Aetheras

Team Red

Speaker: Aksel Beltoft

Risks, cost & plan

Speaker: Noria Brecher

3

Speaker: Aksel Beltoft

Speaker: Noria Brecher

4

Motivation

6

Atmospheric escape

Loss of planetary atmosphere to outer space

Photoevaporation driven by intense stellar XUV irradiation

Core-powered mass loss

Trapped ion charge exchange

9

Energetic heavy ion outflow

Cold plasma outflow

Hot Jupiters and brown dwarfs

Large objects expected to have magnetic fields

Hot Jupiters

Close-in gas giants

Magnetic fields expected from models, also some observational evidence

Atmospheric escape expected because of closeness to host stars, also some observational evidence

Batygin+2013, Rogers+Showman 2014, Oklopčić+2020, Vidal-Madjar+2003, Spake+2018

Magnetic f also some Proxies for (

observed in at least one transiting brown

dwarf

Pineda+2017, Saur+2021, Ruíz-Rodriguez+2022

Brown dwarfs

Magnetic fields expected from models, also some observational evidence

Proxies for **atmospheric escape**

Atmospheric escape and magnetic field

Influence of planetary magnetic field on atmospheric escape still debated

Presence of a magnetic field might:

Preserve atmosphere

or

Enhance atmospheric escape

Lundin+2006, Gunell+2018

Atmospheric escape

Loss of planetary atmosphere to outer space

Photoevaporation driven by intense stellar XUV irradiation

Core-powered mass loss

Trapped ion charge exchange

Energetic heavy ion outflow

Cold plasma outflow

15

The planetary radius valley

Apparent gap in number of detected planets between roughly 1.5 and 2.0 $\rm R_{Earth}$

- First predicted in 2013, observational evidence using Kepler results in 2017
- Origin unclear and heavily debated
- Planets inside radius valley potentially in transition state and undergoing atmospheric

escape

The planetary radius valley

Exact location of radius valley also depends on stellar properties

Orbital Period

Stellar mass

Petigura+2022

Incident flux

Stellar metallicity

Hot Neptune desert

Mazel+2016, Szabo+2019, West+2019

- Not explained by observational biases
- Possible explanations:
 - Planet formation
 - Migration
 - Atmospheric escape

Science case

Science Objectives

SOI. Are there correlations between the characteristics of exoplanets, the properties of their host stars and atmospheric escape?

Science Objectives

SOI. Are there correlations between the characteristics of exoplanets, the properties of their host stars and atmospheric escape?

SO2. Is atmospheric escape a factor in creating the radius valley?

Science Objectives

SOI. Are there correlations between the characteristics of exoplanets, the properties of their host stars and atmospheric escape?

SO2. Is atmospheric escape a factor in creating the radius valley?

SO3. Is atmospheric escape a factor in creating the hot Neptune desert?

30

Science Objectives

SOI. Are there correlations between the characteristics of exoplanets, the properties of their host stars and atmospheric escape?

SO2. Is atmospheric escape a factor in creating the radius valley?

SO3. Is atmospheric escape a factor in creating the hot Neptune desert?

SO4. How does the magnetic field of exoplanets influence atmospheric escape?

Speaker: Aksel Beltoft

Risks, cost & plan

Speaker: Noria Brecher

32

Observation strategy

Techniques for atmospheric escape detection Hydrogen Ly-α emission line (121.6nm)

Techniques for atmospheric escape detection Hydrogen Ly-α emission line (121.6nm)

Ehrenreich+2015

Techniques for atmospheric escape detectionHelium I line (1083.0nm)Carbon II (133.45nm)

Magnetic fields

- Bow shock \rightarrow higher density region \rightarrow early ingress in the UV (Mg II)
- Magnetic field can influence the radial velocity of gas clouds
- CII in the magnetosphere tail sensitive to magnetic fields \rightarrow asymmetric transit curve

Simulation of a transit with bow shock

Candidate target list

120 in and around radius valley

30 brown dwarfs and 100 hot Jupiters

50 hot Neptunes

Candidate target list - synergy with PLATO

ESA

- Radius valley targets: 450-1500 (M-dwarfs), 1000- 8000 (FGK stars)
- Hot Jupiters:6000-20000

Why can't other observatories answer these questions?

Ground-based observatories

- Earth's atmosphere **absorbs UV**

HST

- Observations **limited** by Earth occultations
- Planets may remain undetectable due to limited sensitivity
- Ly-a **contaminated** by interstellar absorption and Earth geocoronal emission

Ariel

- No UV instrument **no** detection of magnetospheres
- Low resolution IR spectrometer (R=30-200) with spectral range over He I line

JWST

- Need for observation is at least 12.000 hours - too long for proposal

- No UV instrument - **no** detection of magnetospheres

SR1. The mission shall measure proxies for atmospheric escape and magnetic fields in the NIR and UV, including the absorption lines:

- $H Ly \alpha (121.40 121.75) \pm 0.05 nm$
- C II (130.00-137.00) ± 0.05 nm
- Mg II (277.00-281.00) ±0.05nm
- Hel(1082.60-1084.00)±0.05nm

[SO1, SO2, SO3, SO4]

SR1. The mission shall measure proxies for atmospheric escape and magnetic fields in the NIR and UV, including the absorption lines:

- $H Ly \alpha (121.40 121.75) \pm 0.05 nm$
- $C \parallel (130.00 137.00) \pm 0.05 nm$
- Mg II (277.00-281.00)±0.05nm
- HeI $(1082.60 1084.00) \pm 0.05$ nm

[SO1, SO2, SO3, SO4]

SR2. The mission shall observe at least 100 transiting exoplanets that lie in the radius valley and on its edges (1.2<R<2.3 Earth radii) using spectroscopy. [SO1, SO2, SO4

SR3. The mission shall observe at least 100 transiting objects with a mass of at least 0.1 Jupiter masses. [SO1, SO4]

SR3. The mission shall observe at least 100 transiting objects with a mass of at least 0.1 Jupiter masses. [SO1, SO4]

SR4. The mission shall observe at least 25 transiting Neptune-sized exoplanets with orbital periods of less than 4 days. [SO1, SO3, SO4]

SR3. The mission shall observe at least 100 transiting objects with a mass of at least 0.1 Jupiter masses. [SO1, SO4]

SR4. The mission shall observe at least 25 transiting Neptune-sized exoplanets with orbital periods of less than 4 days. [SO1, SO3, SO4]

SR5. The mission shall observe a minimum of 4 full transits per target, including ingress and egress, with a 2h margin before and 50% transit duration margin after, acquiring at least 40 equidistant measurements per transit. [SO1, SO2, SO3, SO4]

SR6. The spectral resolution in the NIR shall be sufficient to resolve a Doppler shift of at least 85 km/s in the He I absorption line. [SO1, SO2, SO3, SO4]

SR6. The spectral resolution in the NIR shall be sufficient to resolve a Doppler shift of at least 85 km/s in the He I absorption line. [SO1, SO2, SO3, SO4]

SR7. The spectral resolution in the UV shall be able to at least separate the Si III absorption line from the Ly- α absorption line. [SO1, SO2, SO3, SO4]

Speaker: Aksel Beltoft

Risks, cost & plan

Speaker: Noria Brecher

Instrument & mission requirements

IR1. The spacecraft shall be equipped with a spectrometer to perform simultaneous observations in the NIR (1082.60-1084.00)±0.05 nm and UV $(121.40 - 281.00) \pm 0.05 \text{ nm}$. [SR1]

IR1. The spacecraft shall be equipped with a spectrometer to perform simultaneous observations in the NIR (1082.60-1084.00) ±0.05 nm and UV $(121.40 - 281.00) \pm 0.05 \text{ nm}$. [SR1]

IR2. The photometric aperture shall capture 99.5% of the stellar flux in the NIR and the UV. [SR2, SR3, SR4, SR5]

IR1. The spacecraft shall be equipped with a spectrometer to perform simultaneous observations in the NIR (1082.60-1084.00)±0.05 nm and UV (121.40-281.00)±0.05 nm. [SR1]

IR2. The photometric aperture shall capture 99.5% of the stellar flux in the NIR and the UV. [SR2, SR3, SR4, SR5]

IR3. The resolving power shall be at least 3600 for the NIR. [SR6]

IR1. The spacecraft shall be equipped with a spectrometer to perform simultaneous observations in the NIR (1082.60-1084.00) ±0.05 nm and UV $(121.40 - 281.00) \pm 0.05 \text{ nm}$. [SR1]

IR2. The photometric aperture shall capture 99.5% of the stellar flux in the NIR and the UV. [SR2, SR3, SR4, SR5]

IR3. The resolving power shall be at least 3600 for the NIR. [SR6]

IR4. The resolving power shall be at least 500 for the UV. [SR7]

IR5. The photometric stability shall be better than 50 ppm (1 σ) for the NIR instrument. [SR2, SR3, SR4, SR5]

IR5. The photometric stability shall be better than 50 ppm (1 σ) for the NIR instrument. [SR2, SR3, SR4, SR5]

IR6. The photometric stability shall be better than 1% (1 σ) for the UV. [SR2, SR3, SR4, SR5]

IR5. The photometric stability shall be better than 50 ppm (1 σ) for the NIR instrument. [SR2, SR3, SR4, SR5]

IR6. The photometric stability shall be better than 1% (1 σ) for the UV. [SR2, SR3, SR4, SR5]

IR7. The signal-to-noise ratio of the transition contrast shall be at least 8 for NIR. [SR2, SR3, SR4, SR5]

IR5. The photometric stability shall be better than 50 ppm (1 σ) for the NIR instrument. [SR2, SR3, SR4, SR5]

IR6. The photometric stability shall be better than 1% (1 σ) for the UV. [SR2, SR3, SR4, SR5

IR7. The signal-to-noise ratio of the transition contrast shall be at least 8 for NIR. [SR2, SR3, SR4, SR5]

IR8. The signal-to-noise ratio of the transition contrast shall be at least 4 for UV. [SR2, SR3, SR4, SR5]

IR9. The instrument boresight shall not be pointed within a 15° cone towards Sun during operations. [SR2, SR3, SR4, SR5]

IR9. The instrument boresight shall not be pointed within a 15° cone towards Sun during operations. [SR2, SR3, SR4, SR5]

IR10. The instrument shall be pointed with a pointing accuracy of 0.07 arcsec with a stability of 5% over at least 10h towards the targets. [SR2, SR3, SR4, SR5

Additional absorption lines

Wavelength [nm]	Atom/Molecule/Ion	
119.9 ¹	NI	
124 ²	Si I	0.975 - S ⁺ N ² + N
128 ¹	H ₂ O	0.925 - N ⁺ ਤੁ
130.4 ¹	Ο	^v 0.900 - Si ² + Si ² + C
150 ²	Si III	0.850 -
155 ²	C III	0.825 - Si ⁺
169 ²	ALI	0.800 - III - I'' - I''' - I'' - I''' - I''' - I''' - I''' - I''' - I'''' - I''' - I''' - I''' - I''' - I''' - I'''' - I'''' - I''' - I'''' - I''''''''
280.9 ¹	Na II	Transmission spec

1: NIST, 2: Linssen+2023

Feasibility of NIR measurements

Worst-case NIR Line: He I Noise limit: 50ppm

NIR integrated signals

Min Resolution: 3600

Feasibility of Ly-α measurements

Worst-case UV Line: Ly-α Noise limit: 1%

Feasibility of Mg II measurements

Worst-case UV Line: Mg II Noise limit: 1%

Feasibility of extended measurements

Worst-case UV Noise limit: 1%

Instrument design

Ml	1.5 m	
AFOV	3.14 deg	TTM (M2)
NIR	1070-1090 nm	
UV	115-285 nm	
NIR Spec Res.	3724	DICH1
UV Spec Res.	571	DICH2
Throughput UV	1.94%	
Throughput NIR	38.65%	NIR-SLI
Throughput VIS	35.10%	
Compressed data rate	13.2 Gb/day	NIR

IR-DET

Mission requirements

MR1. The mission shall be conducted from outside the Earth's exosphere (38 R_{Earth}). [IR1, IR2, IR8, IR9, IR10]

Mission requirements

MR1. The mission shall be conducted from outside the Earth's exosphere (38 R_{Forth}). [IR1, IR2, IR8, IR9, IR10]

MR2. The mission shall provide a total scientific observation time of at least 9.120 hours. [SR2, SR4]

Mission requirements

MR1. The mission shall be conducted from outside the Earth's exosphere (38 R_{Earth}). [IR1, IR2, IR8, IR9, IR10]

MR2. The mission shall provide a total scientific observation time of at least 9.120 hours. [SR2, SR4]

MR3. The mission shall optimize the observations. [SR2]

Mission constraints

MC1. The mission shall use an ESA launcher for the space segment.

Mission constraints

MC1. The mission shall use an ESA launcher for the space segment.

MC2. The mission shall use a ground segment accessible by ESA.
Mission constraints

MC1. The mission shall use an ESA launcher for the space segment.

MC2. The mission shall use a ground segment accessible by ESA.

MC3. At the end of the lifetime, the mission shall be decommissioned by entering a graveyard orbit.

Mission concept

Mission concept

Orbit correction manoeuvre

75

COMMISSIONING

Mission concept

COMMISSIONING

OBSERVATION PHASE

End of life: Unstable outbound orbit

DECOMMISSIONING

76

SysR1. The spacecraft shall possess 3-axis pointing stabilisation. [IR5, IR6, IR7, IR8]

77

SysR1. The spacecraft shall possess 3-axis pointing stabilisation. [IR5, IR6, IR7, IR8]

SysR2. The spacecraft shall have a propulsion system to perform orbit insertion, station keeping for at least 3 years, and disposal. [MR1, MC3]

SysRI. The spacecraft shall possess 3-axis pointing stabilisation. [IR5, IR6, IR7, IR8]

SysR2. The spacecraft shall have a propulsion system to perform orbit insertion, station keeping for at least 3 years, and disposal. [MR1, MC3]

SysR3. The spacecraft shall withstand the radiation environment at the target orbit for at least 3 years. [MR1]

SysRI. The spacecraft shall possess 3-axis pointing stabilisation. [IR5, IR6, IR7, IR8]

SysR2. The spacecraft shall have a propulsion system to perform orbit insertion, station keeping for at least 3 years, and disposal. [MR1, MC3]

SysR3. The spacecraft shall withstand the radiation environment at the target orbit for at least 3 years. [MR1]

SysR4. The spacecraft shall be able to observe targets between [-70°, 80°] in declination with respect to the ecliptic. [SR2, SR3, SR4]

SysRI. The spacecraft shall possess 3-axis pointing stabilisation. [IR5, IR6, IR7, IR8]

SysR2. The spacecraft shall have a propulsion system to perform orbit insertion, station keeping for at least 3 years, and disposal. [MR1, MC3]

SysR3. The spacecraft shall withstand the radiation environment at the target orbit for at least 3 years. [MR1]

SysR4. The spacecraft shall be able to observe targets between [-70°, 80°] in declination with respect to the ecliptic. [SR2, SR3, SR4]

SysR5. The spacecraft shall fit in the payload bay of the launcher. [MC1]

SysRI. The spacecraft shall possess 3-axis pointing stabilisation. [IR5, IR6, IR7, IR8]

SysR2. The spacecraft shall have a propulsion system to perform orbit insertion, station keeping for at least 3 years, and disposal. [MR1, MC3]

SysR3. The spacecraft shall withstand the radiation environment at the target orbit for at least 3 years. [MR1]

SysR4. The spacecraft shall be able to observe targets between [-70°, 80°] in declination with respect to the ecliptic. [SR2, SR3, SR4]

SysR5. The spacecraft shall fit in the payload bay module of the launcher. [MC1]

SysR6. The spacecraft shall shield the instrument from straylight. [IR9]

SysR7. The spacecraft shall be able to downlink 13.2 Gb of data per day. [IR3, IR4, IR5, IR6, IR7, IR8]

SysR7. The spacecraft shall be able to downlink 13.2 Gb of data per day. [IR3, IR4, IR5, IR6, IR7, IR8]

SysR8. The spacecraft shall be able to uplink at least 60 kbps.

84

SysR7. The spacecraft shall be able to downlink 13.2 Gb of data per day. [IR3, IR4, IR5, IR6, IR7, IR8

SysR8. The spacecraft shall be able to uplink at least 60 kbps.

SysR9. The spacecraft shall be able to store at least 26 Gb of data for at least 2 days. [IR3, IR4, IR5, IR6, IR7, IR8]

SysR7. The spacecraft shall be able to downlink 13.2 Gb of data per day. [IR3, IR4, IR5, IR6, IR7, IR8

SysR8. The spacecraft shall be able to uplink at least 60 kbps.

SysR9. The spacecraft shall be able to store at least 26 Gb of data for at least 2 days. [IR3, IR4, IR5, IR6, IR7, IR8]

SysR10. The spacecraft shall provide the necessary power for all operational modes. [MR2, MR3]

SysR7. The spacecraft shall be able to downlink 13.2 Gb of data per day. [IR3, IR4, IR5, IR6, IR7, IR8

SysR8. The spacecraft shall be able to uplink at least 60 kbps.

SysR9. The spacecraft shall be able to store at least 26 Gb of data for at least 2 days. [IR3, IR4, IR5, IR6, IR7, IR8]

SysR10. The spacecraft shall provide the necessary power for all operational modes. [MR2, MR3]

SysR11. The spacecraft shall ensure that the temperature of the NIR and UV detectors are lower than 140 K and 303 K respectively. [IR9, IR10, IR11, IR12]

Spacecraft design

Speaker: Aksel Beltoft

Speaker: Noria Brecher

89

Subsystems

Attitude & Orbit Determination and Control System

Requirement

- 3-axis stabilisation with pointing accuracy of 0.07 arcsec
- Slewing rate of 0.05 deg/s
- Momentum storage capabilities of 6.78 Nms
- 40 N of thrust for propelled maneuvers
- 1 N of thrust for momentum dumping

Design

- 2 star trackers + 6 sun sensors
- 1 gyroscope
- 3+1 reaction wheels
- 20+1 hot-gas thrusters

Operation	Δv (m/s)
Orbit maintenance	1 (per year)
Launch Error	50
Decommission	20
Desaturation	10 (per year)
Total Δv + 20%	122.95

1x 45 N Hydrazine thruster

20x 1 N Hydrazine thruster

Ground segment and spacecraft communication

Requirements

Downlink 13 Gb per day

Uplink 60 kbps

Datastorage 26 Gb for 2 days

Design

- Ground stations: **35 m** Deep Space Network, ESA
- Satellite: **1 m²** phased array antenna

-> reduces slewing maneuvers

- X-band
- 10 MHz bandwidth
- Nominal Communication window: 2h per day

UPLINK

Frequency	8.4 GHz				
EIRP	111.2 dB				
Pointing accuracy	0.15 deg				
Transmission loss	-236.5 dB				
Receiver G/T	17 dB				
Data rate	72 kbps				
Final Eb/En	18.7 dB				
DOWNLINK					
Frequency	7.75 GHz				
EIRP	47.1 dB				
Pointing accuracy	0.1 deg				
Transmission loss	-235.8 dB				
Receiver G/T	39 dB				
Data rate	8.0 Mbps				
Final Eb/En	9.4 dB	Ç			

Spacecraft power segment

Requirements

- EOL: 464 W at 75° incidence angle
- 2 hours of operation in safe mode

Design

- Spring hinge deployable solar panels
- 2127 solar cells total 6.49 m²
- Deployed panel acts as a sun shield
- 68 Li-Ion battery cells with 1000 Wh capacity
- Depth of discharge: **39.6%**

Power budget

Load	Max. Consumption (W)	Margin	Safe	Commissioning	Orbital Maintenance	Coarse Pointing	Science	Telecommunication
OBDH	10,00	2,0	5,0	10,0	10,0	10,0	10,0	10,0
AODCS / Control	60,00	12,0	30,0	60,0	60,0	60,0	60,0	60,0
- Determination	20,00	4,0	10,0	20,0	20,0	10,0	20,0	20,0
EPS/ MCU &								
Telemetry	40,00	8,0	20,0	30,0	30,0	30,0	30,0	40,0
- Battery heating	20,00	4,0	20,0	20,0	20,0	20,0	20,0	20,0
- Regulation								
losses	30,00	6,0	30,0	30,0	30,0	30,0	30,0	30,0
COM / Receiving	20,00	4,0	20,0	20,0	20,0	20,0	20,0	20,0
- Transmitting	50,00	10,0	30,0	30,0	30,0	30,0	30,0	50,0
Thermal	80,00	16,0		80,0	30,0	50,0	80,0	60,0
Telescope	86,4	17,3		86,4		17,3	86,4	17,3
Total (W)	386,4	83,28	165,0	386,4	250,0	277,3	386,4	327,3
Total + Margin(W)	563,6	20%	198	463,7	300	332,8	463,7	392,7

Spacecraft structure

Requirements

- Fit launcher payload bay
- Withstand vibration, acoustic noise and shock loads during launch
- Use space grade materials

Design:

- Aluminium 7075 frame
- 2.6 m x 2.0 m x 2.35 m

95

Spacecraft thermal design

Requirements

Battery	283-303 K
Fuel	288-313 K
NIR detector	120 ± 2 K
UV detector	293-303 K
UV optical mirrors	283 ± 1K

Design

- Simple Aluminium radiators
- Thermal management design based on Hubble radiators for IR
- Radiators focused on the area of the spectrometer
- Heater placed next to the battery

Mass budget

 The Ariane 62 maximum payload mass for L2: 3300 kg
-> ~50% of the max. payload mass System Payloads Thermal EPS AODCS COM Structure OBDH Total Dry Mass Fuel Mass Wires & Harnesses System Level Margin Total Wet Mass

Nominal Mass (kg)	Margin (%/kg)	Mass + margin (kg)
286,3	57,3	343,6
20,0	4,0	24,0
95,0	19,0	114,0
154,5	30,9	185,4
20,0	7,0	42,0
190,0	38,0	228,0
7,0	1,4	8,4
		945,4
		85,5
	20%	189
	20%	244
		1465,9

97

Risks, cost and plan

Technology readiness

Payload Component	TRL
Telescope	4
Other mirrors & optics	5
UV instrument	5
NIR instrument	5
VIS instrument	5
System Component	TRL
Reaction wheels	9
Thruster	8
Star tracker	9
Sun sensor	9
Propulsion	8

	Descriptions of Technology Readiness Levels
TRL 4	Component and/or breadboard functional verification in laboratory environment.
TRL 5	Component and/or breadboard critical functional verification in laboratory environment.
TRL 6	Model demonstrating the critical functions of the element in a relevant environment
TRL 7	Model demonstrating the element performance for the operational environment
TRL 8	Actual system completed and accepted for flight ("Flight Qualified")
TRL 9	Actual system "flight proven" through successful mission operations

Excerpt from the risk register

ID	Risk	Risk Index	
MS.01	Instrument damage	B4 medium	
MS.02	Exposure to micrometer-size space debris	D3 high	
MS.06	Not measuring certain proxies	C4 medium	
TC.04	Mission delay due to TRL 4-5 components	D2 medium	

Mitigation

Vibration testing/ flight spare

Statistical simulation/ protective housing using Whipple Shields

Measuring proxies in different wavelength ranges

Early testing of telescope mirrors and instruments

Project Timeline

	Phases	0		Α		В		С					
Reviews	Activities	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	203
MDR	Mission Design												
PRR	Preliminary Req.												
SRR	System Req.												
PDR	Preliminary Design												
CDR	Critical Design												
QR	Qualification												
AR	Acceptance												
ORR	Operational Readiness												
FAR	Flight Acceptance												
LRR	Launch Readiness												
	Cruise												
CRR	Commissioning												
	Science Operation												
POE	Possible Extension												
ELR	End of Life												
MCR	Mission Close-out												

Cost

• Shared launch to **reduce cost**

Spacecraft segment

Telescope

UV instrument

NIR instrument

VIS instrument

Bus

Mission Segment / Sub-total

Development/AIT

Data analysis (8 scientists)

Launcher / Shared launch

Initial cost

Margin

Total cost

Million E
150
80
50
30
150
460
120
23
75 / 40
678 / 643
20%
814 / 772

102

Descoping options

a. Remove capacity to measure $Ly-\alpha$ in UV

- i. Can be done with NIR, but not with all planetary targets
- ii. Reduces the instrument wavelength range

 \rightarrow Cheaper optics

b. Remove complete UV spectrometer

i. Simpler optics

 \rightarrow Smaller telescope

c. Spectral resolution reduction in NIR

i. Line resolving is not any more ensured

 \rightarrow Cheaper Optics

TTM

(M2)

Outreach strategy

a. Scientific community

- i. Publications & attending scientific conferences
- ii. Different calls for observation proposals
- iii. Invite students to participate in mission meetings
- iv. Organize Atmospheric Escape Symposium

b. General public

- i. Social Media, website & press releases
- ii. Podcast
- iii. VR/ App design to follow the telescopes observations
- iv. Provide educational resources
- v. Touring, interactive exhibition

Conclusions

"Deepening our knowledge of planetary system formation and evolution by studying atmospheric escape"

Aetheras is the first space telescope to address the mysteries of the radius valley and the Neptunian desert, as well as the interactions between atmospheric escape and magnetic fields of exoplanets, to expand our knowledge on how planetary systems form and evolve.

Thank you for listening! Any questions?

Team Red Summer School Alpbach 2023

Amabe 24

eam

Schoo

umu S

- Alpbac

Marius Anger, Aksel Søren Beltoft, Noria Brecher, Antoine Corne, Jo Ann Egger, Simone Filomeno, Margarida Graça, Viktoria Keusch, Guillem Khairy, Jakub Kowalczyk, Dominik F. Loidolt, Melker Marminge, Alex McDougall-Page, Lukas Tamulevicius, and Elena Tonucci

Back-up slides

Trade-off for the Ly-α line

Pros:

Cons:

- 1. PLATO might identify targets with good emission spectrum in the UV (and Lyman-alpha).
- 2. Probing He I and H emission lines increase precision 2. and helps disentangle ambiguous results. accuracy.
- 3. Probing **C II and H I lines constraints the magnetic** field measurements. (Ly-alpha line used to break degeneracies in the model determination of magnetic field parameters)
 - 5.

Notes:

- 1. With lower resolution in the UV (500) and higher resolution in the NIR (3600) we can detect atmospheric loss and mass loss rate (He I). UV is only necessary to detect the magnetic field and low resolution is enough.
- 2. Since He is heavier than H, it has a lower escape rate.
- 3. The ratio of He I and H relative to the atmosphere are not significantly different.
- 4. ARIEL can't resolve He I sufficiently to determine the atmospheric loss rate.

1. Our targets are M and K-type stars - **dim UV emission**. More photons in the NIR than in the UV.

ISM absorption can distort the Lyman-alpha line, reduce its

3. HeI - rate of mass loss - radial velocity of the cloud.

4. Reducing costs: money, size and weight.

Detections using Lyman-alpha are more reliable.
Why HST cannot answer our questions?

Diversity of Discovered Exoplanets

- Region in the graph with a lower density of planets – Radius Valley.
- Sub-Neptunes Planets with smaller radius than Neptune but near 2.0Er.
- Super-Earths Planets with bigger radius than Earths, yet lighter than ice giants.
- Hot-Jupiters Gas giant exoplanets, most have a very short orbital periods.

Akash Gupta and Hilke E. Schlichting, 2019

Link Budget [Uplink]:

	Value	Unit
Uplink		
Frequency	8.4	GHz
Distance	1 500 000	km
Space loss	-234.4	dB
Attenuation loss	-2.1	dB
Transmission loss	-236.5	dB
Ground antenna		
diameter	35	m
Transmitter power	25 000	W
Antenna efficiency	50	%
Transmitter loss	-0.5	dB
Gain	66.8	dB
Beamwidth	0.071	deg
EIRP	110.3	dB

Uplin Phas Ante Point

Bear

Gain

Rece

temp

Rece

Band

Data

Fina

	Value	Unit
nk		
		0
se array area	1	m ²
enna efficiency	70	%
ting accuracy	0.15	deg
mwidth	5	deg
	16.8	dB
eiver noise		
perature	27.2	K
eiver G/T	2.5	dB
dwidth	35	MHz
a rate	70	kbps
l Eb/En	3.3	dB

Link Budget [Downlink]:

	Value	Unit
Downlink		
Frequency	7.75	GHz
Distance	1 500 000	km
Space loss	-233.7	dB
Attenuation loss	-2.1	dB
Transmission loss	-235.8	dB
Phase array area	1	m²
Antenna efficiency	70	%
Transmitter loss	-0.5	dB
Gain	16.8	dB
Beamwidth	9.03	deg
EIRP	33.3	dB

	Value	Unit
Downlink		
Ground receiver		
diameter	35	m
Antenna efficiency	50	%
Pointing accuracy	0.1	deg
Beamwidth	0.077	deg
Gain	66.1	dB
Receiver noise		
temperature	27.2	K
Receiver G/T	51.7	dB
Bandwidth	35	MHz
Data rate	8 000	kbps
Final Eb/En	8.7	dB

Risk Matrix

	5						
		Medium	Medium	High	Very High	Very high	
	4	TC.02 - Tx/Rx failure	MS.01 - Instrument damage MS.04 - Solar	MS.06 - Not measuring certain proxies			
		Low	damage Medium	Medium	High	Very High	
Severity	3	TC.03 - Equipment failure			MS.02 - Exposure to micrometer space debris		
0,		Very Low	Low	Medium	High	High	
	2	TC.01 - IR signal contamination		MS.03 - Measurement disruption	TC.04 – Mission delay due to TRL4-5 components		
		Very Low	Very Low	Medium	Medium	Medium	
	1		MS.05 - Planetary transit miss				
		Very Low	Very Low	Very Low	Low	Medium	112
		A (Extremely unlikely)	B (Unlikely)	C (Likely)	D (Highly Likely)	E (Near certain)	113
		Likelihood					

Candidate target list - viewing mask [IR9]

Satellite Modes

Safe Troubleshooting Commissioning Instruments testing and health check **Orbital maintenance** Making L2 trajectory stable **Coarse pointing** Coarse pointing to target Science Fine pointing to target, instruments on and measuring

Telecommunication Transmitting data to and from Earth

Interaction Magnetic Field Surrounding Cloud

• Effect of the stellar wind and magnetic field may be found in the velocity components of the surrounding cloud

V. Bourrier+ 2018