	8.0 - 12.4 GHz
Ku-Band:	12.4 - 18.0 GHz
K-Band:	18.0 - 26.5 GHz
Ka-Band:	26.5 - 40.0 GHz
Q-Band:	40.0 - 60.0 GHz
V-Band:	60.0 - 75.0 GHz
W-Band:	75.0 - 110 GHz

3-dB beamwidth

 θ in degrees

 $\mathbf{G} \cong \frac{\pi^2 \mathbf{D}^2}{2}$

Antenna Gain

 $\text{FSPL} = \left(\frac{4\pi d}{\lambda}\right)^2$

Space loss Ls

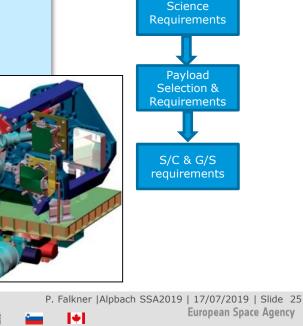
⇒ You can use Peter's excel tool (server)

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 24 European Space Agency

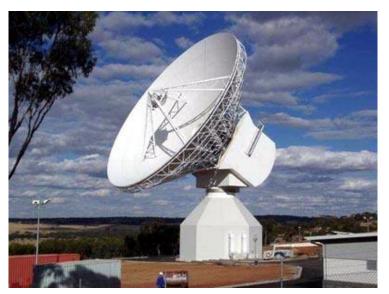
(8) Payload & Accommodation

Science & Measurement Requirements

⇒ drive the instrument selection/design ⇒ drives S/C design (!)


- Accommodation (all S/C subsystems are affected):
 - Mass (Launcher, structure, propulsion system, etc...)
 - Power (power, cleanliness, etc.)
 - Data Rate (DHS, TT&C system, ground station, orbit)
 - Pointing requirements (AOCS and configuration, thermal)
 - Thermal ranges (op/non-op)
 - cooling required? Active/Passive
 - Thermoelastics -> deformations (e.g. optical systems)
 - Deployment needed (covers, baffles, sun shields...)?
 - Operation / commanding (complexity of modes, calibration)
 - EMC sensitivity and emission
 - Protection against heat, radiation, stray light etc.

Requires several iterations and trimming Understanding of underlying requirements is key !


Mission Objectives

ESA UNCLASSIFIED - For Official Use

Ground Segment

ESA 35-m GS New Norcia, credits: ESA

ESA UNCLASSIFIED - For Official Use

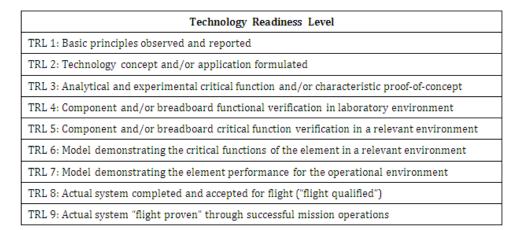
P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 26 European Space Agency

Operations (Mission Control & Data Centre)

- Spacecraft and Instruments need to be controlled from Ground via Ground Stations (GS)
- Launcher authority takes control until successful launcher insertion orbit and separation from upper/transfer stage

ESA Science missions:

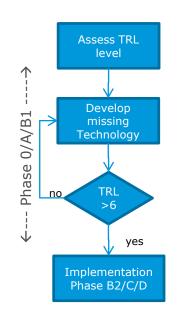
- Mission Operations done by ESOC Mission Operations Centre (MOC)
 - Navigation and tracking, commissioning, control of s/c, upload of commands, monitoring of health status, planning of manoeuvres etc.
 - Organise download of data for next passes
 - · Ground stations (GS) to communicate with Spacecraft and download housekeeping & data
- Science Operations done by ESAC -> Science Operations Centre (SOC)
 - · Instrument control, definition of instrument commands
- Science data distribution centres
 - Distribution of onboard data together with housekeeping to interested scientists
- Definition of observation cycles/modes



ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 27 European Space Agency

Technology Development


- Level of technology readiness is a key schedule & cost driver
- Assessment of efforts required to reach flight status is often difficult
- Assessment done according to the table below
- Non availability of technology can be detrimental to the schedule and cost

ESA UNCLASSIFIED - For Official Use

•

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 28 European Space Agency

Cost, Risk and Schedule

Cost estimate is difficult !

<u>3 basic methods</u>:

- 1.bottom up approach
- 2. parametric analysis
- 3.by analogy with other missions (benchmarking)
- Need for cost model and data base with cost info (suppliers, manpower,...)
- Most difficult is the estimate on engineering, validation & verification cost, manpower etc. & cost of technology TRL upgrade
- Cost is driven by size and complexity of mission

Cost at Completion (CaC) comprises:

- Development cost
- Procurement cost of the space segment (industrial cost)
- Test facilities cost
- Launch cost
- Mission operation cost
- Science operations cost (Data analysis, distribution and archiving)
- Agency cost and margins
- Management costs
- Payload cost
- Contingency ...

esa

ROM ... rough-order-magnitude

ESA: S/C, Launch, MOC,SOC, PM M/S: Payload (+ESA)

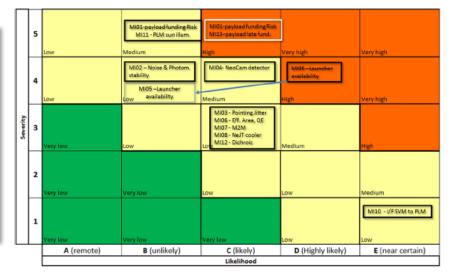
ROM cost break down:

#	Item	percent		
1	Project Team	20% (2+3+4)		
2	Industrial Cost	~40-50% of total		
3	Mission Operations (MOC)	5-10% of total		
4	Science Operations (SOC)	5-10% of total		
5	Launcher	see table		
6	Contingeny (15%)	15% (1+2+3+4)		
	total	sum (1-6)		
		1		

Mission classes:

Ariane 5	(A64)	\sim	1 B€	+ P/L
SF	(A62)	\sim	600 M€	+ P/L
Vega		\sim	150 M€	+ P/L

P/L ~ 20-100% of mission class


ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 29 European Space Agency

Risk Assessment

- Space missions are large investments
- Understanding and analysis of risk is important to avoid catastrophic events as much as possible
- Identification of risk followed by risk mitigation is the approach
- Make a risk Register with main risks
- Rated with likelihood (A-E) and severity (1-5)

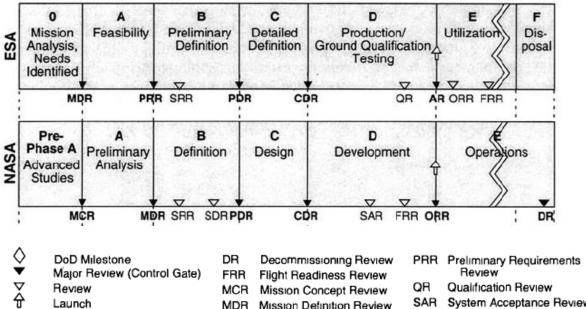
Score	Likelihood	Definition
E	Maximum	Certain to occur, will occur once or more times per project
D	High	Will occur frequently, about 1 in 10 projects
С	Medium	Will occur sometimes, about 1 in 100 projects
В	Low	Will occur seldom, about 1 in 1.000 projects
Α	Minimum	Will occur almost never, about 1 in 10.000 projects

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 30 European Space Agency

Risk Severity (1-5)

Severity	Schedule	Science	Technical (ECSS-Q-30 and ECSS-Q-40)	Cost
Catastrophic	Launch opportunity lost	Failure leading to the impossibility of fulfilling the mission's scientific objectives	Safety: Loss of system, launcher or launch facilities. Loss of life, life-threatening or permanently disabling injury or occupational illness; Severe detrimental environmental effects.	Cost increase result in project cancellation
Critical	(TBD) months reduction (70-90%) of mission's science return Safety: Major dami major damage to gri damage to public Temporarily disi threatening inju occupational illnes		Dependability: Loss of mission. Safety: Major damage to flight systems, major damage to ground facilities; Major damage to public or private property; Temporarily disabling but not life- threatening injury, or temporary occupational illness; Major detrimental environmental effects.	Critical increase in estimated cost
Major	Launch delayed (TBD) months	Failure results in an important reduction (30-70%) of the mission's science return	Dependability: Major degradation of the system. Safety: Minor injury, minor disability, minor occupational illness. Minor system or environmental damage.	estimated cost
Significant	Launch delayed (TBD) months	Failure results in a substantial reduction (<30%) of the mission's science return	Dependability: Minor degradation of system (e.g.: system is still able to control the consequences) Safety: Impact less than minor	Significant increase in estimated cost
Minimum	No/ minimal consequences	No/ minimal consequences.	No/ minimal consequences.	No/ minimal consequences.


ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 31 European Space Agency

1

Project Phases

Operational Readiness

Critical Design Review Review PDR Preliminary Design Review

ORR

- SAR System Acceptance Review SDR System Definition Review
- SRR System Requirements Review

×

SMAD, p. 8

ESA UNCLASSIFIED - For Official Use

AR

CDR

Acceptance Review

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 32 European Space Agency

Some (Science) Mission examples

see https://eoportal.org/

•							
Mission	Launch	Operational orbit	Launch mass [PL mass]	Total power	Propulsion	Downlink	Pointing
Smart-1	2003 Shared Ariane 5 with ASAP	Polar elliptical Moon orbit (transfer from GTO)	367 kg [19 kg]	1765 W <u>cruise</u> mode 225 W science mode	3.9 km/s 82 kg Xe Solar Electric Propulsion	65 <u>kbit</u> /s S band + X/Ka band demonstration	APE = 15'
MEX (same platform as VEX)	2003 Soyuz 2-1b with Fregat upper stage	Mars (330 km x 10.530 km i=86.9°)	1223 kg [116 kg]	650 W	457 kg Bi-propellant	38-230 <u>kbit</u> /s X band	APE = 0.15°
Lisa Pathfinder	2015 Vega with propulsion module	Sun-Earth L1	1910 kg Includes 214 kg prop. module dry mass + 1250 kg propellant. [178 kg]	650 W	Propulsion module + Bi- <u>propellant</u> + cold gas	52 kbit/s X band	APE = 0.05°
Corot	2006 Soyuz 2-1b	LEO 896 km 90°	668 kg [300 kg]	530 W	90 m/s Mono- propellant	1.5 Gbit/day S band (722 <u>kbit</u> /s)	APE = 0.5'' (telescope used as a FGS)
CHEOPS	2017 Shared launch (compatible with passenger to Soyuz, Vega, and other launchers)	LEO SSO, dusk-dawn (650-800 km)	280 kg [60 kg]	200 W nominal 60 W allocated to the instrument	Mono- propellant 30 L tank	1.2 Gbit/day S band	APE 4''' <u>rms</u> (telescope used as a FGS)

Table 9: Examples of European science missions, completed or under development. Data rates for orbits beyond L1/L2 are typically achieved with a ground station contact of 6 to 8 hours per day.

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 34 European Space Agency

Margin

- Margins are important in early phases due to uncertainty, low level of definition and unknown/unknowns
- Always keep appropriate margins adopted to the level of definition
- Equipment level margin according to maturity
 - 5% for off-the-shelf items (no changes)
 - 10% for off-the-shelf items with minor modifications
 - 20% for new designs, new developments, major modifications
- **System margin** (at least 20%)
 - On top of and in addition to equipment margins; applied after summing best estimates + margin
 - Two options for the propellant calculation +10% margin + 2% residuals
 - Margin on total dry mass and margin on launcher: typically used during early study phases +10% margin
 - Margin on maximum separated mass: typically used later, when mission analysis and launcher analysis become available
 - "Margin philosophy for Science Assessment Studies" (on server)

ESA UNCLASSIFIED - For Official Use

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 35 European Space Agency

Recommended Literature

https://directory.eoportal.org/web/eoportal/home

- Space Mission Analysis and Design (SMAD) microcosm (library)
- Spacecraft System Engineering P. Fortescue Whiley (library)
- ESA track Groundstation handbook (server/Peter Falkner)
- ESA pointing requirements handbook (server/Peter Falkner)
- Launcher: VEGA, SF-2B, Ariane 5 user manuals (>web or server)
- ESA M5 call technical Annex (on server under PF)

P. Falkner |Alpbach SSA2019 | 17/07/2019 | Slide 36 European Space Agency

Questions ?