

SUMMER SCHOOL ALPBACH 2023

Exodus: Exploring Exoplanet Evolution

TEAM YELLOW

BXODUS

TEAM YELLOW

MISSION STATEMENT Study the evolution of exoplanets and the architecture of their parent systems

MISSION STATEMENT Study the evolution of exoplanets and the architecture of their parent systems

ESA/Hubble/NASA

MISSION STATEMENT Study the evolution of exoplanets and the architecture of their parent systems

Gillmann et al, 2020

Planetary Evolution

Governed by chemical and physical processes.

Mars ESA

Planetary Evolution

Governed by chemical and physical processes.

Habitability

Mars ESA

Venus esa

NASA/JPL-Caltech/ Lizbeth B. De La Torre

Powell et al, 2018

JXODUS

Planetary Evolution

Governed by chemical and physical processes.

Habitability

Trace Growth

ESA

NASA/JPL-Caltech/ Lizbeth B. De La Torre

Interaction between Stars & Exoplanets

Solar System Architecture

NASA, ESA, CSA, Dani Player (STScI)

Solar System Architecture

NASA, ESA, CSA, Dani Player (STScI)

ESO/M. Kornmesser

Key Science Questions

- How does atmospheric escape shape the evolution of 1. long orbital period exoplanets?
- What proportion of the exoplanet population do giant 2. planets with long orbital periods represent?
- 3. How does the solar system architecture compare to that of exoplanet systems?

11

How does atmospheric escape shape the evolution of large orbit exoplanets?

Radius Distribution

NASA, ESA, CSA, J. Olmsted (STScI), T. P. Greene (NASA Ames), T. Bell (BAERI), E. Ducrot (CEA), P. Lagage (CEA)

Atmospheric Escape Animation

Hydrodynamical simulation of WASP-107b

200 -100 $y [r_p]$ 0-100 --200 -

Wiebe de Gruijter

Atmospheric Escape

Two models can explain atmospheric escape: 1. UV driven mass loss 2. Core-powered mass loss

Simultaneous observations to break degeneracy: 1. UV observations of the star 2. NIR spectroscopy of the planet

Observation Line

Helium line at 1083 nm to detect atmospheric escape:

- (Previously) Transits of short-1. period planets
- Long-period (>100 days) 2. planets: transit method difficult

16

Observation Line

Helium line at 1083 nm to detect atmospheric escape:

- (Previously) Transits of short-1. period planets
- Long-period (>100 days) 2. planets: transit method difficult

We propose to perform:

- Spectroscopic observations of the exoplanet using direct imaging
- 2. Simultaneous observations of the star in the UV

Oklopčić & Hirata, 2018

17

QUESTION 1 How does atmospheric escape shape the evolution of large orbit exoplanets?

UD Ch 1. 2.

3.

Objectives Characterisation

- Establish which process is responsible for atmospheric escape.
- 2. Determine the magnitude of atmospheric escape on exoplanets.
 - Establish whether there is a radius valley for long period (>100 days) planets.

QUESTION 2 What proportion of the exoplanet population do giant planets with long orbital periods represent?

Vito Saggese

Period - Radius Distribution

QUESTION 2 What proportion of the exoplanet population do giant planets with long orbital periods represent?

1.

Objectives Detection

Update the period-radius diagram with detections of giant planets on long orbital periods.

Vito Saggese

How does the solar system architecture compare to that of exoplanet systems?

NASA/CXC/M.Weiss

QUESTION 3 How does the solar system architecture compare to that of exoplanet systems?

Objectives Architecture

1. Establish the occurrence rate of systems with inner rocky planets and outer giant planets.

2. Determine whether sub-Neptune planets on long orbital periods exist.

SCI-04

SCI-05

SCI-06

SCI-07

Science Requirements

- **SCI-01** Detection of atmospheric escape through direct observation of the He triplet at 1083nm in reflected light
- **SCI-02** UV Measurement of the stellar activity of host stars
- **SCI-03** Individual measurement of single planets in multi planet systems
 - Observation of exoplanets with R > 3 Earth radii
 - Observation of exoplanets with orbital period >100 days
 - Observation of exoplanets around varying host stars
 - Observe a core sample of 5000 exoplanets

OBR-04

OBR-05

Observation Requirements

- **OBR-01** Perform direct, spatially resolved spectroscopy of the planet system in NIR (1000-1500 nm)
- **OBR-02** Perform simultaneous UV photometric measurements of the star
- **OBR-03** Detection of exoplanets with contrast ratio of 10E⁻⁹
 - Detection of exoplanets at minimum separation of 0.17 arcsec
 - Spectrophotometry of exoplanet systems with a distance to earth of up to 100 pc
- **OBR-06** Spectroscopy measurements with SNR>5

SUDOXE

MR-2

MR-3

MR-4

MR-5

Mission Requirements

- **MR-1** target sample within 5 years
 - At least 30% of the sky shall be observable at all time
 - The launcher shall be able to transport the spacecraft to Lagrange point 2 (L2)
 - Spacecraft total wet mass shall not be over 3300 kg after all the margins

exceeds: +/- 10° (x-axis) +/- 22° (y-axis) + 10° / - 21° (z-axis)

The mission design shall allow for the observation of the

The spacecraft shall ensure that the angle to the sun never

Prim	ary Science Questions	Scien	ce Objectives	Science Requirements	Observational Requiremer		
Q1	How does atmospheric	01	Characterisation				
	escape shape the evolution of long orbital period exoplanets?	01.1	Distinguish the physical processes responsible for atmospheric escape, namely stellar UV flux or core-powered mass loss.	SCI-01, SCI-02, SCI-06	OBR-01, OBR-02, OBR-05, OBR-06		
		01.2	Determine the magnitude of atmospheric escape on exoplanets, with respect to orbital period, planet radius and stellar type.	SCI-01, SCI-02, SCI-06	OBR-01, OBR-02, OBR-05, OBR-06		
		01.3	Establish whether or not the radius valley exists for high-period planets.	SCI-03, SCI-04, SCI-05	OBR-03, OBR-04, OBR-05, OBR-06		
Q2	What proportion of the exoplanet population do giant planets on long orbital periods represent?	02	Detection				
		02.1	Update the period-radius diagram with detections of giant planets on large orbital periods	SCI-01, SCI-02, SCI-05, SCI-07	OBR-01, OBR-02, OBR-04, OBR-05, OBR-06		
Q3	How does the solar system architecture compare to that of exoplanetary systems?	03	Contextualisation				
		03.1	Establish the occurrence rate of systems with inner rocky planets and outer giant planets	SCI-03, SCI-04 SCI-05, SCI-07	OBR-03, OBR-04, OBR-05, OBR-06		
		03.2	Establish whether sub-Neptunes exist on long period orbits	SCI-04, SCI-05	OBR-03, OBR-04, OBR-06		

Traceability Matrix

20% of the total traceability matrix

	0-1	0-2	0-3	-01	-02	-03	-04	-05	-06	-07	-02	-03	-05	-06	-01	-02	-03	-04
	S	S	S	SCI	SCI	SCI	SCI	SCI	SCI	SCI	BR	BR	BR	BR	MIS	MIS	MIS	MIS
	6								_	8	0	0	0	0	. .	8	1000	
SCI-01		8. 8		3 32	-		8 8		2	8 8		2 32		2	8 8		2	8 8
SCI-02				-														
SCI-03									ð								8	
SCI-04																		
SCI-05																		
SCI-06									5 0	15 25 6 3		6 2 6 2	0 - 6				A 6	
SCI-07																		
OBR-01																	5	
OBR-02	2											5 (S) 32 (S)					2	
OBR-03																		
OBR-04	Ì.																5. 4	
OBR-05		a 9				-						8 8						2 3
OBR-06																		
MIS-01	2	an a Na a		6					2			6 D. 6 D.	0		85 - 36 27 - 38		2	
MIS-02																		
MIS-03																	5	
MIS-04				e (* 199 26 - 199					2									
MIS-05																		

Gerald Mösenlechner

27

SUDOXE

Traceability Example

- **Science Question** How does the solar system architecture compare to that of exoplanetary systems?
- **Science Objective** Establish whether sub-Neptunes exist on long period orbits. 0 3.2
- Science Req SCI-0: Observation of exoplanets with R > 3 Earth radii
 - Detection of exoplanets with contrast ratio of 10⁻⁹ **Observation Reg OBR-03**
 - Payload Reg The MARY Coronagraph shall be able to achieve a target PLD-12 star/planet contrast ratio of up to 10⁻⁹.

28

Complementary Missions

GAIA

Perryman et al. 2014

Nancy Grace Roman Space Telescope

Spergel et al. 2015

TARGETS Direct Imaging

Vito Saggese

Guaranteed Targets

Marco Souza de Joode

Selection of already directly imaged targets

Name	Orbital Distance (au)	Sp. Type	Distance (p		
AF Lep b	8.4	F	26.8564		
HD 206893 b	9.6	F	40.7583		
bet Pic b	10.018	Α	19.7442		
51 Eri b	13.2	F	29.7575		
2MASS J04414489+2301513 b	15	М	122.217		
HR 8799 e	16.4	Α	41.2441		
PZ Tel b	27	G	47.0648		
GJ 504 b	43.5	G	17.5299		
kap And b	55	В	50.0177		
mu2 Sco b	242.4	В	145.807		

Example Target 51 Eri b

Radius	1 R _J				
Mass	2 M _J				
Period	28 years				
Semi major axis	11 au				

10 au

Wang et al. 2014

Why space-based?

ESA&NASA/SOHO/GSFC

NASA

Off-ox^B contrast. < 100pc Gr high JXODUS monory Size: 40252018x2018 - F/# 30 OE @ 1pm: 50 % (verst case) (T(B01) Dichroic UV 980-1180 nm Center 100 3 mm CHelium Triples Oronagraph (Polarimeter) pls dou't (Spectrometa) maybe F##:60-Coropagraph (2nd Channel in optical)? LFU spectrograph 1 (VIEBU) Spatjal res.: 0.1 arcsec FOV:~Zaresec. Comparison: JUST NIRSPEC IFU 5p. Rer ~ 103 may FOV ~ Jarcsec

Telescope Design Elliptical off-axis Korsch design

Secondary mirror Elliptical 0.6 m · 0.44 m **0.21** m²

Cylindrical D = 0.1 m**0.0078** m²

7,1 m

Primary mirror Elliptical 4.4 m · 3.5 m 12.09 m²

to instruments

Fourth mirror

Third mirror Elliptical

0.2 m · 0.18 m **0.028 m**²

Optical System

Marco Souza de Joode

Adaptive Optics

- Adaptive optics (A0) necessary to achieve excellent contrast
- Low frequency (mHz) compared to Earth based AO (kHz)
- Deformable mirrors (DM) are conjugates of telescopes mirrors
- Shack-Hartmann: measuring wavefront error
- Full frame image processing necessary

MARY Coronagraph + IFU Spectroscopy

Marco Souza de Joode

Johannes Ora

MARY Detector: Teledyne HAWAII 4RG

Wavelength range	980 – 1980 nm
Mean QE	≥ 70%
Pixel Size	15 µm
Detector Size	4096 x 4096 px
Dark noise @ 120K	< 0.05 e ⁻ /px/s
Read Noise	< 10 e⁻/px
Full Well Capacity	> 80000 e ⁻

Teledyne

Signal to Noise Ratio

Gerald Mösenlechner

IFU, Teledyne H4RG Detector Noise

Readout noise	10 e-/px rms
Dark current	0.01 e ⁻ /px/s
Background from Star	0.018 photon/s
System throughput	0.1

Optical System

Marco Souza de Joode

UVIS Photometry

 UV detector used for monitoring of the stellar UV flux (photometry)

 Visible light detector used for telescope pointing

Souza de Joode 2023

UVIS Detector Best Case: Teledyne CMOS LACera

Wavelength range	100 - 800 nm	A
Mean QE (UV)	≥ 50%	
Mean QE (VIS)	≥ 80%	
Pixel Size	10 µm	
Detector Size	≤ 6000 x 6000 px	
Dark noise @ 120K	0.01 e ⁻ /px/s	
Read Noise	< 5 e⁻/px	
Full Well Capacity	> 135000 e ⁻	

dvantages:

- Same detector technology for both channels
- channels
- Improved performance in UV compared
- to current space technology
- Favorable noise behaviour

Disadvantages:

Not yet space qualified

Optical System TRL

Souza de Joode 2023

Component	TRL
Elliptical primary mirror	4
Elliptical off-axis secondary mirror	4
Elliptical off-axis tertiary mirror	4
Fast moving quaternary mirror	6
IR + (UV / VIS) dichroic	7
Visible light detector	7
UV detector	4
Deformable adaptive optics mirror	4
Shack-Hartmann array	7
Beam splitter in A0 system	7
Elliptical vortex coronograph	3
Lyot stop	7
Integral field unit	7
Diffraction grating	7
IR detector	7

SUDOXE

Mission Analysis

Mission Scenario

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Spacecraft

Dry mass	2193 kg
Wet mass	2386 kg

Launcher Ariane 62 capacity for Earth escape: 3300 kg

tingency	50 m/s
g	25 m/s
ng	10 m/s
gin	127.5 m/s

Lissajous L2 orbit with large amplitude

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Observation Strategy

1 Observation

1 Cycle

time obs.

Dedicated target observation
Long exposure target observation
Survey

3 cycles/exoplanet
1 cycle/exoplanet
1 observation

Observation Time

Photon flux calculated for		
Contrast to host star	10 -9	System Driver
Spectral resolution	1 nm	
Photon threshold	300 p	hotons/spectral bin

From exoplanet catalog: 107 exoplanets detectable within 2 days of observation

Mireia Leon Dasi

Observation Time Monte Carlo for potential exoplanets

Assumptions:

- 1.8×10⁵ stars within 100 pc
- Planet radius: 3-5 Earth radii
- Planet SMA: 0.27-7.5 au
- Stellar abs. magnitude: 1-18

onstraints	
linimum separation	0.17 arcsec
laximum separation	3 arcsec
/linimum period	100 days

Observation Time Monte Carlo for potential exoplanets

Single Target Observation Time	Potential Targets
<6 minutes	400
<30 minutes	1500
<1h	2300
<5h	5600
<1 day	9500
<2 days	11000

Mireia Leon Dasi

All-sky Coverage 10° Continous Viewing

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Dedicated Target Observation	Survey	Long Exposure Target Observation	Targets of Opportunity
2 years	1.5 years	6 months	1 year
et rget unity			

Observation Programme

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Slew times Isotropic target distribution

Travelling salesman problem

Cycle: Time to observe all selected targets with all slew time overheads

# of targets	avg. distance between targets	avg. time between slews + settling (JWST times)	Over one cycle
500	90	46 min	16 days
1000	6°	37 min	26 days
2000	4.5 °	11 min	15 days

Cycle duration based on number of targets

Integratio n time per target	# of visible stars	Cycle duration (+ slew overhead)	Cycles per 5 year mission	Minimum nominal missi
1 hour	1200	69 + 26 days	19	285 days
2 hours	2100	222 days + 15 day overhead	8	1.9 years
5 hours	3700	2.4 years + 15 day overhead	2.4	7.2 years
10 hours	5400	6.9 years + 15 day overhead	Not possible in nominal time	21 years

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

- Look at stars that we do not know have exoplanets.
- Supported by suspected targets: Candidates from astrometric discoveries by previous missions (mostly Gaia)

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Looking at distant
 exoplanets
 Looking at exoplanet

 Looking at exoplanets around faint stars

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

Continue with observations
Targets of opportunity

Launch and early operations

Commissioning

Nominal Science Operations

Extended Science Operations

Decommissioning

- Turn off all systems
- Pacify spacecraft
- graveyard orbit

• Keep Δv of 10 m/s for injection to

Mission Timeline

Mission Timeline

Launch	Comissioning	0
L	L+1h	L

Mission Timeline

Spacecraft Design

Main Overview

Subsystems:

- On-board Computer
- Data Handling
- Thermal Control
- Telecommunication
- Attitude
 - Determination
 - & Control
- Power
- Propulsion

Exploded View

Boom for secondary mirror

Primary mirror

Secondary mirror

Third mirror

Fourth mirror

Fairing Fitting

D = 4.6 m

Credit: Laszlo Talaber

Launch Vehicle Adapter

Instrument Bay

UV photometer

Photometer for fine guidance system

Subsystems diagram

UVIS Propulsion **Thrusters ADCS Star Trackers** & Gyroscope Pointing Control

Gerald Mösenlechner

AD15 System Driver

Pointing stability during observation: Instantaneous Absolute performance error <= 130 mas</p> Relative performance error <= 80 mas up to 200 s</p> Performance drift error <= 50 mas up to 72 h</p>

Instruments	
2 star trackers	Rough pointing and
UVIS visual channel	Precision pointing
4 sun sensors	Sun avoidance
4 reaction wheels	Rotation and stabil
12 reaction thrusters	Desaturation and a

orientation (error <= 5 arcsec)</pre>

lisation (1 for redundancy)

additional control authority (3-axis)

Thermal control

Detector threshold: 120 K

Detector target: 80 K

System Driver

Passive Control

- Sunshield
- 73.7 m2
- 7 layers of MLI foils: 256 kg
- Absorptance: 0.08
- Emittance: 0.93
- Detector temperature: 80K

Internal Heat

- Dissipation of maximum 700 W
- 1.5 m2 radiator

Active control Heaters for electrical components Operating temperature: 10 °C

Jan-Vincent Harre

On Board Computer

Gerald Mösenlechner

Propulsion

Propellant	Monopropellant (Hydr
Tank volume [I]	197
Propellant mass [kg]	192 (with 20% marg
Thrust [N]	7.9 – 24.6
l _{sp} [s]	222 – 230
Power consumption [W]	22 (with 10% margin

Heritage: Integral, METOP 1-3, Herschel, Plank

razine) gin)

Arianespace

Link Budget

ptions	MARY	UVIS
te size [px]	4096 x 4096	64 x 64
Frequency [Hz]	0.1	10
actor (co-adding)	3	10
s Compression	2	2.5

	Gbits/day	Gbits/week + 20% margi
	0.2	1.8
ceping	0.06	0.6
	18.5	155.2
	0.5	4.2
	19.4	162.8
ed		230

Telecommunication **15m Ground Station** $\mathbf{0}$ ESA ESTRACK Cebreros (Spain) Station

Daily ground passes (Nominal) • 3 ground passes/week (Baseline)

2 Low Gain Antennas

- Commands and telemetry during ascent
- Contingency telemetry and commands
- Data rate: 4kbps

Data downlink: High Gain Antenna

X-band downlink	8.5GHz
Maximum data generated	230 Gb/week
Downlink time	2 hours/day
Maximum data-rate	10 Mbps
Antenna specifications	D = 50 cm 40W power

Ground Segment

Power budget

		Safe mode	Downlink	Science	Slewing
			Power		Power
Subsystem	Margins	Power (W)	(W)	Power (W)	(W)
Payload	20%	120	120	504.2	144.2
Communications	10%	67.6	102.5	14.2	81.5
Electrical & Power	10%	52.5	52.5	52.5	52.5
Data Handling	20%	43.5	43.5	43.5	43.5
Propulsion Module	10%	0	0	0	22
ADCS	10%	247.5	247.5	247.5	247.5
Service Module					
Thermal	20%	120	84	96	120
SVM Harness					
Losses (2%)	10%	15.2	15.4	20.9	16.5
Total		805.3	809.4	1122.8	871.7
20% power margin		966.4	971.3	1347.4	1046.1

Power budget

Solar Panels Azure TJ Solar Cell 3G30C - Advanced 12x6 Produced power: 1.4 kW Surface area: 7.3 m²

Battery Saft VL51ES battery Nominal energy: 9100 Wh Nominal capacity: 255 Ah Mass: 76 kg

Mass Budget

Subsystem	Mass [kg]	Margin	Mass with margin [kg]
Payload	736.8	20%	980.9
Communications	10	5%	10.5
Electrical & Power	81.6	5%	85.7
Data Handling	27	5%	28.4
Propulsion Module	2	5%	2.1
ADCS	58	5%	60.9
Thermal	261	20%	312.5
5% harness	58.8	10%	64.7
20% structure	235.3	20%	283.1
Dry mass	1470.4	_	2193 (with margins)
Propellant	183.7	5%	193
Wet mass	1628.4	_	2386

Risk Assessment

Mission Risk	Impact description	Likelihood	Impact	Mitigation
Sunshield deployment	Pointing limitation	2	3	Change targets selection strategy
Failure of adaptive optics	Severe impact on IR observations	3	5	Proper design phase testing

Development Risk	Impact description	Mitigation
Boom vibrations	Secondary mirror misalignment	Mock-up building for testing & modelling
Adaptive optics	Delaying mission development	Proper design phase testing
Coronagraph	Delaying mission development	Proper design phase testing

Cost Analysis

	Cost (millions of euro
Project team ESA	143
 Development: Service module Telescope Payload 	200 300 50
Mission operations	110
Science operations	55
Contingency	128.7
Launcher	90
Total	1076.7

Descoping Classical cylindrical mirror Smaller, cheaper, lighter Less complex mirror design Limits observation distance

Reduce amount of adaptive optics
Limits observations to larger objects

Outreach

Schools and universities: Workshops, painting book for children, involvement in data analysis with supporting scientists (early access to data)

General public: Social media presence, website, live streaming, public science events (exoplanet of the week), VR platform

Dedicated events for early career scientists.

Team Yellow Paula Benitez Mark Boyd Citlali Bruce Rosete Wiebe de Gruijter Johan Frich Liana Gfrerer Jan-Vincent Harre Kim Angelique Kahle

Mireia Leon Dasi Gerald Mösenlechner Johannes Ora Vito Saggese Eleftheria Sotiriou Marco Souza de Joode Apostolos Symeonidis Laszlo Talaber

Günter Kargl - Engineerig Leonard Schulz - Science

EXODUS Atmospheric escape LONG PERIOD EXOPLANET SURVEY

Satellite Design

Telescope

Observables

- Observation of 5500 exoplanets
- Atmosphere escape detection (IR)
- Simultaneous UV stellar characterisation

Observation Limits

- Contrast ratio $\geq 10^{-9}$
- Separation > 0.17 arcsec
- Separation < 3 arcsec</p>

MASS: 2386 KG

SOLAR SYSTEM ARCHITECTURE

Payload MARY

- IFU spectroscopy in NIR
- Spectral resolution 1nm
- Spatial resolution 100 mas
- Coronagraph

UVIS (Fine Guiding System)

- UV and VIS photometry
- UV channel: 100 400 nm
- VIS channel: 400 800 nm
- FoV: 20 x 20 arcsec

POWER: 1347 W

COST: 1076 M €

SUMMER SCHOOL ALPBACH 2023

Exploring Exoplanet Evolution

TEAM YELLOW

BXODUS

TEAM YELLOW

esa

Backup Slides

Stellar type distribution

Stellar type	Within 10pc	Within 100pc	Conservative estimate	Fraction	Total Planet
Α	4	4000	2000	0.011527378	64.553314
F	8	8000	4000	0.023054755	129.10662
G	20	20000	10000	0.057636888	322.76657
К	42	42000	21000	0.121037464	677.80979
Μ	273	273000	136500	0.786743516	4405.7636
Total	347	347000	173500	1	560

Safanova 2015

TGAS

Linssen, Dion & Oklopčić, Antonija. (2023).

Benjamin J. Fulton et al 2017

Telescope

Secondary mirror

Primary mirror

Third mirror

MARY

- 10⁻⁹ driving requirement (necessity for space-based observations)
- Low TRL for elliptical vortex coronograph

apodizing mask

vortex coronograph

stray light

Lyot stop

integral field unit

diffraction grating

Souza de Joode 2023

 \leftrightarrow

UVIS Detectors Currently available

Visible: Teledyne CCD250-82

Wavelength range	400 - 800 nm
Mean QE	≥ 80%
Pixel Size	10 µm
Detector Size	4096 x 4004 px
Dark noise @ 120K	< 0.02 e-/px/s
Read Noise	≤ 5 e-/px
Full Well Capacity	> 135000 e-

UV: Teledyne CCD272-64

Wavelength range	100 - 300 nm
Mean QE	≥ 35%
Pixel Size	12 µm
Detector Size	4096 x 3112 px
Dark noise @ 120K	< 0.2 e-/px/s
Read Noise	≤ 3 e-/px
Full Well Capacity	> 30000 e-

UVIS Control Unit

MARY Control Unit

ADCS Block Diagram

-

Power Budget

				Safe mode	Safe Mode	Downlink	Downlink	Science	Science	Slewing	Slewin
Group	Component	Power (W) (max)	Margins	Power (W)	Power + Margins	Power (W)	Power + Margins	Power (W)	Power + Margins	Power (W)	Power Margir
Payload	Instruments	400	0.2	100	120	100	120	400	480	100	
	Fine guiding system	22	0.1	0	0	0	0	22	24.2	22	
Communications	Transponder	55	0.1	55	60.5	55	60.5	11	12.1	55	
	SSPA (power amplifier)	40	0.05	2	2.1	40	42	2	2.1	20	
Electrical & Power	PCDU	50	0.05	50	52.5	50	52.5	50	52.5	50	
Data Handling	Computer	15	0.1	15	16.5	15	16.5	15	16.5	15	
	Memory	10	0.05	10	10.5	10	10.5	10	10.5	10	
	Remote Interface Unit	15	0.1	15	16.5	15	16.5	15	16.5	15	
Payload Thermal Control	Payload thermal	120	0.2	120	144	120	144	120	144	120	
Propulsion Module	Propulsion	20	0.1	0	0	0	0	0	0	20	
Service Module Thermal	Thermal control SVM	100	0.2	100	120	70	84	80	96	100	
AOCS	AOCS Sensors & Electronics	25	0.1	25	27.5	25	27.5	25	27.5	25	
	Reaction wheels	200	0.1	200	220	200	220	200	220	200	
SVM Harness Losses (2%)	-	21.44	0.1	13.84	15.224	14	15.4	19	20.9	15.04	10
	Total	1093.44		705.84	805.324	714	809.4	969	1122.8	767.04	872
	20% power margin	20% power margin		847.008	966.3888	856.8	971.28	1162.8	1347.36	920.448	1046.

Mass Budget

Component	Mass (kg)	Margin	Mass with margin
Instruments	0.5	1	
Adaptive optics:	120.7	0	
lenses + dichroics	2.7	1	
mechanics of AO	50	1	
AO cables	5	1	
Shack-Hartmann array	6	1	
VIS detector	6	1	
UV detector	6	1	
IR detector	10	1	
Integral field unit	10	1	
Coronograph	10	1	
mounting	15	1	
Mirrors	533.3	0.2	E
Boom for M2	80	0.2	
Solar Panels	5.6	0.05	
Batteries	76	0.05	
Antennas	10	0.05	
Detector control unit	2.25	0.1	
OBC + DPU	27	0.05	
Thermal radiator	5	0.05	
Sun shield	256	0.2	
Fuel tanks + propulsion module	50	0.05	
ADCS thruster	8	0.05	
Orbit correction thrusters	2	0.05	
Dry mass	1176.35		148
5% harness	58.8175	0.1	64.
20% Structure	235.27	0.2	28
Dry mass	1470.4375		1827.8
Dry mass+System margin		0.2	2193
Propellant	158	0.2	
Wet mass			2383

