

EXPOSURE

EXoPlanet Origins and Stellar Ultraviolet Regime Explorer

A UV mission to explore the origins, habitability, and evolution of exoplanets

TEAM BLUE

Science team

- Maria Aquilina Malta
- Marina Cano Amoros Germany
- Sara Gasparini Norway
- Anne-Sophie Herrijgers The Netherlands
- Vivien Simon Hungary

Payload team

- Vincenzo Davide Cardinale Italy
- Casper Farret Jentink -Switzerland
- Scott Green Sweden
- Søren Truelsen Denmark
- Stephan Zivithal Austria

Engineering team

- Patrick Gowran Ireland
- Isabel Pitz Germany
- Timo Pospisil Austria
- Kamil Serafin Poland
- Gonçalo Trindade France

Tutors: Jerômè Loicq and Greta De Marco

OVERVIEW

SCIENCE

THE SCIENCE - EXOPLANETS

- Gas giants
- Neptune-like planets

eesa

Rocky planets

DETECTION METHODS

GOALS OF THE EXPOSURE MISSION

MEASURE EXTENDED ATMOSPHERES

MEASURE ATMOSPHERIC ESCAPE RECONSTRAIN HABITABLE ZONE

> DETECT NEW EXOPLANETS.

SCIENTIFIC CASES

exposure

• MEASURE EXTENDED ATMOSPHERES

• MEASURE ATMOSPHERIC ESCAPE

• CONSTRAIN HABITABLE ZONE (UV)

• DETECT NEW EXOPLANETS

EXOPLANET DEMOGRAPHICS

EXTENSION OF H₂ EXOSPHERES

Earth's geocorona captured from the Moon during Apollo 16

Summer School Alpbach 2023

Escape rate: 10³ g/second

EXOSPHERE • 500 - 10000KM

 H_2

THERMOSPHERE • 85 – 500 KM

> MESOSPHERE • 50 – 85 KM

> > STRATOSPHERE • 10 – 50 KM

> > > **TROPOSPHERE** •

eesa

MEASUREMENT PRINCIPLE (TRANSIT)

DETECTOR

- Transmission spectroscopy in transit
- Absorption of Ly-a in atmosphere

SENSITIVITY AND REQUIREMENTS

- G, K and M-type stars
- Transit depth of 2.5%
- For a 5-sigma detection
 -> SNR of 200
- Bandwidth 115 -130 nm
- Spec. Resolution 1000

TARGETS

SCIENTIFIC CASES

exposure

14

• MEASURE EXTENDED ATMOSPHERES

• MEASURE ATMOSPHERIC ESCAPE

• CONSTRAIN HABITABLE ZONE (UV)

• DETECT NEW EXOPLANETS

ESCAPING ATMOSPHERES

1,216.

200

Ehrenreich et al. 2015

SENSITIVITY AND REQUIREMENTS

16

F, G, K and M-type stars

- Transit depth > 50 %
- For a 5-sigma detection
 -> SNR of 200
- System velocities (+/- 100km/s)
 -> bandwidth 119-122 nm (Ly-a)
- Spec. Resolution 20 000
- RV precision: 20km/s

TARGETS

Summer School Alpbach 2023 – Team Blue

17

SCIENTIFIC CASES

exposure

18

• MEASURE EXTENDED ATMOSPHERES

• MEASURE ATMOSPHERIC ESCAPE

• RECONSTRAIN HABITABLE ZONE

• DETECT NEW EXOPLANETS

TRADITIONAL HABITABLE ZONE

19

"...region around a star where the conditions could potentially be suitable to sustain like on a planet within this region, for example allowing the presence of liquid water on its surface" ESA

but...

Spinelli et al. 2023

Summer School Alpbach 2023 – Team Blue

(See

•eesa

21

MEASUREMENT PRINCIPLE (PHOTOMETRY)

Measuring UV-flux from star

200-280NM FILTER

DETECTOR

SENSITIVITY AND REQUIREMENTS

22

- G, K and M-type stars
- 5% error margin (SNR: 20)
- Bandwidth 200 280 nm (UV-C)

TARGETS

23

SCIENTIFIC CASES

exposure

24

• MEASURE EXTENDED ATMOSPHERES

• MEASURE ATMOSPHERIC ESCAPE

CONSTRAIN HABITABLE ZONE (UV)

• DETECT NEW EXOPLANETS

LIGHT ECHO PLANET DETECTION

- A stellar flare can brighten a planet in orbit around its host star, producing a light curve with a faint echo (Mann et al. 2018)
- A planet's light-echo emission can potentially be discriminated from that of the host star by means of a time delay (Sparks et al. 2018)

eesa

MEASUREMENT PRINCIPLE (PHOTOMETRY)

26

SENSITIVITY AND REQUIREMENTS

27

- M-type stars
- For a 2-sigma detection
 -> SNR of 2000
- Access planets >0.06 AU

 -> maximum integration time: 30 seconds
- Bandwidth 100 400 nm (variable)

TARGETS

28

MISSION OBJECTIVES

- Atmospheric Escape: Constrain evolutionary models of exoplanets
- Exospheres of habitable planets: Study formation processes of exospheres
- UV flux monitoring: Reconstrain the habitable zone for known systems
- Light echoes: Detect new habitable zone exoplanets

REQUIREMENT ON APERTURE SIZE

Summer School Alpbach 2023 – Team Blue

eesa

APERTURE SIZE – LIGHT ECHOES

31

- Initially: 50% of targets (34)
- Trade-off on fairing diameter:
 -> Down to 19 targets

KEY MISSION DRIVERS

- Diameter of telescope: 4.2 meters.
- **Pointing**: 5 mas (absolute pointing + fine guiding).
- Throughput >4%.
- Orbit **outside** Earth's exosphere (Ly-alpha absorption). All within 100pc:
 - > 40 planets for exospheres of habitable planets
 - > 400 planets for atmospheric escape
 - > 150 stars for UV monitoring (16 days)
 - ~20 planets for light echo detections (16 days monitoring)

eesa

exposure

33

- Flexibility is key to assist with stellar activity monitoring
- Observe transits of known exoplanets, baseline of 3 transits lengths
- **Photometry** for 0.5 x rotational period of the star
- When monitoring for light echoes, if no signal is found then change target

MISSION DURATION

Variable	Time	Total time
Average time of transit for each planet (Ext. atm.)	2.2 hrs	6 hrs per target
Average time of transit for each planet (Esc. atm.)	2.2 hrs	6 hrs per target
Number of transits required for each target (Esc. atm.and Ext. atm.)	10 x 2	120 hrs
Exposure time of each star (HZ)	Max. 30 s	15 days
Exposure time of each star (Light echoes)	Max. 30 s	15 days
Repointing	1 per target	300 hours
TOTAL	-	6.5 years

PAYLOAD

TELESCOPE DESIGN

eesa

- Off-axis three-mirror anastigmat
- 4.2-meter aperture
- Fine-steering mirror
- Additional relay mirrors to slow beam to F/100 and fold below M1
- High efficiency
INSTRUMENT: UV-IMSPEC

- **Spectroscopy mode** (R: 1000 20.000)
- Imaging mode for photometry

eesa

exposure

Challenges:

- Slow beams to reach sampling requirements of 2 pixels/FWHM.
- Minimal amount of surfaces to increase throughput.

DETECTORS (SPECIFICATIONS)

	IMAGER	SPECTROGRAPH
Op. wavelength [nm]	100-400	115-125
MgF2(op.for ^1)[nm]	200-250	120-150
Quant. Eff. (SOTA)	30-60%	20-50%
Target develop.	60 % (100-400 nm)	60 % (115-125 nm)
Op.temp.[K]	< 163	< 163

Read-out Noise^2: <1e-

Dark Current Noise^2: < 0.025/hr/pix

Pixel Size (SOTA): 10μm **Target Development:** 7μm

TRL: 5 (Demonstrated at 39km altitude during FIREBall-2 mission)

SERVICE MODULE

Summer School Alpbach 2023 – Team Blue

40

KEY SYSTEM DRIVERS

41

DRIVER	VALUE
PRIMARY MIRROR SIZE	4.2 METERS
DISTANCE BETWEEN MAIN MIRROR AND SECONDARY MIRROR	7 METERS
POINTING ACCURACY FOR SPACECRAFT	0.1 ARCSEC
DATA AMOUNT	240 GB/DAY
MISSION DURATION	6.5 YEAR
TYPE OF ORBIT	L2
STRAYLIGHT	SHADED MIRROR

PLATFORM REQUIREMENTS

Req-ID	Traceability	Туре	Description
AOCS-01	S-21	AOCS -	The ADCS shall determine and control the attitude of the satellite with an accuracy of at least 0.1arcsec.
AOCS-03	S-23	AOCS -	The attitude control system shall be able to maintain a stable pointing of 0.1 arcsec for at least 16 hours.
AOCS-04		AOCS -	The satellite shall be capable of executing collision avoidance maneuvers.
AOCS-05		AOCS -	The ADCS shall be able to withstand singlepoint failure, without any loss of capability
COM-01	S-24	COM 👻	The operating frequency used for telecommand and housekeeping telemetry shall be 32GHz downlink, 34.6GHz uplink (Ka-band).
COM-02	S-24	COM 🗸	The data transmission frequency used for payload and experiment data telemetry transmission shall be 31.8GHz downlink, 34.3 GHz uplink (Ka-band).
COM-03	S-24	COM 🔻	The data-rate shall be at least 130Mbps
C-01	S-23, S-10, S-11, S-12, S-13, S-14	CONST -	The nominal mission duration shall be 6.5 years.
C-02		CONST -	The end-of-life scenario shall comply to the ECSS standards for the space debris mitigation.
C-03		CONST -	The spacecraft design shall comply to the ECSS standards.
E-01	O-02	ENV -	The satellite shall withstand the accumulated radiation loads over the entire lifetime in orbit without loss of functionality.
E-03	O-02	ENV -	The satellite shall withstand the thermal loads for the predicted environments during in-orbit operation.
E-04	O-02	ENV -	The satellite shall withstand the mechanical loads for the predicted environments during storage, launch and on-orbit operation.
EPS-02		EPS 🔹	The EPS shall provide 100 W of electrical power to the payload.

PLATFORM REQUIREMENTS

Req-ID	Traceability	Туре	Description
EPS-03		EPS 🔻	The EPS shall have power capacity to provide the spacecraft for 8 hours without power generation.
GS-01	S-24	GS 🔻	The ground station contact time shall be sufficient to download all scientific data
GS-02	COM-01, COM-02	GS 🔻	The ground station selected shall be able to receive data in the S-band for safe mode and in Ka-band for science data transmission
GS-03	COM-01, COM-02	GS 🔻	The ground station shall be able to transmit in S-band for safe mode case and in Ka-band for telecommand
O-02	S-14, I-12	MIS -	The target orbit shall be around L2 and avoid eclipses.
O-03	S-14	MIS -	The orbit shall be reached and maintained for the required nominal and extended mission lifetime.
O-04		MIS -	At the end of mission lifetime, the S/C shall be disposed.
OBC-01	S-24	OBC 🔻	The OBC shall be able to store 240Gbyte/day amount of data
OBC-03		OBC 🔻	The OBC shall be able to distribute commands to the various subsystems.
SMS-01		SMS -	The spacecraft shall fit the payload envelope of the launcher system.
SMS-02	S-20, I-10	SMS -	The secondary mirror shall be at a distance of 7m from the main mirror
SMS-03	S-21, T-03, T-05, T-06, T-09	SMS 🔻	The stability of the secondary mirror shall be sufficient to achieve a pointing accuracy of 0.005arcsec
SMS-04	S-25	SMS 🔻	The sunshield shall shade the telescope from all incoming straylight
SMS-05	S-21, T-03, T-05, T-06, T-09	SMS 🔻	The thermal stability of the pimary mirror backplane shall be sufficient to achieve a pointing accuracy of 0.005arcsec
TCS-01		TCS 🔻	The TCS shall monitor and keep the temperature of each component within the required operational limits

Req-ID	Traceability	Туре	Description
AOCS-01	S-21	AOCS 🔻	The ADCS shall determine and control the attitude of the satellite with an accuracy of at least 0.1arcsec.
AOCS-03	S-23	AOCS 🔻	The attitude control system shall be able to maintain a stable pointing of 0.1 arcsec for at least 16 hours.
C-01	S-23, S-10, S-11, S-12, S-13, S-14	CONST -	The nominal mission duration shall be 6.5 years.
O-02	S-14, I-12	MIS -	The target orbit shall be around L2 and avoid eclipses.
GS-01	S-24	GS 🔻	The ground station contact time shall be sufficient to download all scientific data
SMS-01		SMS 🔻	The spacecraft shall fit the payload envelope of the launcher system.
SMS-02	S-20, I-10	SMS 🔻	The secondary mirror shall be at a distance of 7m from the main mirror

Getting there

MISSION ANALYSIS

 Halo orbit around Sun-Earth L2 point

TARGET

- Apoapsis altitude: 8.52e5 km
- Periapsis altitude: 2.5e5 km
- Small orbit corrections necessary

Launch Window considerations

- Earth/Moon eclipses
- Instruments orbiting L2
- Stable Manifold Transfer
- Target Orbit Insertion

Wang et al., 2000

eesa

RADIATION ENVIRONMENT

- The radiation environment at L2 is less harmful than LEO or GEO
- Sources are the Sun and cosmic ray background
- 1-10 particles/cm^3 (95% protons)
- Herschel mission ~1 SEU/day ("bit flip")
- Need for Failure Detection Isolation and Recovery (FDIR) in the OBC.

Ingmar Sandberg (ESTEC)

SYSTEM OVERVIEW

• SMS-01: The spacecraft shall fit the payload envelope of the launcher

system

• SMS-05: The thermal stability of the primary mirror backplane shall be

sufficient to achieve a pointing accuracy of 0.005arcsec

Structures and Mechanisms System

STRUCTURE & MECHANISMS

49

SATELLITE DESIGN

50

SATTELITE DESIGN

51

SUBSYSTEMS – STRUCTURES AND MECHANISMS

SUBSYSTEMS – STRUCTURES AND MECHANISMS

SPACECRAFT IN LAUNCH CONFIGURATION

54

LAUNCHER – ARIANE 6.2

Fairing Diameter (internal)	4.6m
Fairing Height (internal)	18m
Max. Payload Mass	3300kg

Payload Height	11m (incl. 20% margin)
Payload Mass	3000kg (incl. 20% margin)

Summer School Alpbach 2023 – Team Blue

esa

н=. exposure

DELTA-V

Category	Description	Delta-V	Margin	Total Delta-V
Orbital Maneuver	Removal of launcher dispersion	50 m/s	5 %	90 m/s
	Mid Coarse correction	5 m/s	5 %	
	Orbit maintenance	1 m/s / year	5 %	
	Deorbit maneuver	20 m/s	5 %	
Attitude Change	Wheel desaturation	1 m/s / year	100 %	25 m/s
	Safe mode reserve	5 m/s	0 %	
Total				115 m/s

PROPULSION

5N Monopropellant Thruster - Rafael Space

Propellant	N2H4
Steady Thrust	6.1 - 1.8 N
Total Lifetime	15 years
TRL	9

Maneuver Duration

Removal of launcher dispersion (50 m/s)	~ 3 min
Vheel desaturation	< 10 s

COMMUNICATIONS REQUIREMENTS

- exposure
- COM-01: The operating frequency used for telecommand and house
 - keeping telemetry shall be 32GHz downlink, 34.6GHz uplink (Ka-band).

- **COM-02:** The data transmission frequency used for payload and
- experiment data telemetry transmission shall be 32.8GHz downlink,
- 34.3 GHz uplink (Ka-band).

Communications System

59

COMMUNICATIONS

60

TM & TC Science Data 4 hours and 6 minutes per day

Acquisition of Signal

Data Rate: 130Mbps (Ka-band)

<u>Data Amount:</u> 240 Gbytes/day

Transmission Power: 10 Watts

<u>Stations:</u> Cebreros & Malargüe (35-meter antenna)

Loss of Signal (LOS)

- 2 Ka-band high-gain antennas (equipped with pointing gimbals, and with a 0.26meter diameter) and 2 S-band mediumgain antennas in the telescope.
- <u>Telemetry and Telecommands: frequency</u>: Ka-band, 32.0 GHz downlink, 34.6 GHz uplink
- <u>Science Data: frequency</u>: Ka-band, 31.8 GHz downlink, 34.3 GHz uplink
- <u>Emergency Situations:</u> New Norcia antenna, using S-band, with frequencies of 2200MHz downlink, and 2050MHz uplink. Antenna size of 0.2m.

Attitude and Orbit Control System

61

ATTITUDE & ORBIT CONTROL SYSTEM

Summer School Alpbach 2023 – Team Blue

62

eesa

exposi

GROUND STATIONS: ESTRACK Deep Space Network

- All 3 antennas with a 35meter diameter
- Deep-space probe tracking

63

• OBC-01: OBC-01: The OBC shall be able to store 240Gbyte/day amount

of data.

On-board Computer

ON-BOARD COMPUTER

65

ON BOARD COMPUTER (OBC)

NAME	RAD750 SBC
SUPPLIER	BAE SYSTEMS
POWER CONSUMPTION	10W
PRODUCED	2001
FREQUENCY	200 MHz
TRL	9
FLIGHT HERITAGE	JWST

MASS MEMORY: 1 TB

Summer School Alpbach 2023 – Team Blue

66

exposure

- TCS-01: The TCS shall monitor and keep the temperature of each
 - component within the required operational limits.

Thermal Control System

68

THERMAL CONTROL SYSTEM

exposure

PASSIVE HEATING

Thermal/sun Shield

MLI layer

Radiator on the shadow side of S/C

Thermal strap linked to radiators

ACTIVE HEATING

Heaters with thermostat

Max Power Dissipation	500 W
Radiator Area	1,23 m ²
	Thermal Stability (∆T)
EMCCD Detectors	5 K

SYSTEM MODES

				.65				
USED			, OR	M St.		JNC INC		
NOT USED		1083	MAIST	AFUNIT IS		ATURA .	GING ,	2
System/Subsystem	FUL		" MA	SIF	- 4F2	. IWI	SAF	
DHS (Data-Handling)								
OBC								
PWR (Power)								
PCDU + Battery Packs								
AOGNC (Attitude and Orbit Guidanc	e, Navi	gation	and Co	ntrol)				
Reaction Wheel								
Sun Sensors								
Star Trackers								
Gyros								
Accelerometers								
COM (Communications)								
Ka-band Transceiver								
S-band Transceiver								
INS (Instruments)								
M2 Correction Mechanism								
M4 Fine Steering Mirror								
Fine Guidance Sensors								
UV-IMSPEC								
PRO (Propulsion)								
FCV (Valve)								
Thruster Heaters								
SMS (Structure & Mechanisms)								
Heat Shield Mechanism								
M2 Folding Mechanism								

ELECTRICAL POWER SYSTEM REQUIREMENTS

72

• EPS-02: The EPS shall provide 100 W of electrical power to the

payload.

EPS-03: The EPS shall have power capacity to provide the spacecraft

for 8 hours without power generation
Electrical Power System

73

POWER BUDGET

OBC

16,4%

PWR 4,7%

AOCS 9,4%

COM 5,4%

MODE	POWER REQ. [W]					IMAG	ING		
EARLY OPS	203					HEAI 10,7%	24	37	
COMMISSIONING	133							57	
MANEUVRE	209	MAN	EUVER						
IMAGING	269	HEAT			OBC				
SLEW	131	13,070	24	37	21,1%		120	12	
DESATURATION	349						53,5%	-	
IDLE	118			11	6,0%				
SAFE	344			21	AOCS				
		PRO 43,4%	76	6	12,1% COM				

3,6%

Summer School Alpbach 2023 – Team Blue

SOLAR ARRAYS

Company	DHV
Technology	Multi junction
TRL	9
Efficiency	30 %
Power / Area	300 W / m2
Annual Degradation	2 %
Pointing Error	70 °
Size	20 x 505 x 644 mm
Max. Power Output (BoL)	1950 W
Min. Power Output (EoL)	545 W

DHV Technology 2023

High quality solar cells Multi junction assembly with 30% efficiency class

Space qualified substrates

different configurations

Customized substrate with

Laydown design Design of the most efficient configuration to provide the maximum power

ATOX protection

Soldered or welded connections protected by an ultra-low outgassing polymer

Summer School Alpbach 2023 – Team Blue

Summer School Alpbach 2023 – Team Blue

Company	DHV	Power
Battery Charge Regulators Efficiency	> 95 %	Module
Power output efficiency	> 90 %	
Output Buses	3.3 V, 5 V, 12 V, 28.8 V (unregulated)	
Battery Type	LiFeP04	
Capacity	1600 Wh	
Features	 Maximum Power Point Tracker (MPPT) Over-Voltage/-Current Protection Health Checks, Temperature Control 	
TRL	9	Battery

POWER CONDITIONING DISTRIBUTION UNIT

ר אח Fechnoloav 2023

76

Module

MASS BUDGET - OVERVIEW

eesa
exposure

System/Subsystem	Dry Mass	Mass Margin	Mass w/ Margin
OBC (On-board computer)			
Interfaces	4,0	5%	4,20
Casing	14,0	5%	14,70
OBC	2,0	10%	2,20
Summary mass of subsystem	20,0	20%	25,32
EPS (Power)			
Solar Panels	30,0	10%	33,00
Battery Packs	28,0	5%	29,40
Power Conditioning Distribution Un	2,6	5%	2,73
STR (Structure)			
Backplane (Main Mirror Supporting	646,5	20%	775,82
Secondary Mirror Beam Supporting	78 <mark>,</mark> 8	20%	94,50
Launcher Adapter	110,0	5%	115,50
Cables	327,0	5%	343,35
Summary mass of subsystem	1162,3	20%	1394,72
ACS(Attitude Control System)			
Reaction Wheels	35 <mark>,</mark> 8	10%	39,41
Gyroscopes	38,0	10%	41,80
Fine Guidance Sensor	233,6	10%	256,96
Sun sensors	0,2	5%	0,21
Star Trackers	8,6	5%	9,03
Summary mass of subsystem	316,2	20%	379,48

System/Subsystem	Dry Mass	Mass Margin	Mass w/ Margin
COM (Communications)			
Hk-data transceiver	15,0	10%	16,50
Payload Transmitters	15,0	10%	16,50
Summary mass of subsystem	30,0	20%	36,00
Thruster	3,7	10%	4,09
Propellant Mass	187,0	12%	173,12
Tank	28,1	5%	29,45
Pressurant Gas	3,0	10%	3,30
Mounting Hardware	46,8	10%	51,43
THE (Thermal)			
Radiators	8,9	10%	9,79
Summary mass of subsystem	8,9	20%	10,68
RADIATION			
Solar shielding	21,48	10%	23,63
Summary mass of subsystem	21,48	20%	25,78
PAYLOAD			
Main Mirror	106,3	10%	116,93
Secondary Mirror	0,7	10%	0,81
Tertiary mirror	0,03	10%	0,03
Fine steering mirror	0,01	10%	0,01
Spectrograph unit	100,0	20%	120,00
Imager unit	70,0	20%	84,00
Mirror Thermal Control Unit	15,8	20%	18,96
Summary mass of subsystem	292,9	20%	351,44
Totals	2180,87	20%	2617,04

MASS BUDGET – KEY DRIVERS

ELEMENT	MATERIAL	MASS[KG]
BACKPLANE	M55J GRAPHITE EPOXY	776
SECONDARY MIRROR SUPPORT	LIGHTWEIGHT CFRP	95
MIRRORS	BERYLLIUM SUBSTRATE, ALUMINIUM + LF2, COATING	118
PROPELLANT	HYDRAZINE	173

TECHNOLOGY ROADMAP

CONCLUSIONS

Summer School Alpbach 2023 – Team Blue

COST CATEGORY

Subcategory	Category	Cost[M€]
Platform	Industrial cost	450
Telescope & payload instruments	Industrial cost	450
	ESA project cost	170
	Operations	80
	Total	1150
	Total (20 % margin)	1380
	launch	100
Delivery to L2	Payload provided b y ESA Member States	-10
	Summary	1420

CRITICAL RISKS- BEFORE MITIGATION

Severity

Mitigation:

- Include Detector on pathfinder mission,
 i.e., a CubeSat, before EXPOSURE to flight
 qualify (TRL 8)
- Redundancy and FDIR for OBC
- Increase exposure time if mirror surface degrades

				Single-Event Upset (SEU)
		Collision with micrometeoroid		
		Degredation of Mirror Surface Pointing jitter		
	Solar-array deployment failure Boom deployment failure			
		Redirection of funds	Detector(TRL 5)	
A - Remote	B - Unlikely	C - Likely	D - Highly likely	E - Near certain

CRITICAL RISKS - AFTER MITIGATION

Mitigation:

- Include Detector on pathfinder mission,
 - i.e., a CubeSat, before EXPOSURE to flight qualify (TRL 8)
- Redundancy and FDIR for OBC
- Increase exposure time if mirror surface degrades

DE-SCOPING POSSIBILITIES

- Shrink telescope diameter -> lose light echo detection and possibly exospheres of habitable planets
- Take out imager -> lose UV-flux and light echo detection
- Take out spectrograph -> lose detection of escaping and extended atmospheres

DEVELOPMENT SCHEDULE

Summer School Alpbach 2023 – Team Blue

ESA MISSION TIMELINE

Summer School Alpbach 2023 – Team Blue

86

eesa

PUBLIC OUTREACH

exposure

- Instagram
- Facebook
- Course of funfact sessions at schools
 - Variations in exoplanets
 - Dangers of UV-radiation from the Sun

FINAL REMARKS

BACKUP: Habitability Zone (HZ)

Clouds can have perfect temperature for life Temperature below clouds/atmospheres \rightarrow life Exomoons in CHZ Atmospheres potentially harbor life f.e. upper-to-middle cloud layers of Venus (0–60°C; $pH\sim0$): might suitable for thermo- or psychro-acidophilic microorganisms (Merino, N., (2019), Living at the extremes: Extremophiles and the limits of life in a planetary context, Frontiers in

Microbiology, 10)

Delrez, L., et al.(2022), Two temperate super-Earths transiting a nearby late-type M dwarf, 667

Backup Slides - Requirements

Req-ID	Tracebility Source		Description
M-01	0-1	Measurement 🔹	Measure the Lyman alpha transit of exoplanets orbiting in the habitable zone
M-02	O-2	Measurement	Measure the Lyman alpha radial velocity profile of exoplanets of planets with expanding hydrogen atmospheres
M-03	O-3	Measurement 🔹	Measuring variations in the UV emission of stars with planets in the habitable zone
M-05	M-01,M-02	Measurement	The spacecraft shall perform spectroscopy around the Lyman-alpha line while exoplanets transit
M-06	M-01	Measurement	The mission shall do spectroscopy around the lyman alpha line on stars with planets which are supposed to have evaporating atmospheres
M-07	M-03	Measurement 🔹	The mission shall perform photometry on M-Type stars
S-01	O-4	Scientific •	Separate flare emissions from the star from the reflected emission of the flares on an exoplanet
S-02	M-02	Scientific 🔹	The observed exoplanets shall be larger than 1.5 earth radii for case 1.1
S-03	M-01,M-02	Scientific •	The observed exoplanets shall orbit around M, K or G-type stars for case 1.1 and 1.2
S-04	M-01	Scientific 🔹	The observed exoplanets shall be smaller than 2.5 earth radii for case 1.2
S-05	M-01	Scientific •	The insulation flux received by the observed planet for case 1.2 shall be between 0.2 and 2 time the solar flux
S-06	M-02	Scientific •	The radial velocity of the Lyman alpha line shall be resolved to be able to distinguish the red wing and blue wing
S-07	S-01	Scientific •	The distance between stars and planets for observed $% \left(t_{\mathrm{A}}^{\mathrm{A}}\right) =0.006$ AU
S-08	S-01	Scientific •	The mission shall observe more than 30 $\%$ of M-dwarfs with the within the observed region for case 3
S-09	S-01,M-02,M -03,M-04	Scientific •	The observed targets shall be closer than 100 psc
S-10	M-02	Scientific •	The minimum number of targets that shall be observed is 150 planets for case 1.1

Backup Slides - Requirements

Req-ID	Tracebility Source			Description
S-10	M-02	Scientific	•	The minimum number of targets that shall be observed is 150 planets for case 1.1
S-11	M-01	Scientific	•	The minimum number of targets that shall be observed is 20 planets for case 1.2
S-12	M-03	Scientific	•	The minimum number of targets that shall be observed is 150 stars for case 2
S-13	S-01	Scientific	•	The minimum number of targets that shall be observed is 27 planets for case 3
S-14	M-02	Scientific	•	Their shall be no geocoronal absorption visible in the observed spectra
S-15		Scientific	•	3 transits shall be observed for each target
S-16		Scientific	•	Each star shall be observed for 15 days (for it to be likely to observe a flare)
S-17		Scientific	•	The spectral resolution for case 1.1 shall be larger than 20000
S-18		Scientific	•	The spectral resolution for case 1.2 shall be larger than 1000
S-19		Scientific	•	The field of view shall be at least 25"
S-20		Scientific	•	The f/ratio of the telescope shall be 1/ (100 +-0.1)
S-21		Scientific	•	The pointing accuracy shall be 0.005arcsec
S-22	S-15	Scientific	•	The stars shall be osbserved for more then one rotation of the star
S-23		Scientific	•	The minimum uninterupted observation time shall be 16 hours
S-24		Scientific	•	The S/C shall be able to store and transfer 240Gb of data pr. day.
S-25	M-03,S-01	Scientific	•	The UV-flux-variations observable shall be smaller than 0.1 %

91

Backup Slides - Requirements

Req-ID	Tracebility Source		Description
1-03		Instrument •	The detector for the imager shall have a Minimum Quantum Efficiency of 0.4 between 150+/-1 nm -300+/-1 nm
I-04		Instrument	The detector for the imager shall have a Minimum Quantum Efficiency of 0.2 between 115+/-1 nm -400+/-1 nm
1-05		Instrument	The detector for the spectrograph shall have a Minimum Quantum Efficiency of 0.6 between 115+/-0.5 nm and 130+/-0.5 nm
I-06		Instrument •	The spectrograph detector shall have 2048x10 pixels
I-07		Instrument •	The spectrograph pixel size shall be 7μm +- 0.01 μm
I-08		Instrument •	The imager detector shall have a minimum of 2048x10 pixels
I-09		Instrument •	The imager pixel size shall be 7μm +- 0.01 μm
I-10		Instrument •	The throughput shall be larger than 4 %
I-11	C-03,	Instrument •	The smallest integration time shall be 1s
I-12	S-21, T-03, T-05, T-06, T-09	Instrument	The roughness of the reflecting surfaces shall be smaller than 0.1
	S-21, T-03,	Instrument	
I-13	T-09	instantont	The wavefront error shall be smaller than 7 nm
I-14	T-02, T-06, T-12, T-13	Instrument •	The primary mirror shall have a Diameter of 4.2

92

BACKUP: SPACECRAFT IN LAUNCH CONFIGURATION

93

BACKUP: 70 ° from Ecliptic

94

BACKUP: SOLAR RADIATION FLUX

Summer School Alpbach 2023 – Team Blue

eesa

BACKUP: 50 M/S MANEUVER DURATION

