Alpbach Summer School July 15-25,2019

System Engineering and Technology

Michèle Lavagna

michelle.lavagna@polimi.it

Space Missions and System Engineering

M.Lavagna Aerospace Science & Tech Dept.

Design Process: strongly multidisciplinary & interconnected

Mission Design → how

<u>Space Mission Design:</u> any design process is made of the following bricks:

Mission Design \rightarrow building blocks: the technologies

- Power Generation, distribution & Control systems
- Propulsion systems
- •Dynamics control
 - ✓ Trajectory\attitude Guidance Navigation & Control
 - ✓ *Rendez-vous & docking*
 - ✓ Landing
- On board software
- Avionics
- Robotics
- Materials\thermal-structural components
- Communications
- •.Environmental protection
 - ✓ Rad-hard (manned)unmanned)
 - ✓ Sample curation: biological protection∖sterilization
 - ✓ Impacts
 - Ionization
- Sensors\detectors
- Environmental control & Life Cycle systems
- Inhabited modules\surface infrastructures

Technology development

POLITECNICO MILANO 1863

M.Lavagna Aerospace Science & Tech Dept.

Mission design: building blocks - technologies

Technologies Assessment: Tech Readiness Levels - TRL

Actual system "flight proven" through successful mission operations

Actual system completed and "flight qualified" through test and demonstration (Ground or Flight)

System prototype demonstration in a space environment

System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in laboratory environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: Tech Readiness Levels - TRL

Technology Readiness Levels Handbook for Space Applications

Guidelines for the use of TRLs in ESA programmes (2013)

Tailored ECSS Engineering Standards for In-Orbit Demonstration CubeSat Projects

M.Lavagna Aerospace Science & Tech Dept.

Design process flow: I/O

Task\goal

•EPS

pointing budget •

M.Lavagna Aerospace Science & Tech Dept.

Design process flow: I/O

Input\IF Task\goal Area **Architecture definition** • **Bus design** • P/L**Computer budget On-Board Data** • all s/s Data management **Handling OBDH** • **Component list** • **Interface** definition • **On board activities planning** • design P/LMission phases & modes • MA **Operations** definition TMTC • Mission autonomy level • definition **FDIR logic definition** •

Design process flow: I/O

Input\IF Task\goal Area Launcher **Cost analysis** ٠ *Ground**space segments* Costs **Cost budget** • *Operations**AIV-AIT* Launcher All s/s **Risk analysis** • *Operations* **Risks Mitigation actions** • AIV definition programmatics Mission objectives **Programmatic analysis** • Modes **AIV/AIT Test plan definition** • all s/s • Cost & programmatics •

Let's practice

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes - Mass allocation

- 1. Determine the **rough mass** for the imposed\selected payload
- 2. Determine **the mission class** and, accordingly, the on-orbit <u>dry mass</u> from statistical data
- 3. Determine the **total allowable on-orbit mass** from current launchers
- 4. Deduct launch vehicle adapter mass from the launch mass
- 5. Determine the propellants and pressurants required for the mission
- 6. Verify the on-orbit needed mass and **launchable mass** consistency
- 7. Distribute the consistent gross mass (m_0) among the on-board subsystem to impose preliminary constraints to start sizing
- 8. Start looping the design refinement

Step 1-2 Mass versus p/l

Communication spacecraft mass.

Step 3-4 Launcher's performance

3. Determine the maximum launch mass for the mission: directly derived from the launcher capabilities

Step 3-4 launcher's interface

4. Deduct launch vehicle adapter mass from the launch mass:

Step 5-6 size the wet mass

5. Determine the propellant required for the mission: preliminary propellant mass computation (chemical propulsion) with the rocket equation:

 $\Delta V = I_{sp}g_0 ln(m_0/m_{dry})$

or assuming m_{prop}=60-70%m_o

6. Verify the total allowable on-orbit dry mass:

Dry mass+Margin+p/l+propellant < = LM-LVA

LVA=launch vehicle adapter

If the left member is **greater than the right** member either a <u>different launcher</u> shall be selected or a <u>decrease</u> of any of the left terms shall be imposed but the margin)

M.Lavagna Aerospace Science & Tech Dept.

Technology Readiness Level and Margin philosophy

HRST TECHNOLOGY ASSESSMENTS TECHNOLOGY READINESS LEVELS

Actual system "flight proven" through successful mission operations

Actual system completed and "flight qualified" through test and demonstration (Ground or Flight)

System prototype demonstration in a space environment

System/subsystem model or prototype demonstration in a relevant environment (Ground or Space)

Component and/or breadboard validation in relevant environment

Component and/or breadboard validation in laboratory environment

Analytical and experimental critical function and/or characteristic proof-of-concept

Technology concept and/or application formulated

Basic principles observed and reported

Readiness Level	Definition	Explanation
TRL 1	Basic principles observed and reported	Lowest level of technology readiness. Scientific research begins to be translated into applied research and development. (See Paragraph 4.2)
TRL 2	Technology concept and/or application formulated	Once basic principles are observed, practical applications can be invented and R&D started. Applications are speculative and may be unproven. (See Paragraph 4.3).
TRL 3	Analytical and experimental critical function and/or characteristic proof-of- concept	Active research and development is initiated, including analytical / laboratory studies to validate predictions regarding the technology. (See Paragraph 4.4)
TRL 4	Component and/or breadboard validation in laboratory environment	Basic technological components are integrated to establish that they will work together. (See Paragraph 4.5)
TRL 5	Component and/or breadboard validation in relevant environment	The basic technological components are integrated with reasonably realistic supporting elements so it can be tested in a simulated environment. (See Paragraph 4.6)
TRL 6	System/subsystem model or prototype demonstration in a relevant environment (ground or space)	A representative model or prototype system is tested in a relevant environment. (See Paragraph 4.7)
TRL 7	System prototype demonstration in a space environment	A prototype system that is near, or at, the planned operational system. (See Paragraph 4.8)
TRL 8	Actual system completed and "flight qualified" through test and demonstration (ground or space)	In an actual system, the technology has been proven to work in its final form and under expected conditions. (See Paragraph 4.9)
TRL 9	Actual system "flight proven" through successful mission operations	The system incorporating the new technology in its final form has been used under actual mission conditions. (See Paragraph 4.2.10)

M.Lavagna Aerospace Science & Tech Dept.

Mass margins philosophy

6. Evaluate the mass margin to be set aside

1=new s/c

2=next generation s/c

3=existing design s/c

Abbrev.	Review name
CoDR	Conceptual design review
PDR	Preliminary design review
CDR	Critical design review
PRR	Preshipment readiness review
FRR	Flight readiness review

				Mini	mun	ı stanc	lard v	veigł	nt cont	inger	ncies	, %			
	Pr	opos stage	al				Desi	gn de	evelop	oment	stag	e	:		
Description	. (<i>Bid</i> Class			CoD) Clas	R s		PDF Clas	₹ s		<i>CDF</i> Clas	₹ s) (PRI Clas	R SS
categories	1	2	3	1	2	3	1	2	3	1	2	3	1	2	3
Category AW, 0–50 kg 0–110 lb	50	30	4	35	25	3	25	20	2	15	12	1	0	0	0
Category BW, 50–500 kg 110–1102 lb	35	25	4	30	20	3	20	15	2	10	10	1	0	0	0
Category CW, 500–2500 kg 1102–5511 lb	30	20	2	25	15	1	20	10	0.8	10	5	0.5	0	0	0
Category DW, 2500 kg and up	28	18	1	22	12	0.8	15	10	0.6	10	5	0.5	0	0	0

OLITECNICO MILANO 1863

M.Lavagna

^aData copyright AIAA, reproduced with permission; Ref. 11.

Mass preliminary breakdown

7. Allocate mass percentage for each s/s: preliminary mass percentage distribution (as % of dry mass)

GFE=government	furnished	equipment)
----------------	-----------	------------

Con		isats ^a	Met	sats ^b	Plan	etary	Other		
Subsystem	with P/L ^c	GFE P/L	with P/L	GFE P/L	with P/L	GFE P/L	with P/L	GFE P/L	
Structure, %	21	29	20	29	26	29	21	30	
Thermal. %	<u> </u>	6	3	4	3	3	3	4	
ACS. %	7	10	<u>9</u>	13	9	10	8	11	
Power, %	26	35	16	23	19	21	21	29	
Cabling, %	3	4	. 8	- 12	7	8	5	7	
Propulsion. %	7	10	5	7	13	15	5	7	
Telecom, %		î	4	6	6	7	4	6	
CDS. %	4	6	4	6	6	7	4	6	
Payload, %	28		31	 .	11		29		
^a Comsat = communication satellite. ^b Metsat = meteorology or weather satellite. $^{c}P/L$ = payload.									

Start sizing and iterate

Power preliminary allocation

Total power versus p/l power and mission category first estimate

Spacecraft mission	Power estimating relationship
Communications	$P_t = 1.1568 P_{pl} + 55.497$
Meteorology	$P_t = 602.18 \ln(P_{nl}) - 2761.4$
Planetary	$P_t = 332.93 \ln(P_{pl}) - 1046.6$
Other missions	$P_t = 210 + 1.3P_{pl}$

Power margins philospophy

Evaluate the power margin to be set aside

1=new s/c

M.Lavag

2=next generation s/c

3=existing design s/c

				N	Ainim	um s	stand	ard po	wer	cont	ingenc	cies,	%	Co PD CD	DR R R		Conceptual design review Preliminary design review Critical design review
		Pi	ropos stage	al				Desig	n de	veloj	pment	stag	;e	PR FR	R R		Preshipment readiness review Flight readiness review
Description/	`		<i>Bid</i> Class	5	(CoDI Class	१ ऽ) (P <i>DR</i> Class		(CDR Class		(PRI Clas	R SS	
categories		<u> 1</u>	2	3.	1	2	3	1	2	3	1	2	3	1	2	3	
Category AP, 0–500 W		9 0	40	13	75	25	12	45	20	-9	20	15	7	5	5	5	
Category BP, 500–1500 W		80	35	13	65	22	12	40	15	9	15	10	7	5	5	5	
Category CP, 1500–5000 W		70	30	13	60	20	12	30	15	9	15	10	7	5	5	5	
Category DP, 5000 W and up		40	25	13	35	20	11	20	15	9	10	7	7	5	5	5	O MILANO 1863

Review name

Abbrev.

Power preliminary breakdown

Allocate power percentage for each s/s: preliminary mass percentage distribution

	Percentage of subsystem total								
Subsystem	Comsats	Metsats	Planetary	Other					
Thermal control	30	48	28	33					
Attitude control	28	19	20	11					
Power	16	5	10	2					
CDS	19	13	17	15					
Communications	0	15	23	30					
Propulsion	7	0	1	4					
Mechanisms	0	0	1	5					

Other margins

<u>Computer resources</u> <u>Processing time and data bus usage</u>

Jet Propulsion Lab suggests:

- At computer selection 400%
- At start of phase C/D 60%
- At launch 20%

Thermal sizing

The computer processing requirement should **not exceed the 50%** of computer capacity at the computer selection

M.Lavagna Aerospace Science & Tech Dept.

System margins

 10% mass margin at subsystem level must be considered if the related <u>technology is well</u> <u>known</u> and already space proven

• 20% mass margin at subsystem level must be considered if the related <u>technology is not</u> well known and already space proven

• 20% mass margin at system level is strongly recommended in general and is compulsory if a new technology is necessary. 10% must be considered the minimum for a reused system.

• 20% at system level shall be considered for launcher capabilities: the overall mass shall be at least 20% less than the launcher capability.

Mass Budget example

Example: mass budget			Target Space Total % at La	ecraft Mass a' aunch	t Launch	1250 73,6
Subsystems	┘ Without Margin [kg]	Maturity Level	Margin [%]	Margin [kg]	With Margin [kg]	% of Total
1 Structure	100	certified	5	5	105	11,4
2 Thermal Control	10	to be modified	10	1	11	1,2
3 TT&C	10	to be developed	20	2	12	1,3
4 ADCS	10	new technology	25	2,5	12,5	1,4
5 EPS	10		25	2,5	12,5	1,4
6 Propulsion	50		25	12,5	62,5	6,8
7 Payload	500		10	50	550	59,8
8	0		25	0	0	0,0
9	1		25	0,25	1,25	0,1
Total					766,75	83,3
System Margin			20		153,35	
Total With Margin					920.1	100.0

Mission Design

M.Lavagna Aerospace Science & Tech Dept.

• Satellite Constellation

Use of two or more satellites (sometimes a lot of S/C) to satisfy spatial and temporal coverage/observation needs which cannot be met with a single satellite. In an Earth Observation context such missions have applications in disaster monitoring, forest fire detection, ocean sampling, virtual payload synthesis, etc.

• Satellite Formation Flying (FF)

Use of more than one satellite either to enable a mission whose objectives cannot be satisfied by a single satellite (e.g. to synthesise a larger aperture than could sensibly be carried on one platform), or to achieve the mission objectives more cost effectively (e.g. by co-operation between agencies or by taking advantage of low-cost satellite approaches and/or cheaper launchers)

enabled by suitable orbit and attitude control

Mission sizing: MA architecture for constellations

- Mission and payload requirements
- Constellation performance criteria
- Constellation orbital design
- Constellation launch procedure (launcher, single/multiple launch, direct or parking orbit injection)
- Constellation build-up strategy (global/regional build-up, performance acquisition by plateau, random build-up, ...)
- Constellation "back-up" strategy (spare satellite placed within the constellation, on parking orbit, spare satellite kept on ground, ...)
- Constellation maintenance strategy
- Constellation end-of-life procedure (no end-of-life procedure foreseen, deorbiting strategy, graveyard orbit, ...)

Constellations design Parameters

Factor	Effect	Selection Criteria
Number of Satellites	Principal determinant of cost and coverage	Minimize number of s/c while fulfilling other criteria
Constellation Pattern	Determines coverage vs. latitude, plateaus	Select for best coverage and spatial sampling performance
Minimum Elevation Angle	Principal determinant of single satellite coverage for a given altitude	Minimum value consistent with payload performance and constellation pattern
Altitude	Coverage, environment, launch and transfer cost; has direct impact on the total s/c number	System level trade of cost vs. performance
Number of Orbit Planes	Determine coverage plateaus, growth and degradation	Minimize for launch and s/c replacement considerations, consistent with coverage needs.
Collision Avoidance Parameters	Key to preventing constellation self-destruction	Maximize the inter-satellite distances at plane crossing
Inclination	Determines latitude distribution of coverage. Combined with altitude, it drives selection of candidate launchers	Compare latitude coverage with launch cost, and fine-tune for collision avoidance
Between Plane Phasing	Determines coverage uniformity	Select best coverage among discrete phasing option, and fine-tune for collision avoidance, if needed
Eccentricity	Mission complexity and coverage vs. cost	Normally zero; non-zero may reduce the number of satellites needed
Size of Station- keeping Box	Coverage overlap needed; cross-track pointing	Determined by mission objectives, perturbations selected to be overcome, and method of control. Minimize consistent with low cost maintenance approach
Lifetime	Depends on space environment. Limited by the on-board resources, and by acceptable orbit degradation vs. available fuel margin	Select for mission fulfilment and required fuel allocation for orbit maintenance
End-of-life Strategy	Elimination of orbital debris, planetary protection	Any mechanism that allows to solve the most important of the two aspects, mission-wise

Sizing a constellation: # Sats for Earth global converage

Main design parameters:

- Orbit altitude
 - LEO
 - MEO
 - GEO

 Minimum elevation angle for appropriate link set-up

- ~10° for telecommunications
- ~5° for ground station coverage
- $\sim 5^{\circ} \div 40^{\circ}$ for navigation or Earth observation purposes

CRITERIA to trade a EO constellation design

- Most common "Figures of Merit" for Earth Observation Constellations:
 - Max/Min/Average coverage percentage at any grid point and globally over a zone
 - Max/Min/Average revisit time at any grid point and globally over a zone
 - Instrument duty cycle (data acquisition time per orbit)
 - Zone, DRS and ground stations visibility for different instruments or antennas
 - Data timeliness/latency (time interval from data acquisition by the instrument to the delivery as data product at the user segment interface)
 - Max/Min/Average response time at any grid point and globally over a zone
 - Illumination conditions (eclipse analysis) and Sun geometry (limitations can be imposed on the basis of the Sun position and the min/max "solar β angle", i.e. the angle of the vector to the Sun relative to the satellite orbital plane)
- The instrument and payload features and modes of operation are the driving factors when analysing the performance of an Earth observation satellite system

CRITERIA to trade a EO constellation design

ESA Ground Station Networks

- ESA ESTRACK (red) + ESA Augmented Network (orange) + ESA Cooperative Network (light blue)
- Identify adequate network in terms of GS geographical locations to fulfil GS visibility and data timeliness performance requirements, and to guarantee efficient data flows

CRITERIA to trade a EO constellation design

Orbit Injection and Transfer Strategies

Satellite Orbit Injection Techniques

- Direct injection into the final orbit
 - The launcher may require an upper stage, adding to the launch cost
 - Quick deployment, so as to start early system operations
 - Feasibility depends on final orbit altitude and inclination
- The s/c performs propulsive manoeuvres to reach the final orbit from an initial injection orbit
 - additional propellant and structure
- **Indirect injection** to populate several operational orbital planes with a launch: uses the differential effect of the Earth oblateness on the node
 - to launch several small s/c using a launcher with considerable injection capability
 - No quick deployment, due to the required drift time
CRITERIA to trade a EO constellation design

Orbit Injection and Transfer Strategies

Propellant Mass

Indirect Injection

Rocket equation:

$$M_p = M_f \left[e^{(V/Isp \cdot g)} - 1 \right] = M_0 \left[-e^{-(V/Isp \cdot g)} \right]$$

Orbital plane drift due to J2:

$$\hat{\Omega}_{J_2} = -\frac{3}{2} \cdot J_2 \cdot \sqrt{\frac{\mu}{a^3}} \cdot \left[\frac{\operatorname{Re}}{a \cdot (-e^2)}\right]^2 \cdot \cos i$$

M.Lavagna Aerospace Science & Tech Dept.

Constellation maneuvers sizing

Constellation Maintenance

- Absolute orbit control: applied to each satellite independently w.r.t. its ref. trajectory
- Relative orbit control: to guarantee the global geometry of the constellation

Collision Avoidance

- Avoidance manoeuvres between operational S/C and catalogued debris objects
- Avoidance manoeuvres between two satellites of the constellation in case of failures or unforeseen events that might trigger a non-negligible collision risk

Constellation End-Of-Life Disposal

- If necessary, disposal strategy of a LEO S/C shall foresee a manoeuvre to lower the orbit perigee to an altitude that guarantees safe uncontrolled decay within 25 years
- Of particular concern with regards to LEO constellations is the possibility of a collision having a domino effect and wiping out all of the satellites within a particular orbit band

Formation Flying - Design

FF Definition and Main Properties

- The mission consists of 2 or more spacecraft
- The spacecraft states are directly coupled such that changing the state of one satellite affects the state of all others
- The relative position and velocity between the satellites are controlled, and possibly also the relative attitudes
- The satellites are moving on quasi coplanar orbits or perhaps Lagrange points
- The spacecraft are in close proximity, which means typically below a few-km separation where the relative motion is in a linear domain (though some FF mission concepts foresee rather large distances)
- A plane is defined for the inter-spacecraft positions with an arbitrary orientation in space and with respect to a possible local orbital frame.
 Spacecraft do not all have to be in that plane in their nominal position
- Guidance Navigation and Control (GNC) requirements are typically high to very high

Formation Flying - Design

- Ground-track-oriented FF missions: objective is to achieve a relative position between ground tracks of FF satellites (typically, same ground track), so that they observe a same area with possibly some time delay between the observations
 - Controlling ground track of the S/C composing the FF relatively to each other

Leader

40

 An overlapping ground track or slightly shifted ground tracks are obtained by flying the spacecraft on the same orbit with a shift in argument of latitude

 Depending on the value of this shift in argument of latitude – along-track separations can range from a few kilometres to thousands of kilometres – a shift in right ascension of ascending node is also introduced in order to compensate for the Earth rotation

SAR ground

M.Lavagna Aerospace Science & Tech Dept.

Formation Flying - Design

- **Geometry-oriented FF missions**: objective is to compose an instrument distributed on several S/C \Rightarrow S/C have to maintain a given geometry (1D, 2D, 3D)
 - Geometry can be a fixed segment obtained by having the S/C on a same orbit with an along-track shift
 - Triangle varying at the orbital period can be obtained by introducing a shift in argument of latitude and in right ascension of ascending node

- S/C evolving on a circle or an ellipse around a reference orbit can compose a geometric figure. This ellipse is obtained by introducing shifts in cross-track and radial direction and by properly phasing obtained relative oscillations at orbital period
- Design driver of these FF geometries being always to stay as close as possible to a natural evolution of the formation, so as to minimise control manoeuvres to be implemented during the mission lifetime

Formation Flying maneuver sizing

Formation Acquisition

- Distribute the S/C in space at the beginning of the mission, so that they can achieve the nominal FF configuration to perform the observations foreseen
- Correct FF initialisation errors (initial position and velocity dispersions)

Formation Reconfigurations and Recovery (i.e., FF re-initialisation)

- Modify FF spatial configuration (inter-satellite distances and/or angles), so as to tune characteristic observation scale (e.g. interferometric baseline) or measurement type
- Recover unforeseen perturbation events and re-initialise the FF configuration following an anomaly affecting one or more FF satellites

Formation Maintenance

 Maintain the FF configurations within given control deadbands in terms of relative satellite positions, distances, angles, etc. (tight vs. loose FF control)

Formation Attitude Control

 Needed to comply with stringent pointing requirements, for instrument FOV coregistration, simultaneity of measurements, interferometry, etc.

Formation End-Of-Life Disposal

 If necessary, disposal strategy of a LEO S/C shall foresee a manoeuvre to lower the orbit perigee to an altitude that guarantees safe uncontrolled decay within 25 years

Constellation\FF launch configurations

SSMS Stack conf#1	SSMS Stack conf#2
FLEXI 4 configuration with Mini and Micro S/C	FLEXI 4 configuration with Micro S/C
One (1) Mini satellite on a stretched central	One (1) Micro satellite on the central column
Four (4) Micro satellites on Deck#1 on four tower modules	Four (4) Micro satellites on Deck#1 on four tower modules
Four (4) Micro satellites on Deck#2 Three (3) Nano satellites on Base module	Four (4) Micro satellites on Deck#2 Three (3) Nano satellites on Base module
Three (3) Cubesats deployers on Base module	Three (3) Cubesats deployers on Base module

F

M.Lavagna Aerospace Science & Tech Dept.

Propulsion s\s

M.Lavagna Aerospace Science & Tech Dept.

Propulsion system types: Chemical

<u>Cold gas:</u>

the simplest the cheapest (O(2*10³)€)

•

•

٠

•

٠

•

- Propellants are compressed inertial gases (N₂) at high storage pressure or high vapour pressure hydrocarbons (Propane C₃H₈)
- No heating, kinetic energy depends only on the storage pressure

M.Lavagna Aerospace Science & Tech Dept.

Propulsion system types: Chemical

Engine	Manufacturer	Vacuum Thrust [N]	Vacuum Specific impulse [s]	Cycle life [Cycles]	Engine mass [kg]	Inlet pressure [bar]	Input power [Watt]	Voltage range [volt]	4 Envelope [mm] (LxD)
	Bradford	3 55e-3	77						
VP-03-001	AMPAC-ISP	0.001	>70		< 0.300	1		-20 to +150	87 x 16 x 91
58-125	Moog	0.0045	65		0.00734		2.4		
	Marotta	0.05			0.07	6.9	<1		
CGT1	DASA	0.02	67		0.120/	7.0			64 (L)
	Sterer	2 1	68	<u>250,000</u>	0.174	3.5	5-6	24-32	66 x 31
58-102	Moog	1.11		10,000	0.015	8.8-6.3	30	24-32	24.7 x 14.5
58-112	Moog	1.11		10,000	0.015	7.4-4.9	30	24-32	24.7 x 14.5
58-115	Moog	2.89			0.013		30		
58-113	Moog	3.33		10,000	0.015	8.8-6.3	30	24-32	24.7 x 14.5
58-103	Moog	5.55		10,000	0.015	8.8-6.3	30	24-32	24.7 x 14.5
50-673	Moog	44.5		5,000	0.231	10.5-4.9	6-12	24-32	1 87 x 80 x 64
50-820	Moog	52					6-12		
58-126	Moog	266		10,000	0.181	10.5-4.9	30	24-32	70 x 63(e)

M.Lavagna Aerospace Science & Tech Dept.

Propulsion system types: Chemical monopropellant

Monopropellant gas:

- moderately cheap (O(8*10³) €)
- specific impulse (~200-300s)
- Large thrust range: (O(10²) N)
- Multiple starts
- Pulsing
- Throttling
- Moderated lifetime (>12y, limited by the catalyst bed lifetime)
- Fuel: hydrazine (N₂H₄), stored as liquid (melting point 2°C;boiling point 114°C) <u>exhaust gases are corrosive</u>
- Heating may increase the thruster effectiveness

Propulsion system types: Chemical monopropellant

M.Lavagna Aerospace Science & Tech Dept.

Propulsion system types: Chemical monopropellant

CubeSat Propulsion System	Size (U)	End/Cener Mount	Propellants	Thruster type	Thrusters	Nomina Thrust (mN)	
PUC	0.14U- 1U	End	R236FA/ SO2	Warm Gas	1	5.4	Nano-sats VACCO propulsion
CPOD	1U	Center	R134a/ R236FA	Cold Gas	8	25	Micro Propulsion System
MarCO	2U	End	R236FA	Cold Gas	8	50	
Green Mono Prop System	0.5- 1U+	End	ADN/AF- M315E	Mono- Prop	4	400	1U CubeSat
End mounted standard	0.25- 1U	End	R134a/ R236FA	Cold Gas	5	10	
Hybrid Green Monoprop	0.5- 1U+	End	ADN/AF- M315E	Mono- Prop	1 Hot, 4 Cold	100	
Standard	0.3- 1U	End	R134a/ R236FA	Cold Gas	5	10	9.1 cm
MEPSI	0.25U	End	Isobutane	Cold Gas	5	53	
Palomar	1U	Center	Isobutane	Cold Gas	8	35	http://www.cubesat-propulsion.com/vacco-systems/

M.Lavagna Aerospace Science & Tech Dept.

Electric Propulsion

<u>TAXONOMY</u>

- Electrothermal (T/W < 1E⁻³)
- Type: resistojet, arcjet
- Principle: thermal\mechanical energy exchange
- Electrostatic (T/W < 1E⁻⁴)
- Type: Gridded EP, Field Emission EP
- Principle: electric\mechanical energy exchange
- Electromagnetic (T/W < 1E⁻⁴-1E⁻⁶)
- Type: Hall (magneto static), pulsed plasma (PPT)
- Principle: magnetic\mechanical energy exchange

Electric Propulsion

European electric Propulsion: fields of application

Electric Propulsion: electrothermal

Resistojet

heat propellant using an <u>electric arc</u> generated between the anode and the cathode (η <50%)

- •low thrust level 0.1-0.3 N
- High specific impulse 500-1500s
- good for SK

heat propellant by passing it on an <u>electrically heated</u> surface(η =65-85%)

- low thrust level 0.2-0.3 N
- low specific impulse 100-400s
- good for attitude control system

Propellant: Hydrazine, Nitrogen, Ammonia (low mass; High specific heat preferred)

Electric Propulsion: Gridded Ion Thrusters

Radiofrequency Ionised Thruster RIT (ASL)

	RIT µX	RIT 10 EVO	RIT 2X
71 100			
Thrust & Power			
Nominal Thrust	50 - 500 μN	5 mN 15 mN 25 mN	80 mN 115 mN 168 mN 200 mN
nom. Power	< 50 W	145 W 435 W 760 W	2185 W 2985 W 4650 W 5785 W
Functional Performance			
extended / on request	10-100 µN, 300 - 3000 µN		_
Isp	300 - 3000s	> 1900s > 3000s > 3200s	> 3400s > 3434s > 4000s > 4300s
max. demonstrated	> 3500s	> 3400s	> 6000s (RIT 22)
Divergance angle*	< 17°	< 15°	< 25°
Lifetime			
Total Impulse	> 10kNs up to 200kNs	> 1.1 MNs	> 10 MNs
Max Operational cycles	> 10000	> 10000	> 10000
Total Lifetime	> 20000 h	> 20000 h **	> 20000 h
Technology			
Ionisation	RF-Principle	RF-Principle	RF-Principle
Acceleration	Electrostatic	Electrostatic	Electrostatic
Gridsystem	2 Grids	2 Grids	2 Grids
Propellant	Xenon	Xenon	Xenon
Design			
mass	440 g	1.8 kg	8.8 kg
Dimensions			
Diameter	78 mm	186 mm	308 mm
Length	76 mm	134 mm	215 mm

M.Lavagna Aerospace Science & Tech Dept.

Electric Propulsion: Field Emission Electric Propulsion - FEEP thrusters

- Thrust is produced by exhausting a beam of mainly singly-ionized cesium atoms, produced by field evaporation.
- thrust level very low 1-100μN, good for fine attitude control
- thrust to power ratio 16mN/W
- High impulses: 6000-10000s; efficiency 98%

Electric Propulsion: Field Emission Electric Propulsion - FEEP thrusters

Manufacturer	Centrospazio (Italy)	Centrospazio (Italy)	Centrospazio (Italy)	Centrospaz io (Italy)
			2	(Italy)
Propellant	Cs	Cs	Cs	Cs
Slit Width (mm)	2	70	5	70
Configuration	Single module	Single module	Cluster of 2 thrusters	Cluster of 4 thrusters
Nominal Thrust (µN) *	40	1,400	2 x 100	4 x 1,400
Isp (sec)	9000	9000	9000	9000
Power (W) **	2.7	93	13	370
Specific Power (W/mN)	66	66	66	66
Max Emitter Voltage (kV)	+5.5	+5.5	+5.5	+5.5
Accelerator Voltage (kV)	-5	-5	-5	-5
Thruster Mass (kg)	0.6	1.2	1	3.2
Thruster or Cluster Size (cm)	8 x 6 x 8	13 x 7 x 9	10 dia. x 10	18 dia. x 15
PPU Mass (kg)	1	1.2	2	5.5
PPU Size (cm)	8 x 12 x 16	8 x 16 x 16	16 x 12 x 16	20 x 25 x 16
Comments	Oualification	Qualification	Under	Under

** Assuming all thrusters operating at nominal thrust.

Pulsed Plasma Thrusters: PPT

Features:high specific impulse and low power and fuel requirements; pulsingApplication:SK maneuvers

Principle:

Energy is stored in a capacitor; an ignitor shoot electrons between anode and cathode to discharge the capacitor and create and arc; the arc evaporates and ionizes the solid fuel which accelerates out the thruster by Lorentz forces provoked by the induced electromagnetic field.

The capacitor is then charged up again from a power supply and the pulse cycle repeated.

M.Lavagna Aerospace Science & Tech Dept.

Pulsed Plasma Thrusters: PPT

Features

- Non toxic propellant
- Low power demand (50-70W)
- High specific Impulse 650-1350s
- Very small bits 90-860 μ N-s
- Single capacitor → multiple thrusters
- Mass 5-6 kg

Parameter	Unit	LES 6	SMS	LES 8/9	TIP/NOVA
Ibit, (Thrust @ 1 Hz)	µ Newton - second	26.7	111	300	400
Specific Impulse	Seconds	312	505	1000	543
Thrust to Power	µN/Watt	10.6	12.2	12	13.3
Capacitor Energy	Joules	1.85	8.4	20	20
Total Impulse	N-Sec	320	1779	5560	2450
Life	Pulses	12,000,000	13,000,000	18,500,000	10,000,000
Mission		East-West Stationkeeping	Attitude Control	Attitude Control	Orbit Insertion & drag make-up

Pulsed Plasma Thruster

M.Lavagna Aerospace Science & Tech Dept.

Pulsed Plasma Thrusters: PPT

- 50 300 kg spacecraft
- 400 km circular orbit, 0° inclination
- Disturbance torques per orbit (all N-m): 45⁻
 - Solar Pressure = 1.9 x 10⁻⁶
 - Aerodynamic = 8.7×10^{-5}
 - Gravity Gradient = 3.9×10^{-7}
 - Magnetic Field = 2.6 x 10⁻⁵ Total = 1.1 x 10⁻⁴
- 5 year mission life

M.Lavagna Aerospace Science & Tech Dept.

Propulsion solution comparison

Type of Propulsion	Thrust level	Exhaust Velocity	Advantages	Disadvantages
System	[N]	[m/s]		
Cold Gas (N2)	0.0045 - 10	700	Extremely simple, reliable, very low cost	Very low performance, highest mass of all systems
Monopropellant (Hydrazine)	0.5	2 200 – 2 300	Simple, reliable, relatively low cost	Low performance, higher mass than bipropellant
Bi-Propellant (MMH/MON)	4 – 500	2 850 – 3 110	High performance	More complicated system than monopropellant
Solid Propellant	50 – 50 000	2 400 – 3 000	Simple, reliable, low cost	Limited performance, higher thrust
PACT, Hydrazine (Power Augmented Catalytic Thruster)	0.1 – 0.5	3 000	High performance, low power, simple feed system	More complicated interfaces, more power than chemical thrusters, low thrust
ARC-JET (Hydrazine)	0.2	5 000	High performance, simple feed system	High power, complicated interfaces (specially thermal)
Stationary Plasma SPT 100 (Ion Engine)	0.08	16 000	High performance	High power, low thrust, complicated
Kaufman, UK-10 (Ion- Engine)	0.011	30 000	Very high performance	Very high power, low thrust, complicated
Radio-frequency RIT 10 (Ion-Engine)	0.01	31 400	Very high performance	Very high power, low thrust, complicated
Field-Emission	10 ⁻⁵ – 2·10 ⁻³	60 000 -100 000	Extreme high performance	Very high power, very low thrust

Attitude Determination and Control

M.Lavagna Aerospace Science & Tech Dept.

How other S\S influence the ADCS reqs

M.Lavagna Aerospace Science & Tech Dept.

Attitude control Architectures

Method Notes The s\c axes are kept aligned with a reference either inertial or **nadir** reference, thanks to gyros periodically updated by 3 axis stabilized star scanning. Passive method. Effective below 1000 km orbits (for Earth) Roll and pitch axes can be controlled **Gravity Gradient** yaw axis is stabilized by means of a momentum wheel Ipitch>Iroll>Iyaw always stable; Iroll>Iyaw>Ipitch sometime stable A momentum wheel spins at nearly constant high speed It provides inertial stiffness in two axes **Momentum bias** ۲ control of wheel speed provides control in the third axis. ٠

Attitude control Architectures

Method	Notes
Spin stabilized	 The s\c is stabilized along an axis by keeping an angular velocity around it. With no disturbance the angular momentum keeps constant. Perpendicular disturbances make the rotational axis to precess . Parallel disturbances change the angular momentum modulus. Translational manoeuvres may occur only along the spinning axis.
Dual spin stabilized	A compromise between the three-axis and the spin stabilized solution. The major mass is spun while a platform with p/l or antenna is de-spun.

Attitude control architectures versus reqs

Requirement	Gravity gradient	Spin	Dual spin	Three axis	Momentum bias
Nadir pointing	Yes	No	Poor	OK	OK
Geosynchronous	No	OK	OK	OK	OK
Planetary	No	ОК	OK	OK	NO
Thrust vector control	No	Good	Good	OK	NO
Maneuvering	No	Limited	Limited	Good	Poor
Pointing accuracy, deg	5	1	0.1	0.001	0.1 to 3
Relative cost		1.00	1.19	2.10	1.45

Disturbance Torques

Source	Туре	Influenced primarily by			
Gravity gradient	Constant torque for Earth-oriented	Spacecraft inertias			
	vehicles, cyclic for inertially oriented vehicles	Orbit altitude (significant below 500 km)			
Solar radiation	Cyclic torque for Earth-oriented vehicles, constant for solar-oriented	Spacecraft geometry and location of center of gravity			
:	vehicle or platform	Spacecraft surface reflectivity			
Magnetic Field	Cyclic	Orbit altitude (significant out to GEO)			
		Residual spacecraft magnetic dipole			
		Orbit inclination			
Aerodynamic	Constant for Earth-oriented vehicles,	Orbit allitude (significant out to GEO)			
	variable for inertially oriented vehicles	Spacecraft geometry and location of center of gravity			

ADCS Sizing: actuators

Actuators must have sufficient torque authority to counteract disturbances. <u>Control Autority</u>: Control Torque-disturbance torque ex. CT=2DT→ 100% C.A. margin

Actuator	Typical Performance Range	Weight (kg)	Power (W)
Thrusters Hot Gas (Hydrazine) 3 Cold Gas	0.5 to 9,000 N [*] < 5 N [*]	Variable† Variable†	N/A [†] N/A [†]
Reaction and Momentum Wheels	0.4 to 400 N•m•s for momentum wheels at 1,200 to 5,000 rpm; max torques from 0.01 to 1 N•m	2 to 20	10 to 110
Control Moment Gyros (CMG)	25 to 500 N ·m of torque	> 10	90 to 150
Magnetic Torquers	1 to 4,000 A•m ^{2‡}	0.4 to 50	0.6 to 16

ADCS Sizing: Reaction Wheels

Characteristic ,	Mini-wheel	HR 0610	HR 12	HR 14	HR 16	HR 4820	HR 2010	HR 2020	HR 2030	HR 4520
Angular momentum, N-m-s	0.2 to 1.0	4 to 12	12 to 50	20 to 75	75 to 150	65	33.2 to 68.4	27	19.5 to 45.6	60.75
Output torque, N-m	>0.028	0.07 to 5	0.1 to 0.2	0.1 to 0.2	0.1 to 0.2	0.14	01	0.13	0.21	0 125
Wheel rpm, ±	9000	6000	6000	6000	6000	6000	6000	6500	6000	5400
Power, W ^b	>6	<15	22	22	22	20	17	35	20	35
Bus voltage, dc	12 to 34	14 to 35	23 to 57	23 to 57	23 to 57	22 to 36	27 to 44	70	27.7 to 31.3	51
Mass, kg	1.3	3.6 to 5.0	7.0	8.5	12	10.2	9.2 to 10.9	7.9	89 to 11 2	-11.1
Integral electronics	Y	Y	Y	Y	Y	Y	N	Y	V	v
Diameter, mm ^c	108	267	316	368	418	405	406	300	305	406
Height, mm	54	12.0	159	159	178	214	235	172	191	215
Op temperature, ^d								172	171 .	215
Low	-25	-15	-30	-30	-30	-15	-15	-13	-15	_24
High	+60	+60	70	+70	+70	+71	+70	+75	+80	+61

^aReproduced with permission of Honeywell International, Inc. ^bPower values are steady-state power at maximum wheel speed, W. ^cDimensions are overall envelope, mm. ^dTemperature ranges are qualification limits, operating, °C.

. .

ADCS Sizing: sensors

Sensor	Typical Performance Range	Weight (kg)	Power (W)	Comments	
Inertial Measurement Unit (gyros and accelerometers)	Gyro Drift Rate = 0.003°/hr to 1°/hr	1 to 15	10 to 200	No external inputs required	
	Accel linearity = 1 to 5 x 10^{-6} g/g ² (over range of 20 to 60 g)			Very high short-term accuracy, but poor long-term accuracy	
				Normally requires periodic updates from other sensors to reset reference	
Sun sensors	Accuracy: 0.005° to 3°	0.1 to 2	0.1 to 3	Bright, unambiguous target	
				Target not available at all times due to eclipses	
Star sensors (scanners & mappers)	Accuracy: 1 arc sec to 1 arc min (0.0003° to 0.02°)	2 to 5	5 to 20	High accuracy	
				Orbit independent	
ŝ				Tends to be heavier and require more power than other sensors	
Horizon sensors				Bright target that is always available	
Scanner/Pipper	Accuracy: 0.1° to 1.0°(LEO)	1 to 4	5 to 10	Direct measurements of pitch and roll	
Fixed Head (static)	Accuracy: < 0.1° to 0.25°	0.5 to 3.5	0.3 to 5	Limited accuracy due to difficulty finding the Earth's horizon	
Magnetometer	Accuracy: 0,5° to 3°	0.3 to 1.2	<1	Cheap, reliable, and light weight	
				Magnetic field uncertainties and variability dominate accuracy.	
		8		Usable only below ~6,000 km.	
GPS	Accuracy: ~0.1°	~5	~15	Requires one receiver and multiple antennas separated appropriately	
				No moving parts	
				Convenient mainly in low Earth orbit	

ADCS architectures & HW

Hardware	Gravity gradient	Spin	Dual spin	Three axis	Momentum bias
Sensors	Sun or horizon	Star, horizon, or sun	Gyros, star, or horizon scanner	Precision gyros, sun sensor, star	Sun sensors, horizon sensor
Control	Control electronica	0		tracker, or horizon sensor	
Control	Control electronics	damper	Control electronics, damper, programmable computers, I/O and software	Control electronics, programmable computers, I/O and software	Control electronics, programmable computer
Torquers	Boom, momentum wheel	Thrusters	Thrusters	Thrusters, reaction wheels, magnetic torguers	Momentum wheel, thrusters
Mechanisms	None	Dampers	Despin drive, dampers, slip rings	Antenna pointing, solar array pointing	Antenna pointing, solar array pointing, slip ring

M.Lavagna Aerospace Science & Tech Dept.

Telemetry\tracking & Telecommands

M.Lavagna Aerospace Science & Tech Dept.

Ground Segment: architecture

M.Lavagna Aerospace Science & Tech Dept.
Ground Station networks: Estrack

The Link budget

Link budget equation

$$\frac{E_b}{N_0} = \frac{P_{tx}L_1G_{tx}L_sL_aG_{rx}}{kT_sR}$$

R

T_s

GOAL = energy per bit E_b versus noise density N_0 (Rx)ratio \rightarrow <u>containment</u> \rightarrow <u>Minimization</u>

 P_e = emitted power/area

- L = Losses
- R = data rate
- G = gain of the transmitting/receiving antenna
- k= Boltzmann's constant

 T_s = Noise temperature

Design variables

- G \rightarrow antenna diam and frequency selection
- L \rightarrow architecture optimization E_b/N₀ \rightarrow error containment

Digital transmission

$$E_{b} = \frac{P_{rx}}{R} [Ws]$$

Parameters

- →payload/orbit
- →environment/sys design

M.Lavagna Aerospace Science & Tech Dept.

EM Spectrum

Antennas characteristics

- Horn antennas: small aperture for Earth coverage with 4GHz (C band)

- Helical antennas: Earth coverage for frequencies below 4GHz (S band MGA; Navstar)
- **Reflectors:** narrow beam requirement (HGA)

• **Patch antenna**: flat metallic surface, low gain (3-7 dB, θ =65°)

Thermal Control

M.Lavagna Aerospace Science & Tech Dept.

Radiation

Infrared [5µm – 50µm] [-200°C_300°C] (=92% of IR energy,< 1% of the Sun energy)

Depending on the wavelengths the following terminology is applied: **ABSORBIVITY** $-\alpha$ - heat transfer in the 1) frequency band **EMISSIVITY** $-\epsilon$ - heat transfer in the 2) frequency band

Nb. Attention if wide temperature ranges exist in the scenario

Heat Sources & thermal design - preliminar

Environmental inputs

- Sun radiation
- Planetary sources:
 - Albedo
 - IR emission
- Internal sources

In general we can assume (unless internal heat source is particularly high in shadow):

Hot Case

 $Q_i + Q_{IR} + Q_a + Q_s - Q_d = 0$

Cold Case

 $Q_i + Q_{IR} - Q_d = 0$

M.Lavagna Aerospace Science & Tech Dept.

Thermal Control Components

The main Thermal Control solutions are:

- **PASSIVE THERMAL CONTROL (PTC)** simple, reliable, low mass, power, costs
- ACTIVE THERMAL CONTROL (ATC) allowable ranges tight and precise, large S/C wall power to be evacuated, variable environment, cryogenic application,...

Thermal Control Components: Coatings

Coated Sphere Equilibrium Temperature in Sun

Thermal Control Components: Insulators - MLI

M.Lavagna Aerospace Science & Tech Dept.

Electric power subsystem

M.Lavagna Aerospace Science & Tech Dept.

Electric Power Subsystem

Electric Power Sources

Primary Power Sources

- Primary Batteries
- Solar array
- RTGs (Radio Isotope Generators)
- Fuel Cells
- Solar Dynamics
- Nuclear Reactor

Power Storage and Secondary Power Sources

- Secondary Batteries (accumulators)
- Regenerative Fuel Cells

Electric Power Sources: alternatives and taxonomy

Power density wrt mission lifetime

M.Lavagna Aerospace Science & Tech Dept.

Secondary batteries sizing

Steps:

•Operational profile assessment:

• # and frequency of eclipse cycles

Energy Storage: Batteries sizing

The battery is sized computing its capacity as a function of the required power in eclipse and its characteristic DOD.

The capacity of a battery is computed as:

$$C_r = \frac{P_e T_e}{(DOD)N\eta} [Wh] \qquad M = \frac{P_e t_e}{E_d}$$

where

- *P_e* is the average eclipse load in Watt
- T_{e} is the correspondent maximum eclipse time in hours
- DOD is the limit on battery's Depth-Of-Discharge
- N the number of batteries
- h transmission efficiency between batteries and load=f(T, C/rate)
- E_d energy density per unit mass

Batteries **need to be re-conditioned** -> completely discharged to re-gain the global capacity

Secondary batteries: performance comparison

Supplier: http://www.saftbatteries.com/

M.Lavagna Aerospace Science & Tech Dept.

Energy storage: performance comparison

Solar Arrays

EPS-Solar Arrays standards→ ECSS-E-20-08

Solar Array Sizing Process

First Step: identify worst case

- Maximum time in eclipse T_e and correspondent time in daylight T_d
- Maximum total power requirements in eclipse P_e and in daylight P_d
- Compute the total power required P_{sa} considering an efficiency factor in eclipse X_e and in daylight X_d : to this end a Power Budget table for different modes must be filled

- DET (Direct Energy Transfer: Xe=0,65; Xd=0,85
- PPT (Peak Power Tracking): Xe=0,6; Xd=0,8

 Consider the required voltage from the loads to size the bus (string\cell number for SA and battery)

Solar Array Sizing Process

Second Step: identify power source characteristics

For solar arrays compute the power generated at Beginning Of Life (BOL) P_{BOL}

 $P_{BOL} = P_0 I_d \cos \alpha$

- I_d is the inherent degradation factor (0.49-0.88) and P₀ is in W/m² is the specific power at 1AU for the selected solar cells
- Estimate solar array degradation factor L_d

$$L_d = (1-d)^{\text{lifetime}}$$

Compute the power produced at End Of Life (EOL) P_{EOL}

$$P_{\rm EOL} = P_{\rm BOL}L_d$$

Compute the total area required

$$A_{sa} = \frac{P_{sa}}{P_{EOL}}$$

and the correspondent mass

M.Lavagna Aerospace Science & Tech Dept.

Power Sources: different junction performances

Deep Space1 Best Research-Cell Efficiencies 50 r → 2J GaAs+Scarlet Concentrators 2.6kW Sharp (IMM, 302x) Multijunction Cells (2-terminal, monolithic) Thin-Film Technologies LM = lattice matched MM = metamorphic CIGS (concentrator) CIGS 48 Juno Fraunhofer IMM = inverted, metamorphic O CdTe 46.0% Three-junction (concentrator) Amorphous Si:H (stabilized) 44.4% 🗸 Three-junction (non-concentrator) → Si GaAs cells (Spectrolab) 420W 44 Emerging PV Two-iunction (concentrator) O Dye-sensitized cel Two-junction (non-concentrator) Perovskite cells (not sta Four-junction or more (concentrator) (5,2AU) - 20x2,7 m Organic cells (various types) Boeing 40 Four-junction or more (non-concentrator) Organic tandem cells Spectrolab (5-J 38.8% Inorganic cells (CZTSSe Single-Junction GaAs Quantum dot cells Single crystal 36 Concentrator 34.1% Array Technologies

Array reenhologies			
Cell Type	BOL Efficiency	Specific Power	
	(%)	(W/kg)	
Si	10	25	
GaAs	19	40	
GalnP/GaAs (2J)	23	60	
GalnP/GaAs/Ge (3J)	26	80	
InGaAIP/GaAs/I nGaAs/Ge (4J)	35	100	
Amorphous Si	10	100	
CulnGaSe2(CIG S)	15	200	

Suppliers http://www.azurspace.com http://www.spectrolab.com http://www.cesi.com

POLITECNICO MILANO 1863

M.Lavagna Aerospace Science & Tech Dept.

Photovoltaic source performance

Photovoltaic source performance

M.Lavagna Aerospace Science & Tech Dept.

Power Control and Distribution & Conditioning

Power Regulation & Control

BUS REGULATION

M.Lavagna Aerospace Science & Tech Dept.

On board Data Handling

M.Lavagna Aerospace Science & Tech Dept.

GENERAL ARCHITECTURE

On-board Data Systems encompass a vast range of functional blocks that include:

- Telecommand and Telemetry Modules
- On-Board computers
- Data Storage and Mass memories
- Remote Terminal Units
- Communication protocols and Busses

GENERAL ARCHITECTURE

Building blocks - Microprocessor instruction\power

Highest Industry MIPS/Watt Performance

Building blocks - Microprocessor

Leon4 (HRPN-Leon4)	TMR Module (HAPN-Atom)	P4080 (HPPN-P4080)
 High Reliability Module <u>Standard:</u> PICMG CPSI-S.0 compliant <u>Processor</u>: Rad Hard Leon 4 <u>Performance:</u> 700 MIPS <u>Power consumption</u>: < 5 W <u>Mass</u>: < 0.5 kg TRL: 4 	 High Availability Module <u>Standard:</u> PICMG CPSI-S.0 compliant <u>Processor:</u> intel Atom N270 in Tripple Module Redundant configuration with voting unit <u>Performance</u>: 2000 MIPS <u>Power consumption</u>: 5-10 W <u>Mass</u>: < 1 kg TRL: 4 	 High Performance Module <u>Standard:</u> PICMG CPSI-S.0 compliant <u>Processor:</u> Freescale P4080 in Dual Module Redundant configuration <u>Performance</u>: 60 GIPs, 12 GFLOPs <u>Power consumption</u>: 18-28 W <u>Mass</u>: < 1 kg TRL: 4

System Engineering Notes - Costs

ATTENTION!!

The software weights nothing but costs a lot and takes time to be developed and tested, often more than what required for hardware

High level Cost Breakdown (highly mission dependent)

• 50% of mission cost is due to the ground segment

- 50% of mission cost is due to the space segment
 - •50% is due to the payload
 - •50% is due to launch +satellite

Note: for Europe, as far as scientific missions are considered, the payload s paid by national agencies, the platform by ESA

System Engineering

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: System Design process

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: space projects lifecycle

Key Decision Points:

Maior Reviews:

- Pre-Phase A—Advanced Studies ("find a suitable project")
- Phase A— Preliminary Analysis ("make sure the project is worthwhile")
- Phase B— Definition ("define the project and establish a preliminary design")
- Phase C— Design ("complete the system design")
- **Phase D** Development ("build, integrate, and verify the system, and prepare for operations")
- Phase E— Operations ("operate the system and dispose of it properly")
- Phase F Disposal

System Engineering notes: System Design process

M.Lavagna Aerospace Science & Tech Dept.
System Engineering notes: System Design process

System Engineering notes: measure of Effectiveness

This is one of the Systems Engineer's **most important tasks**.

An elegant solution to the wrong problem is less than worthless.

The word *optima*l should not appear in the statement of the problem, because **there is**

no single optimal solution to complex systems problems.

Most system designs have several performance and cost criteria.

Typical **performance and cost criteria in space system design** may be the "budgets":

- Mass budget
- Power budget
- Δv budget
- Pointing budget

- Link budget
- Cost budget
- Risk assessment
- Mission specific budgets (e.g. DOP, coverage, revisit time, etc)

.

System Engineering notes: Operations Architecture

System Engineering notes Define mission timeline - phases Define Conceptual Operations (ConOps) - Moon service example (LOP-DSG)

System Engineering notes Define mission timeline - phases Define Conceptual Operations (ConOps)

System Engineering notes: Conceptual Operations - ConOps

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: typical reqs

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes - INTERFACES

Interfaces between subsystems and interfaces between the main system and the external world (launcher\payloads etc) must be designed.

- Subsystems should be defined to minimize the amount of information to be exchanged between the subsystems.
- Well-designed subsystems send finished products to other subsystems.
- Interfaces shall be <u>clear</u>, <u>unambiguous</u>, <u>limited</u>.

System Engineering INTERFACES notes

Existing interfaces

System Engineering notes: tools – INTERFACES - N2 diagram

The N2 diagram helps visualizing, highlighting and identifying **interfaces among subsystems**

System Engineering notes – TRADING OFF

Exploring alternative desing concepts – trade-offs

Alternative designs shall be investigated and ranked according to multiple\ multidisciplinary CRITERIA

For the design of complex systems, alternative designs reduce project risk.

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes Explore Alternatives – TRADE OFF

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes-trade process example

Manned Lunar south pole mission

Element Options:

A. Launch Crew and Cargo Separately

B. Launch Crew and Cargo Together

Launch Vehicle Choice: C. Ariane V, D. Shuttle, E. combination

F. Integrate at ISS

G. Launch pre-integrated

Transfer Propulsion Type: H. Chemical, I. Ion

J. Stage in lunar orbit

K. Direct to surface

Descent propulsion type: L. cryogenic or M. storable

Lunar Surface Duration: N. 3 days, O. 14 days, P. 28 days

Surface Infrastructure: Q. Self-contained in Lander, R. assembled base

576 Mission Design Options!

System Engineering notes- trade process options

Development Related	Operations and Support Related					
 Custom versus commercial-off-the-shelf 	 Upgrade versus new start 					
• Light parts (expensive) versus heavy parts (less expensive)	 Manned versus unmanned 					
 On-board versus remote processing 	 Autonomous versus remotely controlled 					
 Radio frequency versus optical links 	 System of systems versus stand-alone system 					
 Levels of margin versus cost/risk 	 One long-life unit versus many short-life units 					
 Class S versus non-class S parts 	 Low Earth orbit versus medium Earth orbit versus geosta- 					
 Radiation-hardened versus standard components 	tionary orbit versus high Earth orbit					
Levels of redundancy	 Single satellite versus constellation 					
 Degrees of quality assurance 	 Launch vehicle type (e.g., Atlas versus Titan) 					
 Built-in test versus remote diagnostics 	 Single stage versus multistage launch 					
 Types of environmental exposure prior to operation 	 Repair in-situ versus bring down to ground 					
 Level of test (system versus subsystem) 	 Commercial versus Government assets 					
• Various life-cycle approaches (e.g., waterfall versus spiral	 Limited versus public access 					
versus incremental)	 Controlled versus uncontrolled reentry 					

System Engineering notes-trade process options

Pre-Phase A	Phase A	Phase B	Phases C&D	Phases D&E	Phases E&F
 Problem selection Upgrade versus new start 	 On-board versus ground processing Low Earth orbit versus geo- stationary orbit 	 Levels of redundancy Radio frequency links versus optical links 	 Single source versus multiple suppliers Level of testing 	 Platform STS-28 versus STS-3a Launch go- ahead (Go or No-Go) 	 Adjust orbit daily versus weekly Deorbit now versus later

Acquisition Phase	Trade Study Purpose					
Mission needs analysis	Prioritize identified user needs					
Concept exploration (concept and technol-	1. Compare new technology with proven concepts					
ogy development)	2. <u>Select concepts best meeting mission needs</u>					
	3. Select alternative system configurations					
	4. Focus on feasibility and affordability					
Demonstration/validation	1. Select technology					
	2. Reduce alternative configurations to a testable number					
Full-scale development (system develop-	1. Select component/part designs					
ment and demonstration	2. Select test methods					
	3. Select operational test and evaluation quantities					
Production	1. Examine effectiveness of all proposed design changes					
	2. Perform make/buy, process, rate, and location decisions					

System Engineering notes: ingredients

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: MODELS

System implementation means the realization (buy or build) of the system elements.

- **Breadboard:** A low fidelity unit that demonstrates function only. It often uses commercial and/or ad hoc components
- Engineering Unit: A high fidelity unit that demonstrates critical aspects of the engineering processes involved in the development of the operational unit. Engineering test units are intended to closely resemble the final product (hardware/software) to the maximum extent possible and are built and tested so as to establish confidence that the design will function in the expected environments.
- **Prototype Unit:** The prototype unit demonstrates <u>form, fit, and function</u> **at a scale deemed to be representative** of the final product operating in its operational environment.
- Qualification Unit: A unit that is the same as the flight unit (form, fit, function, components, etc.) that will be <u>exposed to the extremes of the environmental criteria</u> (thermal, vibration, etc.). The unit will typically not be flown due to these off-nominal stresses.
- **Protoflight Unit:** In projects that <u>will not develop a qualification unit</u>, the flight unit may be designated as a protoflight unit and a limited version of qualification test ranges will be applied. This unit will be flown.
- Flight Unit: The end product that will be flown and will typically undergo acceptance level testing.

System Engineering notes

Verification is a process of confirming that a <u>requirement</u> or <u>system</u> is *compliant* Verification answers the question:

Does the system meet its requirements?

Validation is a process confirming that a set of <u>requirements</u>, <u>design or system</u> meets the *intent* of the developer or customer. Validation answers the question:

Are the system requirements correctly defined and mean what intended?

System Engineering notes: Models and Test plan

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: Environmental TESTS

Test	Purpose	Equipment/Facilities Required	Process
Vibration & Shock Testing	Ensure product will survive launch Comply with launch authority's requirements Validate structural models	Vibration table and fixture enabling 3-axis testing, and/or Acoustic chamber	 Do low-level vibration survey (a.k.a. modal survey) to determine vibration modes and establish baseline Do high-level random vibration following profile provided by launch vehicle to prescribed levels Repeat low-level survey to look for changes Compare results to model
Thermal & Vacuum Testing	Induce and measure outgassing to ensure compliance with mission requirements Ensure product will perform in a vacuum under extreme flight temperatures Validate thermal models	Thermal/vacuum chamber Equipment to detect outgassing (e.g. coldfinger or gas analyzer) as needed Instrumentation to measure temperatures at key points on product (e.g. batteries)	 Operate and characterize performance at room temperature and pressure Operate in thermal and/or thermal vacuum chamber during hot and cold-soak conditions Oscillate between hot and cold conditions and monitor performance Compare results to model
Electromagne tic Interference/ Compatibility (EMI/EMC)	Ensure product does not generate EM energy that may interfere with other spacecraft components or with launch vehicle or range safety signals Verify that the product is not susceptible to the range and/or launch EM environment	Radiated test: Sensitive receiver, anechoic chamber, antenna with known gain Conduction susceptibility matched "box"	Detect emitted signals, especially at the harmonics of the clock frequencies Check for normal operation while injecting signals or power losses

System Engineering notes: Environmental TEST

Communications and Tracking Labs	Models and Simulation Labs	Thermal Chambers			
Power Systems Labs	Prototype Development Shops	Vibration Labs			
Propulsion Test Stands	Calibration Labs	Radiation Labs	Test	facilities	
Mechanical/Structures Labs	Biological Labs	Animal Care Labs	1050	lacintics	
Instrumentation Labs	Space Materials Curation Labs	Flight Hardware Storage A	reas		
Human Systems Labs	Electromagnetic Effects Labs	Design Visualization			
Guidance and Navigation Labs	Materials Labs	Wiring Shops			
Robotics Labs	Vacuum Chambers	NDE Labs			
Software Development Environment	Mission Control Center	Logistics Warehouse			
Meeting Rooms	Training Facilities	Conference Facilities			
Education/Outreach Centers	Server Farms	Project Documentation Ce	enters		

Equipment acceptance baseline

	Test		Recommended	Category/type of equipment													
	lest		sequence	a	b	с	d	е	f	g	h	I	j	k	I		
	Physical	properties	1	R	R	R	R	R	R	R	R	R	R	R	R	1	
	Functional	and performance	21	R	R	R ₆	R	R	R	R	R	R	-	R	R		
	Leak		3,5,8,11	R3	-	R3	R	R	R	0	-	-	-	-	-		
	Pressure		4	-	-	R ³	R	R	R	0	-	-	-	-	-		
	Random	vibration	6	R	R ³	R	R	R	R	R	R	R	R	R	-		
	Acoustic		6	09	R4	-	-	-	-	-	-	-	0	0	R11		
	Shock		7	0	-	-	-	-	-	-	-	0	-	-	-		
	Thermal v	/acuum ⁶	96	R ²	0	R6	R	R	0	R	R	R	0	R	R11		
	Thermal o	cycling ⁵	96	R	0	R6	R	R	0	R	R	R	0	R	0		
	Burn-in ¹⁰		10	R	-	-	0	-	-	0	-	-	-	-	-		
	Microgravi	ity ⁷	12	R	-	-	R	-	-	-	-	-	-	-	-		
	Audible n	oise ⁸	13	R	R	-	R	R	-	R	-	-	R	R	-		
Categories a = Electronic or electrical equipment b = Antennas c = Batteries d = Valves e = Fluid or propulsion equipment f = Pressure vessels Legend Legend							g = Thrusters h = Thermal equipment i = Optical equipment j = Mechanical equipment k = Mechanical moving assemblies I = Solar arrays								-E-1	L 10-03A	
R = Required O = Optional - = Not required																	

M.Lavagna Aerospace Science & Tech Dept.

ESA tests facilities

M.Lavagna Aerospace Science & Tech Dept.

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes

M.Lavagna Aerospace Science & Tech Dept.

System Engineering notes: V-diagram

The simple life cycle can be re-organized as a V-diagram to emphasize:

- Verification between phases, checking what has been built against its reqs
- Validation as end-to-end verification ensuring that the complete system meets the user needs
- Decomposition and definition of what is to be built
- Integrating and verifying what has been built

System Engineering notes

Overruns are very likely if phases A and B are underfunded

Alpbach Summer School July 17-26,2018

System Engineering and Technology

Michèle Lavagna

michelle.lavagna@polimi.it