

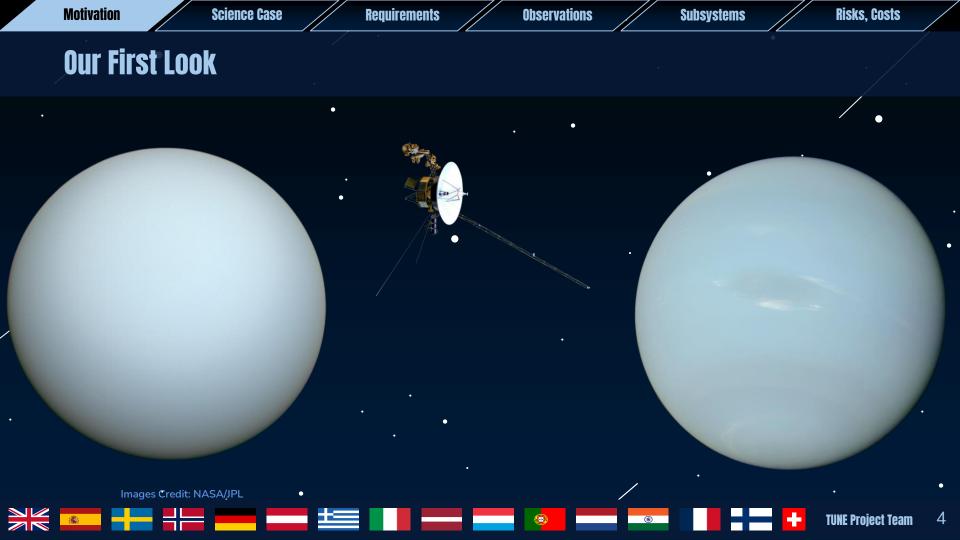
TUNE Triton Unveiler & Neptune Explorer

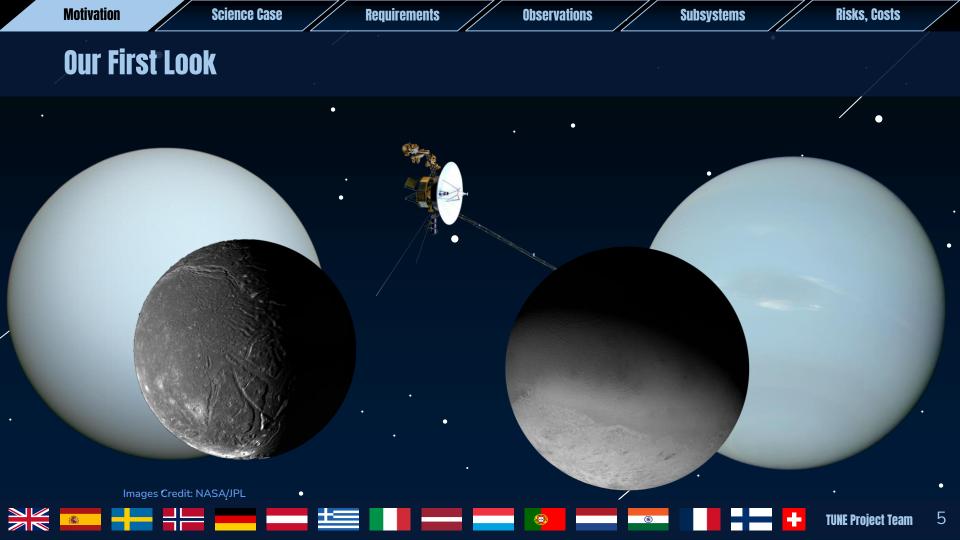
tune

We åre Team Blue ∞

Science Lead Poppy McVann Science Team: Nora Bachmann Nina Fleck Thomas Maynadié Kristers Nagainis Lorenzo Obersnel Allard Veenstra

Science Tutor: Ruth Taubner

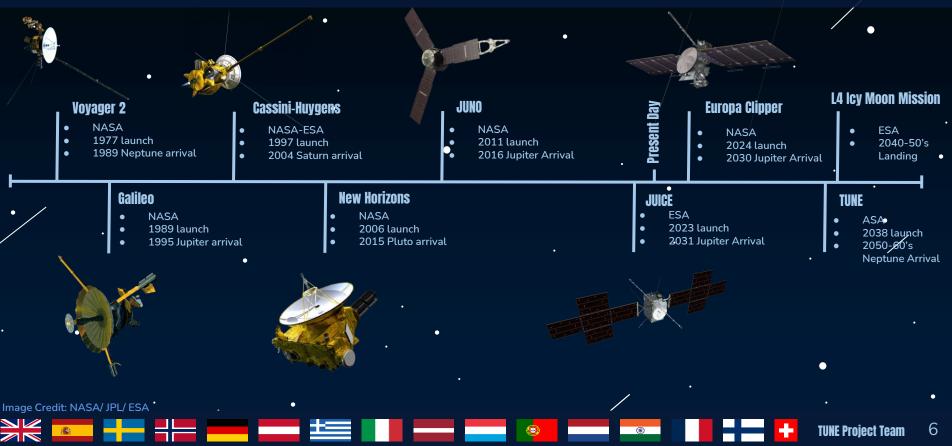

Engineering Lead Spyridon Gouvalas **Engineering Team:** Marco Acúrcio Arvid Althoff Louis Durant-Bergeat Anton Fetzer **Cyrille Nickels** Silvia Romero Azpitarte Niraja Upadhyaya


Engineering Tutors: Christian Gritzner, Greta de Marco

TUNE Project Team

Understanding Ice Giants and their Environment

Following ESA's Voyage2050: Moons of the Giant Planets, Missions to Ice Giants



Subsystems

Risks, Costs

Timeline of missions

Requirements

Observations

Risks, Costs

Why should we visit the Ice Giants and their Moons?

- Ice giants are key to understanding the formation and uniqueness of the solar system.
- The moons and environment of ice giants are thought to provide many of the conditions necessary to life.
- Ice giants are some of the least studied objects in the solar system.

B

Subsystems

Risks, Co<u>sts</u>

TUNE Proiect

8

How are Ice Giants formed and what is their internal and atmospheric structure?

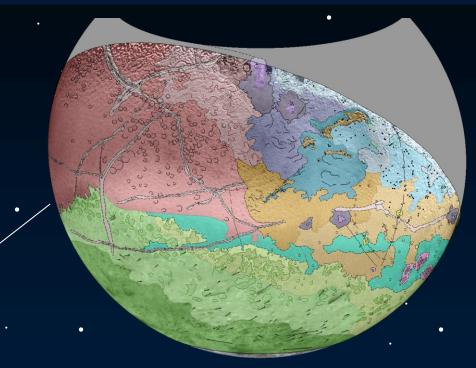
Major Scientific Themes

What is the magnetospheric environment of Ice Giant systems?

Do the conditions around Ice Giants allow for the formation of habitable subsurface environments?

Requirements

Observations


Subsystems

Risks, Costs

TUNE Project Team

10

Current Knowledge - Triton

- Is Triton a TNO?
- Only 40% of the surface imaged and mapped
- Dark bands in the absorption spectrum
 - Is it liquid Nitrogen?

Image Credit: E.S. Martin. Et al. (2023) LPSC LIV, Abstract #1725

Requirements

Observations

Subsystems

Risks, Costs

TUNE Project Team

Current Knowledge - Triton

Image Credit: NASA/JPL

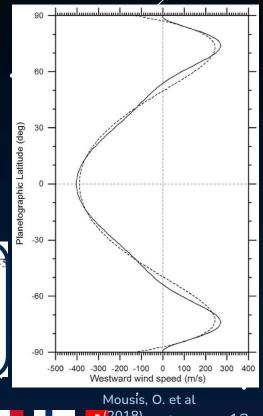
- After capture, enough energy dissipated to melt icy mantle multiple times
- Possibility of a subsurface ocean?
- Atmosphere is warming up but why?
- Investigate the nature of the plumes

Requirements

Observations

Subsystems

Risks, Costs


Current Knowledge - Neptune's atmosphere

• We know the main atmospheric constituents (H and He)

- But what are the isotopic ratios and (noble) gas abundances?
- Methane clouds and hazes are expected to exist
 - But measurements will be crucial to be sure
- Highest wind speeds in the solar system
 - But why?

					lan
Isotopic ratio	Jupiter	Saturn	Uranus	Neptune	ш.
D/H (in H ₂) ⁽¹⁾	$(2.60 \pm 0.7) \times 10^{-5}$	$1.70^{+0.75}_{-0.45} \times 10^{-5}$	$(4.4 \pm 0.4) \times 10^{-5}$	$(4.1 \pm 0.4) \times 10^{-5}$	
³ He/ ⁴ He ⁽²⁾	$(1.66 \pm 0.05) \times 10^{-4}$	_	-	-	
¹² C/ ¹³ C (in CH ₄) ⁽³⁾	$92.6^{+4.5}_{-4.1}$	$91.8^{+8.4}_{-7.8}$	-	-	
14N/15N (in NH ₃) ⁽⁴⁾	434.8_{-50}^{+65}	> 357	-	-	
²⁰ Ne/ ²² Ne ⁽⁵⁾	13 ± 2	_	-	-	
³⁶ Ar/ ³⁸ Ar ⁽⁶⁾	5.6 ± 0.25	_	_	_	
lunsite m Marke office at all	(1000) Cotume Lallough	+ -1 (2001). 11		-+-1 (2012)	

Jupiter: Mahaffy et al. (1998); Saturn: Lellouch et al. (2001); Uranus+Neptune: Feuchtgruber et al. (2013)

Requirements

Observations

Subsystems

Neptune Surface

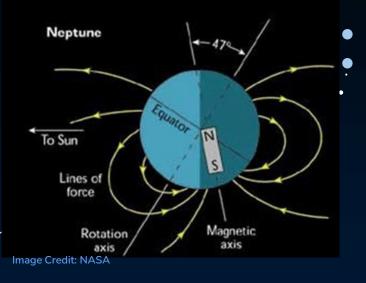
0

Radial magnetic field (μ T)

Maximum observed magnetic field strength of 10 µT

How does the varying magnetic field affect Triton?

-87

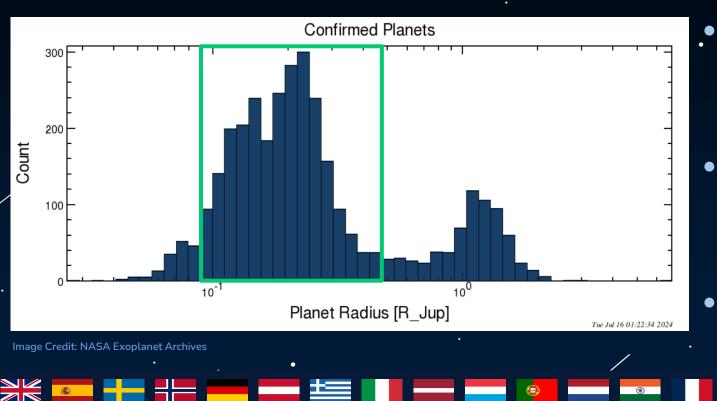

Image Credit: Barik et al., (2024)

Risks, Costs

87

TUNE Project Team

Current Knowledge - Magnetic Field



- Tilted 47° from rotation axis and offset from planet's center
 - What internal process causes this?

Exoplanets

Around 40% of confirmed exoplanets are Neptune / Sub-Neptune sized. Wide range of possible atmospheric and interior models can explain data. Proximity differences.

TUNE Project Team 14

• Atmospheric probe for Neptune

V

Subsystems

How are Ice Giants formed and what is their internal and atmospheric structure?

Major Scientific Themes

What is the magnetospheric environment of Ice Giant systems?

Do the conditions around Ice Giants allow for the formation of habitable subsurface environments?

Requirements

Observations

Subsystems

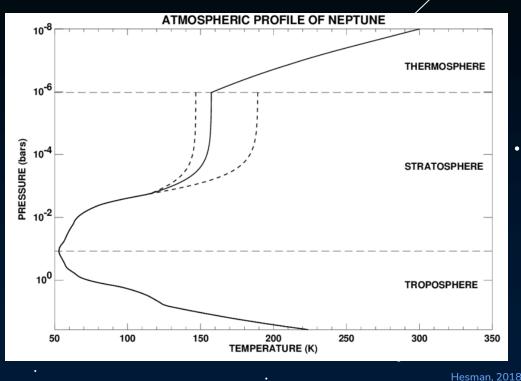
Risks, Costs

Theme 1 Scientific Objectives

- 1. Determine the inner structure and composition of Neptune.
- 2. Determine the composition and key isotope ratios in Neptune's atmosphere as a function of altitude.
- 3. Determine the pressure-temperature profile
- 4. Measure wind speeds and directions
- 5. Study the composition and dynamics of clouds, hazes and dark spots in Neptune's atmosphere
- 6. Measure energy balance and study energy transport mechanisms
- 7. Understand the history and formation of Neptune's ring system and moons

Requirements

Observations


Subsystems

Risks, Costs

TUNE Project Team

PIANO - Probe for Inner Atmospheric Neptune Observations

- In-situ provides information up to ~10 bar vs remote sensing to ~1 bar
- Generate profiles of pressure,
- temperature, density and abundance changes with height
 - dynamics, inner structure, energy transport, mixing
 - ➡ better atmospheric models

Requirements

T2

Observations

Subsystems

Risks, Costs

How are Ice Giants formed and what is their internal and atmospheric structure?

Major Scientific Themes

What is the magnetospheric environment of Ice Giant systems?

Do the conditions around Ice Giants allow for the formation of habitable subsurface environments?

Requirements

Observations

Subsystems

Risks, Costs

Theme 2 Scientific Objectives

- Determine how Neptune's magnetic field is formed and structured 1.
- Measure the distribution and composition of the plasma around Neptune 2.
- Determine the Magnetospheric Interaction between Neptune and Triton 3.
- Determine how the atmospheres of Neptune and Triton interact with the 4. plasma environment
- Measure Triton's contribution to the plasma environment 5.
- Determine the sources and losses regulating the ionosphere of Triton 6.
- 7. Measure the shape and dynamics of the Neptunian radiation Belts
- Determine how the magnetic field of Neptune interacts with 8. the interior of Triton
- Determine the particle acceleration processes within the 9. magnetosphere of Neptune

Subsystems

Risks, Costs

How are Ice Giants formed and what is their internal and atmospheric structure?

Major Scientific Themes

What is the magnetospheric environment of Ice Giant systems?

Do the conditions around Ice Giants allow for the formation of habitable subsurface environments?

Theme 3 Scientific Objectives

- Map Triton's surface. 1.
- 2. Determine the composition of Triton's atmosphere and surface
- 3. Examine surface processes such as plasma precipitation and loss processes.
- 4. Measure Triton's atmosphere and ionosphere temperature, neutral
 - density, and electron density profiles.
- Measure temperature, composition, and height of the plumes 5.
- 6. Determine the interior structure and
- geological processes of Triton.

Requirements

Observations

Subsystems

Risks, Costs

TUNE Project Team

25

Science Traceability Example - Neptune (Probe)

Scientific Requirements

SCI-1.20: Determine the composition and the key isotope ratios in Neptune's atmosphere as a function of altitude.

•

.

26

TUNE Project Team

Science Traceability Example - Neptune (Probe)

Scientific Requirements	Physical Observable
SCI-1.20: Determine the composition and the key isotope ratios in	Molecular abundances: H_2O , CH_4 , NH_3 , H_2S , CO, HCN Abundances of C, N, S, O, P, As, Ge, Si
Neptune's atmosphere as a function of altitude.	Isotope Ratios: C, H, O, N, S, Kr, Ar, D/H, ³ He/ ⁴ He, ¹⁴ N/ ¹⁵ N, ¹⁶ O/ ¹⁷ O/ ¹⁸ O, 13C/14C

Requirements

۲

Observations

Subsystems

Risks, Costs

٠

27

TUNE Project Team

Science Traceability Example - Neptune (Probe)

Scientific Requirements	Physical Observable	Resolution
SCI-1.20: Determine the	Molecular abundances: H_2O , CH_4 , NH_3 , H_2S , CO, HCN	Spectral lines in range 0.5-5.5µm
composition and the key isotope ratios in Neptune's atmosphere as a function of altitude.	Abundances of C, N, S, O, P, As, Ge, Si	Spectral lines in range 200- 1000µm
	Isotope Ratios: C, H, O, N, S, Kr, Ar, D/H, ³ He/ ⁴ He, ¹⁴ N/ ¹⁵ N, ¹⁶ O/ ¹⁷ O/ ¹⁸ O, 13C/14C	Masses of elements and isotopes

Science Traceability Example - Neptune (Probe)

Scientific Requirements	Physical Observable	Resolution	Instrument Requirements
SCI-1.20: Determine the composition and the key isotope ratios in Neptune's atmosphere as a function of altitude.	Molecular abundances: H_2O , CH ₄ , NH ₃ , H_2S , CO, HCN	Spectral lines in range 0.5-5.5µm	Ground res: 30km/pix Spectral res: 5nm
	Abundances of C, N, S, O, P, As, Ge, Si	Spectral lines in range 200- 1000µm	Ground res: 30km/pix Resolving power: 10 ⁸
	Isotope Ratios: C, H, O, N, S, Kr, Ar, D/H, ³ He/ ⁴ He, ¹⁴ N/ ¹⁵ N,	Masses of elements and isotopes	Mass range: 1-140amu
			Mass resolution: Distinguish O and CH ₄
	¹⁶ O/ ¹⁷ O/ ¹⁸ O, 13C/14C		Dynamic range: 10 ⁴

۲

۲

TUNE Project Team 28

۲

۲

Science Traceability Example - Neptune (Probe)

Scientific Requirements	Physical Observable	Resolution	Instrument Requirements	Measurement Approaches
Determine the composition CH ₄ , NH ₃ , H ₂ CO, HCN Abundances	abundances: H_2O , CH_4 , NH_3 , H_2S ,	Spectral lines in range 0.5-5.5µm	Ground res: 30km/pix Spectral res: 5nm	Orbits for global mapping of day- and nightside, feature tracking from nadir to limb at distances form
	Abundances of C, N, S, O, P, As, Ge,	Spectral lines in range 200- 1000µm	Ground res: 30km/pix Resolving power: 10 ⁸	1-6 R _N . Repeat global dayside coverage at least once a year.
Neptune's atmosphere as a function of altitude.	Isotope Ratios: C, H, O, N, S, Kr, Ar, D/H, ³ He/ ⁴ He, ¹⁴ N/ ¹⁵ N,	Masses of elements and isotopes	Mass range: 1-140amu	Send probe
			Mass resolution: Distinguish O and CH ₄	through Neptune's atmosphere within the equatorial
	¹⁶ O/ ¹⁷ O/ ¹⁸ O, 13C/14C		Dynamic range: 10 ⁴	region.

TUNE Project Team 29

٠

+

۲

۲

Science Traceability Example - Neptune (Probe)

Scientific Requirements	Physical Observable	Resolution	Instrument Requirements	Measurement Approaches	Instrument and Heritage
SCI-1.20: Determine the composition and the key	Molecular abundances: H_2O , CH_4 , NH_3 , H_2S , CO, HCN	Indances: H2O, NH3, H2S,Spectral lines in range 0.5-5.5µmGround res: 30km/pix Spectral res: 5nmmapping of day- and nightside, feature tracking from nadir to		Pushbroom Hyperspectral Imager (MAJIS: JUICE)	
	Abundances of C, N, S, O, P, As, Ge, Si	Spectral lines in range 200- 1000µm	Ground res: 30km/pix Resolving power: 10 ⁸	limb at distances form 1-6 R _N . Repeat global dayside coverage at least once a year.	Sub-mm heterodyne radiometer (SWI: JUICE)
Neptune's atmosphere as a function of altitude.	Isotope Ratios: C, H, O, N, S, Kr, Ar, D/H, ³ He/ ⁴ He, ¹⁴ N/ ¹⁵ N, ¹⁶ O/ ¹⁷ O/ ¹⁸ O ¹⁸ O	Massas of	Mass range: 1-140amu	through Neptune's	Time of Flight Mass Spectrometer (GPMS: Galileo)
		elements and	Mass resolution: Distinguish O and CH ₄		
	¹⁶ O/ ¹⁷ O/ ¹⁸ O, 13C/14C		Dynamic range: 10 ⁴	region.	

TUNE Project Team 30

+

Requirements

Observations

Subsystems

Risks, Costs

.

31

TUNE Project Team

Science Traceability Example - Triton

۲

•

Scientific Requirements

SCI-3.60: Determine the interior structure and geological processes of Triton.

Requirements

Observations

Subsystems

Risks, Costs

٠

32

TUNE Project Team

Science Traceability Example - Triton

•

•

Scientific	Physical
Requirements	Observable
SCI-3.60:	The tidal response
Determine the	of Triton
interior structure and geological processes of Triton.	Radial density profile
	Diapirs

Requirements

Observations

Subsystems

Risks, Costs

TUNE Project Team

٠

33

Science Traceability Example - Triton

۲

Scientific Requirements	Physical Observable	Instrument Requirements
SCI-3.60: Determine the interior structure and geological processes of	The tidal response	The <i>k</i> Love Numbers to at least degree 2
	of Triton	The <i>h</i> Love Numbers to at least degree 2
	Radial density profile	Measure Low degree static gravity coefficients
Triton.	Diapirs	Measure high degree gravity coeffcients

Subsystems

TUNE Project Team

٠

34

Science Traceability Example - Triton

۲

Scientific Requirements	Physical Observable	Instrument Requirements	Measurement Approaches	
	The tidal response	The <i>k</i> Love Numbers to at least degree 2		
SCI-3.60: Determine the interior structure and geological processes of Triton.	of Triton	The <i>h</i> Love Numbers to at least degree 2		
	Radial density profile	Measure Low degree static gravity coefficients	Minimum of 10 flybys. Altitude of 500km or lower	
	Diapirs	Measure high degree gravity coeffcients		

Subsystems

Risks, Costs

Science Traceability Example - Triton

۲

۲

Scientific Requirements	Physical Observable	Instrument Requirements	Measurement Approaches	Instrument and Heritage
SCI-3.60: Determine the interior structure and geological processes of Triton.	The tidal response of Triton	The <i>k</i> Love Numbers to at least degree 2		USO and Medium Gain Antenna (3GM:JUICE)
		The <i>h</i> Love Numbers to at least degree 2		Altimeter (GALA:JUICE)
	Radial density profile	Measure Low degree static gravity coefficients	Minimum of 10 flybys. Altitude of 500km or lower	USO and Medium Gain Antenna
	Diapirs	Measure high degree gravity coeffcients		(3GM:JUICE)

TUNE Project Team 35

٠

÷

Subsystems

TUNE Proiect

Payload Overview (Orbiter)

- High-Resolution Optical Cameras (HRC)
 - Wide and narrow FOV, 13 spectral bands: 350-1050 nm
 - Heritage: JANUS (JUICE) and RALPH (New Horizons)
- IR-VIS Hyperspectral imager (IVHI)
 - Narrow FOV, range 500-5500 nm, 5 nm resolution
 - Heritage: MAJIS (JUICE)
- Sub-mm Heterodyne Spectrometer (SHS)
 - Heritage: SWI (JUICE)

Payload Overview (Orbiter)

- Plasma Environment Investigator (PEI)
 - Ion mass analyser, Electron energy analyser, Mass spectrometer, ENA imager, Energetic particles detector
 - Heritage: PEP (JUICE)
- Plasma Wave Investigator (PWI)
 - HF magnetometer and Langmuir probes
 - Heritage: RPWI (JUICE)
- Magnetometer (MAG)
- Radio Science Experiment (RSE)
 - Ultra stable oscillator needed
 - Heritage: 3GM (JUICE)

Observations

Subsystems

TUNE Proiect

Payload Overview (Probe)

- Time of Flight mass spectrometer (TOFMS)
- Atmospheric Structure Instrument (ASI)
 - Pressure and temperature sensors
- Doppler wind experiment (DWE)
 - Heritage: Galileo probe
- Nephelometer
 - Scattering properties
- Net flux radiometer (NFR)
 - Heritage: Galileo probe
- HE abundance detector (HAD)
 - Heritage: Galileo probe

•

٠

٠

٠

Payload Overview

٠

System		Mass (kg)
Instrum	ents (Orbiter)	163
Probe	Instruments	27
FIDDE	Structure	337
Spacecraft Dry		2255
Spacecraft Wet		6560

٠

÷

End-to-end Mission Profile

Requireme<u>nts</u>

Observations

Subsystems

Risks, Costs

Launch Segment

Ariane 64 Evo

 Able to take 8500 kg to v-inf of 3.4 km/s

.

۲

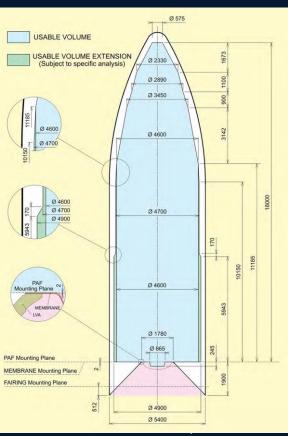
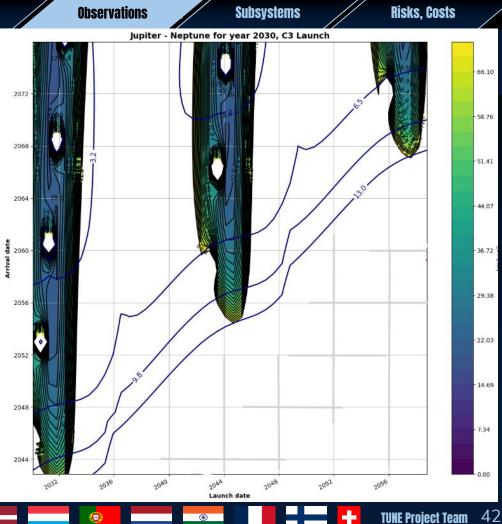


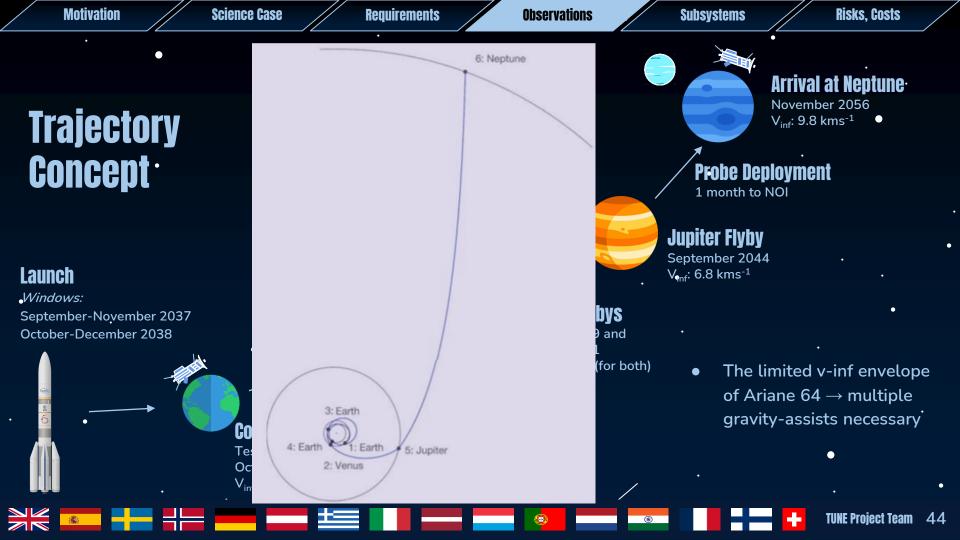
Image Credit: Ariane 64 User manual

Image Credit: SkywalkerPL

41


TUNE Project Team

Science Case


Requirements

How to get to Neptune

- Orbit SMA of 30 AU
- Multiple Gravity assist ightarrowtrajectory was chosen
- main tradeoff between required delta-v and travel
- time
- Jupiter↔Neptune relative positions are main driver.

Science Case

Requirements

Subsystems

Observation Plan

High eccentricity orbit

- Highly-eccentric allowing to explore the magnetospheric environment and boundaries (bow shock)
- Periapsis: 2 R_N
- Apoapsis: 50 R_N
- Triton swing-bys used to rotate the argument of / perigee
- Close Neptune orbit distances down to 1 R_N for Neptune interior and atmosphere observations (radioscience, atmospheric remote sensing)

Observation Plan

Oct 30 2056 16:09:40.768223433 UTC Target: Neptune Source: Neptune(270° RA, 20° Dec, 2280000 km Radius) FOV: 45°

Triton

eptune

TUNE Project Team

۲

Science Case

Requirements

Subsystems

Observation Plan

Triton investigating orbit

- Elliptical orbit around Neptune focusing on Triton close encounters
- Periapsis: 2 R_N
- Apoapsis: 15 R_N
- Triton swing-bys used to reduce SMA and rotate argument of perigee
- Close Triton flybys down to 200km altitude for surface, atmosphere and interior observations of Triton

٠

۲

٠

٠

Subsystems

۲

Delta-v budget

•

•	Delta v
Neptune Orbit Insertion	2.7 km/s
Periapsis raising maneuver	0.22 km/s
Triton swing-bys	50* 0.01 km/s=0.5 km/s
Total delta-v including 20% margin	3.76 km/s

٠

٠

÷

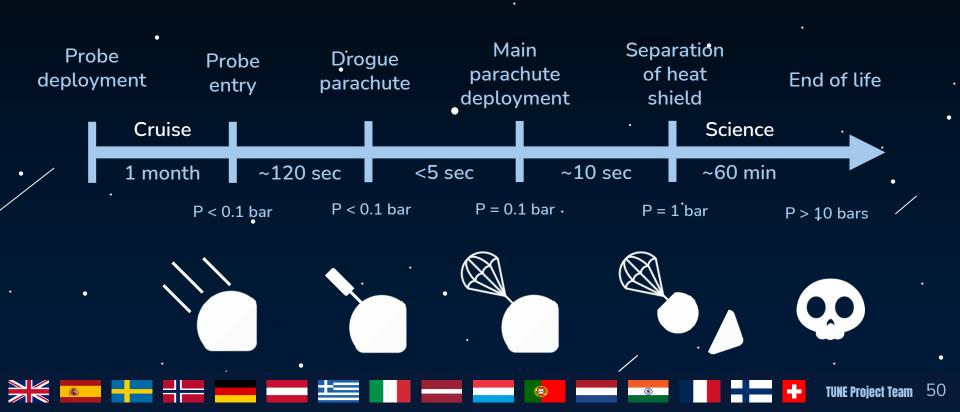
Orbit for Probe Insertion

Oct 04 2056 02:57:10.00000000 UTC Target: Neptune Source: Neptune(270° RA, 20° Dec, 1225418 km Radius) FOV: 45°

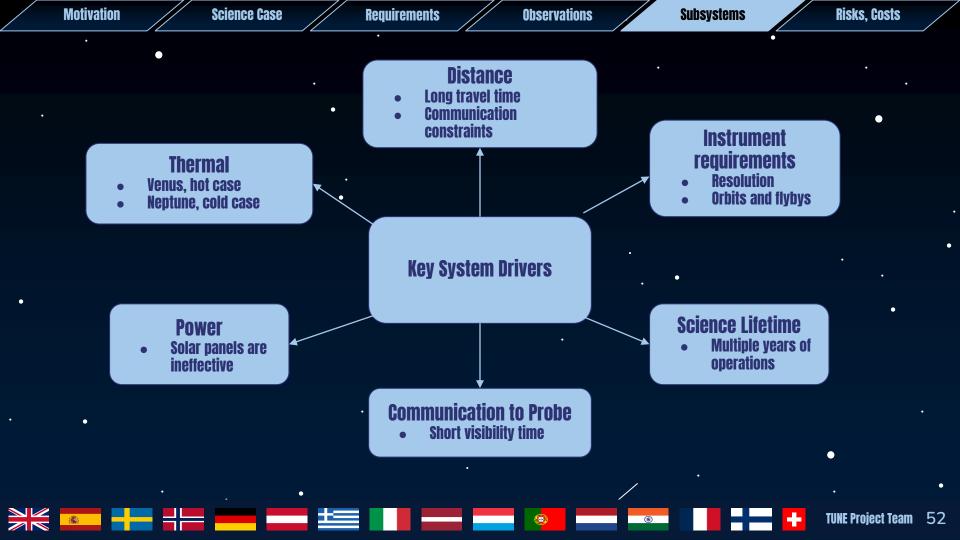
TUNE

· · · ·

Neptune

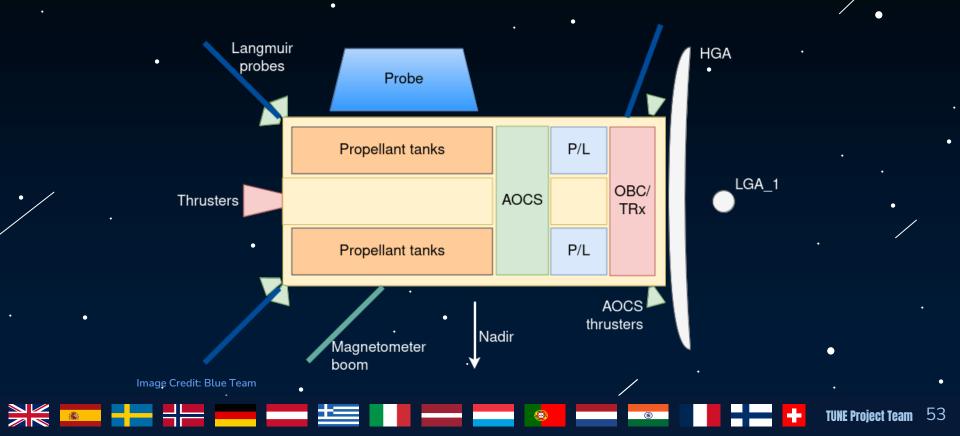

Triton

TUNE Project Team 49


۲

Subsystems

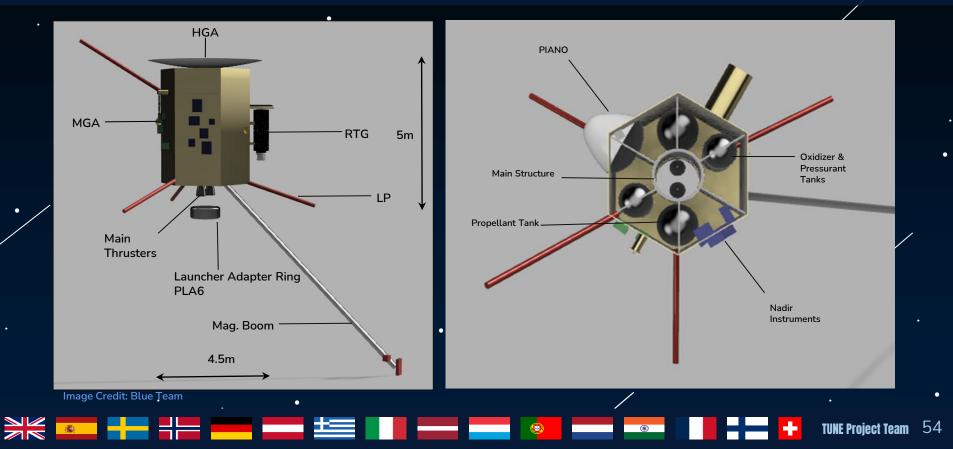
Risks, Costs


Design and Subsystems

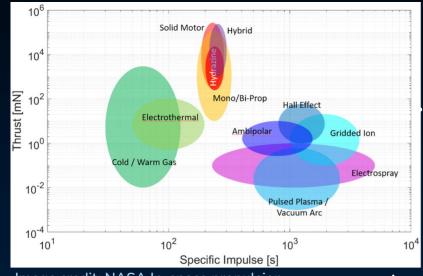
Subsystems

Preliminary S/C Design

•


Requirements

Subsystems


Risks, Costs

Preliminary S/C Design

- Chemical liquid propulsion only viable option to meet I_{sp} and Thrust requirements
- MMH & N_2O_4 bipropellant chosen due to:
 - low freeze temperature
 - strong heritage
 - low pressure storage
- Propellant used for orbital maneuvers as well as AOCS thrusting

TUNE Proiect

Image credit: NASA In-space propulsion

Requirements

Observations

56

TUNE Project Team

Component Examples (all having a TRL of >6)

Engine

R-42 - 890N (200 lbf) BIPROPELLANT ROCKET ENGINE

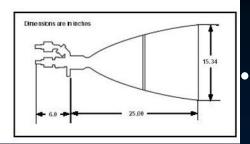



Image Credit: R-42

Pressurization Tanks



Propellant Tank

MPCV ESM PROPELLANT TANK

Image Credit: Ariane Group

Requirements

Observations

Attitude and Orbit Control System

• 4x reaction wheels and 12x thrusters (10N)

- Mounting close to center of gravity
- EMC

		Requirements		AOCS Performance	
	Slew rate	8t S/C (BoL)	360° in < 100 s	97s for 360° rotation (8t) 60s for 360° rotation (3t)	
		3t S/C (operations)	180° in < 20 mins	4 reaction wheels: 0.2 Nm	
•	Pointing accuracy	3t S/C (Comms & measurements)	> 0.01°	4 reaction wheels: 0.01°	

.

Requirements

Observations

Subsystems

Risks, Costs

Attitude and Orbit Control System

- Sensors and actuators
 - '3x IMUs (2/3 redundancy)
 - 2x star trackers •
 - 2x sun sensors
 - 4x reaction wheels (0.3 Nm)
 - 12x thrusters (10N)
 - Navigation camera
- Summary
 - Total AOCS mass: 137 kg (20% margin)
 - Peak power: 112 W (10% margin)

Power

Radioisotope Thermal Generator (RTG)

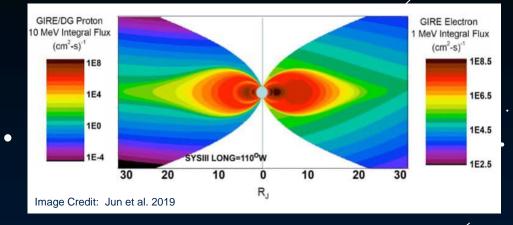
- ASRG-500 (NASA)
 - Plutonium-238 fuel
 - 2500 W_{thermal} @ BOL
 - Stirling engine (Efficiency: ~20%)
 - 500 W_{electrical} @ BOL
 - 1% degradation per year
 - Identified as a likely successor to current RTG
 - TRL 3, smaller version TRL 5 (lab tested)
- European RTG project far behind & less efficient fuel
- Supplemented by a Li-Ion battery -

ASRG EU2 test setup, Image Credit: Lewandoŵski et al. (2016)

TUNE Project Theme

60

Requirements


Observations

Subsystems

Risks, Costs

Radiation Considerations

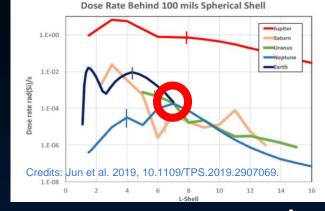
- Jupiter Flyby at >30 R_{Jupiter}
 → TUNE avoids the hottest zones
 of the Jupiter radiation belts
- Solar particle TID < 1krad/year
 behind 2.5mm of aluminium
 at 30 AU (if no Carrington Event)
 - Cosmic rays at Neptune:
 - \sim ~4x higher flux than at Earth
 - o < 4x higher Single Event Effect rates</p>

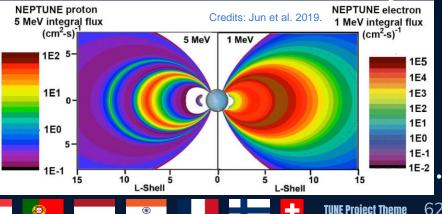
Mitigation:

- → Latchup protection
- → Redundant Software
- → Bit error correction

TUNE Project Theme 61

Requirements


Observations

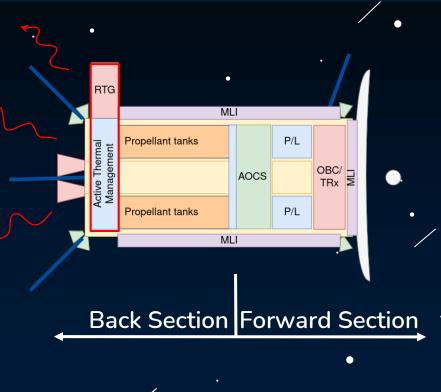

Subsystems

Radiation Considerations (Trapped Particles at Neptune)

- Trapped particle spectra mostly electrons

 → Optimised Z-graded multilayer
 shielding could reduce shielding mass by
 50% compared to aluminium
- Worst-case ionising dose rate inside
- radiation belts behind 2.54 mm of aluminium shielding: < 500 rad/month = 6krad/year -> = 30krad/5 years at Neptune
 - Mission TID behind 2.54mm Al: < 50 krad \rightarrow COTS electronics ?

Requirements


Observations

Subsystems

Thermal Analysis - Cold Case

Forward Section @ Neptune

- Solar flux = 1.5 W/m^2
- P_{el} = 300W \rightarrow Solar flux & Neptune Albedo/IR• flux can be neglected
- 25 m² covered by MLI $\rightarrow \epsilon = 0.01$ +1m² exposed with $\epsilon = 0.7$
- \rightarrow T_{eq} = 273 K = 0°C

Requirements

Observations

RTG

Propellant tanks

Propellant tanks

Subsystems

MLI

MLI

P/L

P/L

OBC/ IIW

TUNE Project Team

TRx

Thermal Analysis - Cold Case

Back Section @ Neptune

- RTG $P_{therm} = 2500 W$
- RTG "Cold Side" T_{max}= 360 K
- $8m^2$ with $\epsilon=0.7 \rightarrow T_{eq} = 20^{\circ}C$

- Active Thermal Management System
 - \rightarrow distribute RTG waste heat
 - \rightarrow control tank and thruster temperature

Back Section Forward Section

AOCS

Requirements

Propellant tanks

Propellant tanks

MLI

MLI

AOCS

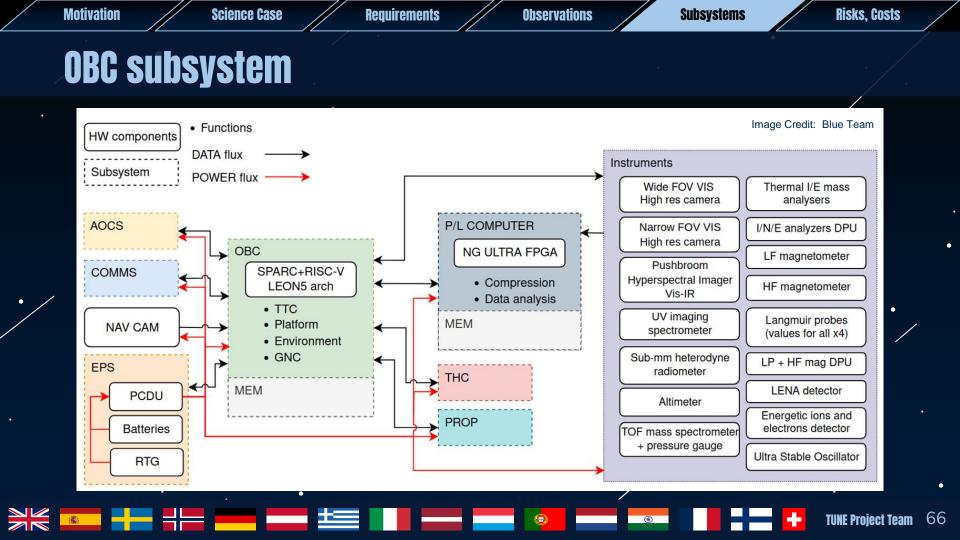
P/L

P/L

OBC/ TRx

TUNE Proiect

RTG


Thermal Analysis - Hot Case

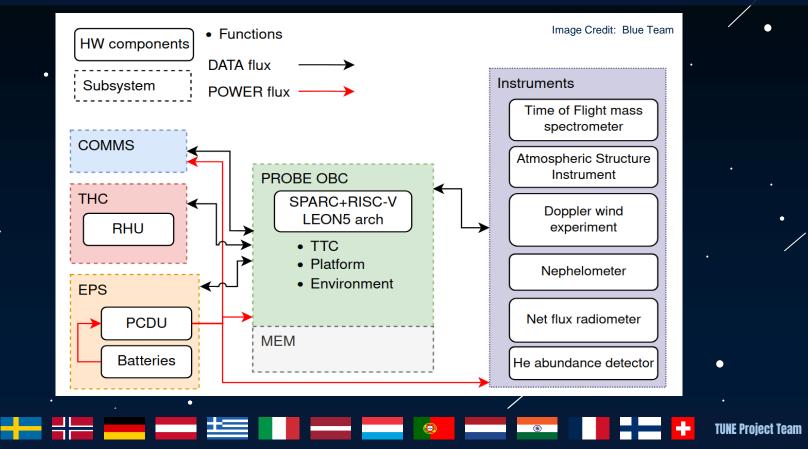
<u>Venus Flyby at 2 Venus Radii (R_v)</u>

- Solar flux: 2600 W/m² . \rightarrow all instruments off \rightarrow P_{el}=160W
- High-gain Antenna = Heat Shield:•
 - Thermal coating
 - (e.g.: AZ-93 $\rightarrow \alpha$ =0.2, ϵ =0.9)
 - Thermally decoupled from S/C
 - $\rightarrow T_{eq_dish} \sim 45^{\circ}C$

 $\rightarrow T_{eq_bottom} \sim 35^{\circ}C$

- Bottom plate:
 - Albedo ~225 W/m², IR flux ~16 W/m²
 Back Section Forward Section

Requirements


Subsystems

Risks, Costs

٠

67

OBC subsystem Probe

۲

Subsystems

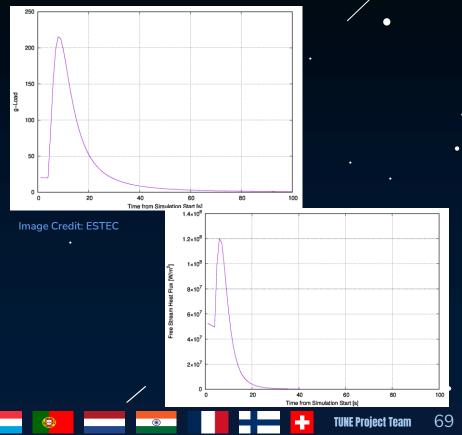
٠

68

Preliminary Probe Design

Science Ca<u>se</u>

Requirements



Subsystems

Risks, Costs

Probe Heat shield

- Heating load: one order of magnitude less than for Galileo
- Thermal protection designed in Europe: NAXECO
- Ablation materials need development in Europe
- Simulation with parameters:
 - Flight path angle: -25°
 - Relative velocity: 28 km/s
 - Probe mass: 350 kg
 - • Area: 1.8 m²

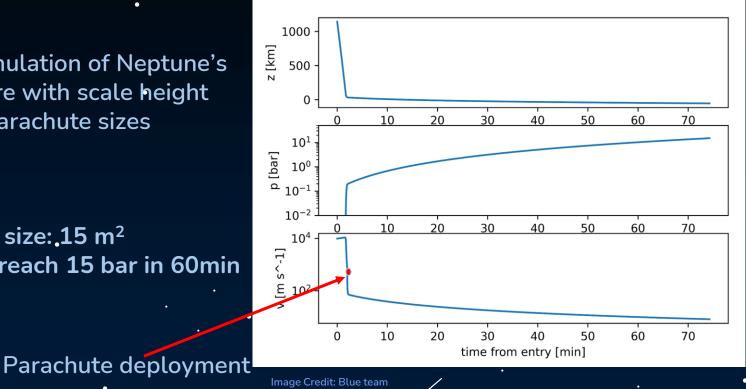
Science Case

Requirements

Observations

Subsystems

70


TUNE Project Team

Probe Parachute

- Simple simulation of Neptune's atmosphere with scale height
- multiple parachute sizes explored

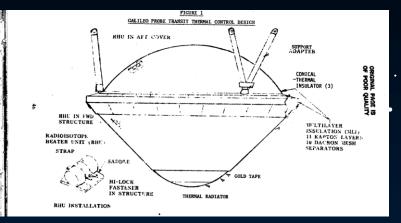
Results:

- Parachute size: 15 m²
- Allows to reach 15 bar in 60min

Probe Power System

- Primary batteries : 2 Lithium thionyl chloride
 → high energy density & long storage life
- Low-Voltage Battery (6,8V) : used for low-power timer circuit
- High-Voltage Battery (26V) : used during peak performance
- Power draw needed: **148** W (peak: 163.4W)

Image Credit: JPL


Requirements

Observations

Subsystems

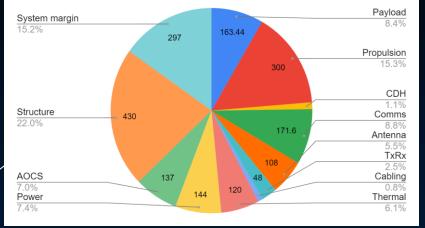
Probe Thermal System - RHUs

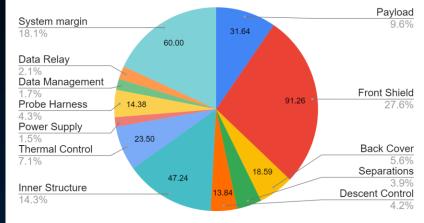
- Number of RHUs: 37
- Mass of one RHU: 40g[•]
- Total mass: 1.48 kg
- Multi layer insulation (MLI) will be used
- Passive thermal control relying on thermal inertia during reentry
- Based on Galileo entry probe heritage

Haverly, G.C. and Pitts, W., 1982

TUNE Proiect Team

System Budgets


Requirements


TUNE Project Team

Mass Budget


Spacecraft dry mass with margin

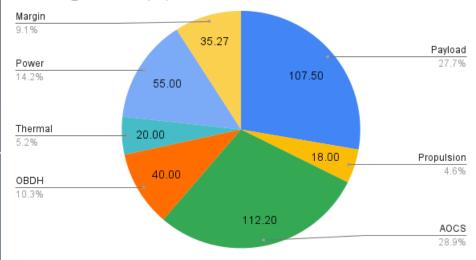
Probe dry mass with margin

- Bottom-up mass estimation for Orbiter
- Total mass with margin: 1784 kg
- Estimation based on previous probes
- Total mass with margin: 364 kg
- Total dry mass 2255 kg with margin
- Wet mass 6560 kg

۲

TUNE Project Team

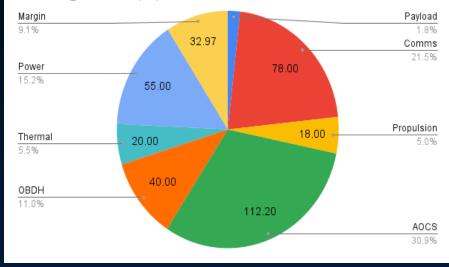
+


٠

76

Power Budget

Power @ science (W)


灜

٠

Power @ comms (W)

٠

Requirements

Observations

Subsystems

TUNE Project Te

COMMS subsystem: Science data budget

- Mission objectives → ・ possibilities (<u>HGA+MGA+LGA</u> / Optical / Quantum)
- Data rates for the links
 - Compression factor
 - VIS/IR spectro-imager: 6
 - Other instruments: 3
- Band selection and antenna design

High eccentricity orbit (15 earth days)	Triton investigating orbit (2.5 earth days)
0.54 GB/orbit	0.08 GB/orbit
0.7 GB/orbit	0.14 GB/orbit
0.08 GB/orbit	0.02 GB/orbit
10%	10%
30%	30%
1.80 GB/orbit	0.33 GB/orbit
	orbit (15 earth days) 0.54 GB/orbit 0.7 GB/orbit 0.08 GB/orbit 10% 30%

Requirements

Observations

٠

٠

COMMS subsystem: Link Budget

٠

٠

		•	HGA (data)	MGA (TTC)	LGA (Orbiter Detumbling/ safe mode)
	Downlink	Band	Ka (32GHz)	X (8.5GHz)	S (2 GHz)
		Tx diameter	4.5m	0.6m	0.05m (OMNI)
		Tx power	39W + (TWTA)	25W + (TWTA)	10W
		Antenna pointing	0.01° (orbiter orientation)	0.01° (MGA APM)	120°
		Total	0.14 GB/day (8h)	0.12 MB/day (8h)	Depends on receiver
					•

÷

Requirements

Observations

Subsystems

TUNE Project

COMMS subsystem: Summary

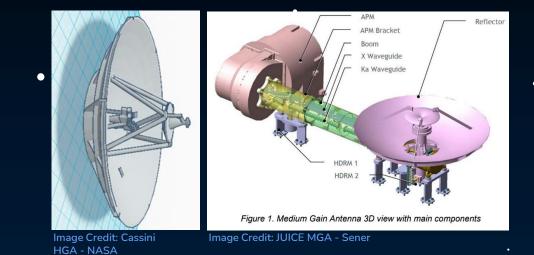
- Science data to transmit (requirement):
 Tritan investigating orbit: 1.8 GB/orbit
 - High eccentricity orbit: 0.3 GB/orbit

- Max transmittable data HGA (@ 0.14 GB/day):
 - Tritan investigating orbit: 2.3 GB/orbit ok
 - High eccentricity orbit: 0.4 GB/orbit ok

Requirements

Observations

Subsystems


80

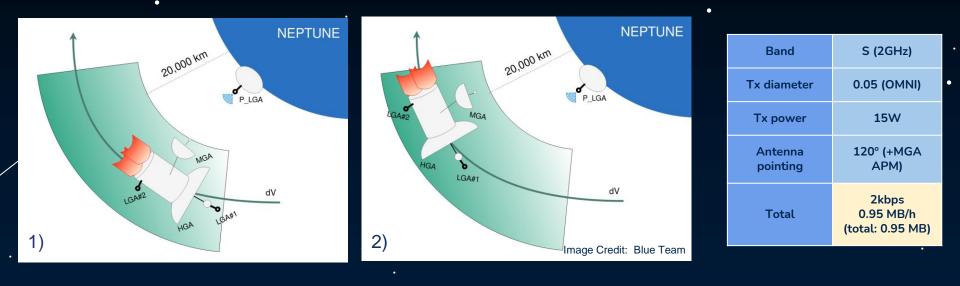
TUNE Project Team

COMMS subsystem: antenna design

- Antenna geometry (ADE)
- Coverage flexibility
- Articulation for apertures stowed during launch (MGA)

• /		Mass w/ margin	Diameter	
	HGA	70 kg	4.50 m	
	MGA	30 kg	0.60 m	
	LGA_1/LGA_2	8 kg	0.05 m	
	Total	108 kg		

Requirements


Observations

Subsystems


COMMS subsystem: Probe COMM

۲

۲

٠

- ESA ESTRACK ground antenna system 35m
 - Cebreros Spain, New Norcia Australia and Malargue Argentina

TUNE Project

- X, Ka-band
- Control center: ESOC (Darmstadt)
 - Data center: ESAC Science Data Centre Madrid
 - ESA Planetary Science Archive

Cost Budget

Item	M€
RTG	150
Probe	350
Orbiter	500
ESA Project Team (+25 % Industry)	312.5
MOC (+ 20 % Industry)	180
SOC (+ 20 % Industry)	180
Launch cost	150
Sub Total	1818
+10% Inflation	1 999
TOTAL + P/L	2 500
•	

• L4 mission

- Payload by member states
- Benchmarking with other missions (+inflation)

TUNE Project Team

٠

Risk Analysis

Risk Assessment

	Risk	Mitigations
	Probe deployment	Keep the probe onboard and have enough propellant
	Instrument malfunction	Perform extensive ground tests and include redundant deployment systems.
•	Radiation damage	Implement latch up protection, redundant software, and bit error correction.
	Failure of deployable instruments (eg: Langmuir probe, boom)	Conduct thorough pre-launch testing and validation of deployment mechanisms, include redundancy in design.
	OBC does not have heritage	Long haul testing for space conditions.
	Overheating of RTG	Implement robust thermal management systems and regular monitoring of RTG temperatures.
		E TUNE Project Team

	Motivatio	on 🖉	Science Case	Requirements	Observation	s Subsyster	ns Risks, Costs
	Ris	k Ma	atrix				
				• Imj	pact Rating		•
		PS\IR	1	2	3	4	5
		1			Probe deployment		
•	Probability Score	2					Instrument malfunction OBC heritage
	Probabi	3				Radiation damage Deployable instruments	Overheating of RTG
	•	4					
		5					
							TUNE Project Team

۲

88

TUNE Project Team

Technology Readiness Level

- Payload:
 - Sub-mm wave instrument (SWI) ~ 6

- Other instruments > 6
- Platform:
 - \circ Power (RTG): 2
 - Telecoms: 6
 - OBC: 5
 - Propulsion: > 6
- Probe: < 6

•

۰

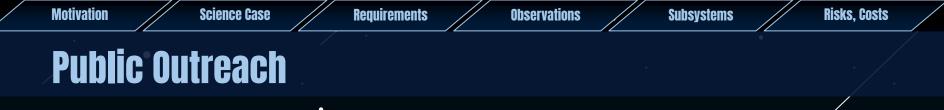
۲

٠

89

i Team

٠


Planetary Protection Plan I

Celestial body	Neptune	Triton			
Type of mission	Flyby, Probe, Eventual Grand Finale	Flyby			
Category	Cat II	Cat II*			
Prevention of biological contamination	Terrestria	l organisms			
Level of precaution	Significant				
Probability of contamination	Remote				
Degree of concern	Record of planned impact probability and contamination control measures				
Representative range of requirements	PP plan Pre-launch report Post-launch report Post-encounter report End-of-mission report				
		TUNE Projec			

TUNE Proiect

Planetary Protection Plan II

- COSPAR indications might evolve during mission development for Triton
- "The bio-burden brought to either Triton and Neptune shall be controlled and limited" (COSPAR 2020)
- Monitoring through essays taken at regular intervals and recorded in a DB of biological presence

- For children, students, the general public, scientific community...
- A Mission "To-Grow-up-with"

PROJECTS:

- School (ESERO) & university projects
 - Instagram, X, website...

COMPETITION:

 "TUNE's Odyssey: Create the Soundtrack to Space" music competition to send your song to space

TUNE Project Team

Image Credit: Silvia Romero Azpitarte

Motivation **Science Case** Requirements **Observations** Risks, Costs Subsystems **Public Outreach** europeanspaceagency 🧔 Cesa • Alpbach asa Triton • Galatea Naiad-Despina Thalassa Proteus • Larissa ۲ \square \heartsuit 7 \square • Image Credit: Blue Team Liked by peter_falkner and 1 238 092 others europeanspaceagency C The Unveiling the mysteries of the deep blue! Join us on an epic journey with #MissionTUNE as we explore Triton and Neptune. Dive in with us! 🚀 🐥 ٠ #Triton #Neptune #SummerSchoolAlpbach • TUNE Project Team 92

Thank you! *Tune* in with us for more!

TUNE Project Team 93

tune

Orbiter Instruments Link to Science Objectives

Instrument	Observable	Science Objective
USO and Medium Gain Antenna	Gravitational moments Neutral temperature and density profile of Triton atmosphere	SCI-1.10 - interior structure of Neptune SCI-3.60 - interior structure of Triton SCI-3.30 - Triton surface processes
High Resolution Camera	Waves of Neptune rings Cloud speeds and directions Spatial distribution & morphology Albedo of rings Triton surface features Height and width of plumes	SCI-1.10 - interior structure of Neptune SCI-1.40 - wind speeds & directions in atmosphere SCI-1.50 - dynamics of clouds, hazes, dark spots SCI-1.70 - structure of rings SCI-3.10 - map Triton's surface SCI-3.50 - Triton plumes
Vis-NIR Hyperspectral Imager	Gas abundances in Neptune's atmosphere Vapor abundances of clouds, hazes Bond albedo of Neptune Triton surface features Triton spectral lines of atmosphere	SCI-1.20 - atmospheric composition of Neptune SCI-1.50 - composition of clouds, hazes, dark spots SCI-1.60 - energy balance & transport of Neptune SCI-3.10 - map Triton's surface SCI-3.20 - Triton atmospheric composition
		😻 💿 TUNE Project Team 95

Orbiter Instruments Link to Science Objectives

Instrument	Observable	Science Objective
Sub-mm Heterodyne Radiometer	Isotope ratios in Neptune's atmosphere Scattering properties of clouds Thermal emission of Neptune Spectral lines of gases in atmosphere	SCI-1.20 - atmospheric composition of Neptune SCI-1.50 - composition of clouds, hazes, dark spots SCI-1.60 - energy balance & transport of Neptune SCI-3.20 - atmospheric composition of Triton SCI-3.40 - composition of plumes
UV imaging spectrometer	Stellar occultation UV aurora emission	SCI-1.60 - energy balance & transport of Neptune SCI-3.20 - Triton atmospheric composition SCI-2.40 - atmospheric interaction with plasma
Plasma Wave Investigator	Plasma density and temperature	SCI-2.20 - distribution and composition of plasma SCI-2.30 - magnetospheric interaction N&T SCI-2.90 - particle acceleration process in magnetosphere
Magnetometer	Magnetic field strength	SCI-2.10 - magnetic field formation and structure SCI-2.30 - magnetospheric interaction N&T SCI-2.80 - magnetic field of N interacts with interior of T SCI-2.90 - particle acceleration process in magnetosphere

Orbiter and Probe Instruments Link to Science Objectives

Instrument	Observable	Science Objective
Particle Environment Investigator	lon and electron energy and mass distributions lon and electron precipitation Isotope ratios	SCI-2.20 - distribution & density of plasma SCI-2.30 - magnetospheric interaction between N&T SCI-2.40 - atmospheric interaction with plasma for N&T SCI-2.50 - Triton's contribution to plasma environment SCI-2.60 - sources and losses of Triton ionosphere SCI-2.70 - shape & dynamics of Neptune's radiation belts SCI-2.90 - particle acceleration processes in magnetosphere SCI-3.20 - composition of Triton's atmosphere SCI-3.30 - Triton atmosphere isotope ratios SCI-3.40 - Triton atmospheric loss
Probe Instruments	He-H ratio Isotope ratios of key elements and tracers of motion Pressure and temperature Winds speeds Vertical radiative energy flux	SCI-1.10 - interior structure and composition of Neptune SCI-1.20 - composition of Neptune's atmosphere SCI-1.30 - pressure and lapse rate in Neptune atmosphere SCI-1.40 - wind speeds and directions in atmosphere SCI-1.50 - energy balance and transport in atmosphere

	Moti	ivation		Science	Case	Require	ements	Observations		Subsystems	Ris	sks, Costs
		esti										. / .
2026 20	27 20.	28 2029 .	2030 2031	2032 2033	2034 2035 203	6 2037 203	8 2056 2057 2	2058 2059 2060 2061	1 2062 2063	3 Orbiter		Probe
Phase	0 Ph	ase A	Phase B	Phase C	Phase D		Phase E		Phase F	Wide FOV VIS		Time of Flight
				Functi	ional test					High res	Sub mm wave	mass
				Shock					_	camera Narrow FOV	instrument	spectrometer Atmospheric
					Vibration					VIS High res	lon mass	Structure
					TV					camera	analyser	Instrument
					EMC					LF magnetometer	Electron detector	Doppler wind experiment
				Needed						magnetometer	Langmuir	experiment
Instrum		Vibration	Function	nal Tes Shock	TV	EMC				HF	probes (values	
Wide FC High res	5	0.0.5								magnetometer	for all x4)	Nephelometer Public
camera Narrow	FOV	C, D, E	B, C, D	C	C, D	D				IFU Vis-IR	LP + HF mag	engagment
VIS High camera	h res	C, D, E	B, C, D	с	C, D	D				Spectrometer	DPU	camera
LF magneto		C, D, E	B, C, D	с	C, D	D				UV image	I/N/E analyzers	Net flux
HF										spectrometer	DPU	radiometer
magneto	ometer	C, D, E	B, C, D	с	C, D	D					Ultra Stable	He abundance
IFU Vis- Spectror		C, D, E	B, C, D	с	C, D	D				Altimeter	Oscillator	detector
• Sub mm	1 wave			c	C, D	D	•				Time of Flight mass	
instrume		C, D, E	B, C, D		<u>, D</u>						spectrometer +	
Ion mas analyser	S	C, D, E	B, C, D	с	C, D	D				LENA detector		
Electron	n									Energetic ions and electrons		
detector		C, D, E	B, C, D	С	C, D	D				detector		
	- (Š)								۲			98

Requirements

Observations

TUNE Proiect

High-Resolution Optical Cameras (HRC)

- Detector size: 2000 x 1504
- Spectral range: 350 1050 nm
- Thirteen spectral bands
- Heritage Instrument: JANUS (JUICE) and RALPH (New
 - Horizons)
- FOV: 1.5°.

Requirements

Observations

Subsystems

TUNE Project Team

IR-VIS Hyperspectral Imager (IVHI)

- Pushbroom Hyperspectral Imager
- Spectral range: 0.5 5.5 µm
- Spectral resolution: 5 nm •
- Heritage instruments: MAJIS (JUICE) and RALPH (New Horizons)
- 500 pix x 500 spectral
- FOV: 5.7°.

TUNE Project Team

UV spectral Imager (UVI)

- Pushbroom Spectral Imager
- Spectral range: 55-210 nm
- Spectral resolution: 1.2 nm
- Heritage instruments: UVS (JUICE) and ALICE (New Horizons)
- FOV: 7.3°

Requirements

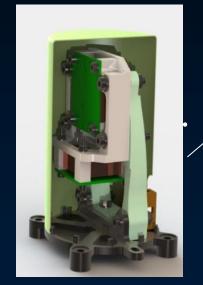
Observations

Subsystems

TUNE Project Te

Submillimeter Wave Instrument (SWI)

- Passive dual-beam heterodyne radiometer
- Spectral range: 200- 1000 μm
- Resolving power: 10⁸
- Heritage instruments: SWI (JUICE) and MIRO (Rosetta)
- 30 cm main mirror
- 2 bands: 600 GHz, 1200 GHz



Subsystems

Risks, Costs

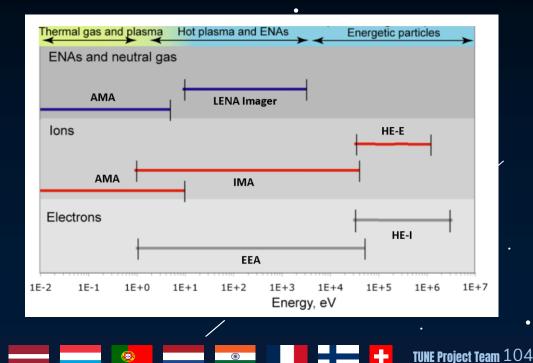
Magnetometer (MAG)

- **3-axis fluxgate magnetometer (**+/- 50 uT with 0.1nT prec. / 0-10 Hz)
 - Heritage: JMAG (Juice)
- Objectives
 - Structure of Neptune's magnetic field
 - Triton internal structure
- Heritage:
 - Juice J-MAG

JMAG - JUICE red book

TUNE Project Team 103

Requirements

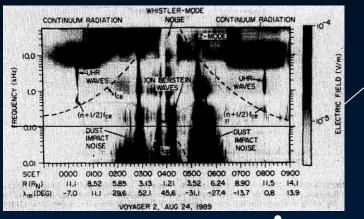

Observations

Subsystems

Risks, Costs

Particle Environment Investigator (PEI)

- 5 sensors measuring electron/ion/ENA from < 0.01 eV to > 1 MeV
- Objective
 - Particle distributions
 - Radiation belts
 - Atmosphere
- Heritage:
 - PEP (Juice)
 - EPI-Lo (PSP)



Subsystems

TUNE Project Team 105

Plasma Wave Investigator (PWI)

- E/B-fields, current, and potential between 0 60 kHz
 - Langmuir probes (4x tetra): (I, V) -> E field, plasma (n, T)
 - Search coil magnetometers: B field
- Objectives:
 - **Dust**
 - Macroscopic plasma properties
 - Particle acceleration (waves)
- • Heritage:
 - Juice RPWI, Voyager 2 PWS

D. A. Gurnett et al., PLASMA WAVE OBSERVATIONS AT NEPTUNE

Requirements

Observations

Subsystems

Risks, Costs

TUNE Project Team

Time of Flight mass spectrometer (Probe)

- Resolution: 0.0005 1/cm
- Sensitivity: $10^{12} 10^{13}$ counts/s/mbar
- Internal pressure range: $10^{-4} 10^{-13}$ mbar
- Size: 44cm x 22cm x 22cm
- Heritage instruments: Huygens/Galileo

Requirements

Observations

Subsystems

Risks, Costs

TUNE Project Team

Atmospheric Structure Instrument (Probe)

- Temperature accuracy in upper troposphere: ±0.1 K
- Temperature accuracy in upper troposphere: ±1 K
- Pressure accuracy: 0.5%
- Size: 18cm x 15cm x 12cm
- Heritage instruments: Huygens/Galileo

Requirements

Observations

Subsystems

Risks, Co<u>sts</u>

TUNE Project Team

Doppler Wind Experiment (Probe)

- X- and Ka-Band antenna needed
- Ultrastable oscillator (USO) required
- Accuracy: 10 µm/s
- Operating temperature: 70° C
- Size: 13 cm x 12.0 cm x 11 cm
- Heritage instruments: Huygens/Galileo

TUNE Project Team

Nephelometer (Probe)

- Angular resolution, FWHM, degrees: >0.5 (depending on the channel)
- Sensitivity, m⁻¹ sr⁻¹ count ⁻¹ : >1.1 x 10⁻⁸
- Size: 44cm x 14cm x 9cm
- Heritage instruments: Huygens/Galileo

TUNE Project Team

Net Flux Radiometer (Probe)

- Multiple filter bands spanning the spectral range 0.2 to 300 μm
- FOV: ±2.5
- View angles: ±80°, ±45° and 0°
- Size: 11 × 31 × 14
- Heritage instruments: Huygens/Galileo

TUNE Project Team

He Abundance Detector (Probe)

- Sensitivity: $\Delta q_{He} = 0.0006$
- Accuracy: $\delta q_{He} = \pm 0.0015$
- Temperatures of the structure: -20° C to +50° C
- Size: 13cm x 4cm x 6cm
- Heritage instruments: Huygens/Galileo

- **1**

•

٠

٠

٠

AOCS Budget

		.	.			
Component	N. units	Power (peak)	Power Initial (W)	Power pointing (W)	Power Thrusters (W)	
Gyroscopes	3	20	40	40	40	
Sun sensors	2	0.5	1	0	0	
Star sensor	2	5	0	10	10	
NavCam	1	2	0	2	2	
Reaction wheels	1	50	25	50	12.5	
Thrusters	12	4	16	0	16	
Total			82	102	80.5	
margin			0.1	0.1	0.1	
Total (10% margin)			90.2	112.2	88.55	

٠

•

•

TUNE Project Theme

Attitude and Orbit Control System

- Requirements
 - 'Slew rate:
 - Initial navigation (8t S/C): 360° in < 100 s
 - Flybys (3t S/C): 180° in < 20 mins (0.15 °/s)
 - Pointing accuracy:
 - Communication & measurements (3t S/C): > 0.01°
 - Integration:
 - Mounting close to the center of gravity
 - EMC

Requirements

Subsystems

Risks, Costs

Attitude and Orbit Control System

- Assumptions:
 - *2x thrusters/axis_with 2m lever arm
- Reaction wheels (4x):
 - Triton encounters (3t S/C): 0.15 °/s -> 0.2 Nm ok
- .10N Bi-propellant thrusters:
 - 8t S/C: 97s for 360° rotation ok
 - 3t S/C: 60s for 360° rotation ok

10N Bi-Propellant Thruster with Single Seat Valve, ArianeGroup

TUNE Project Theme 114

۲

痛

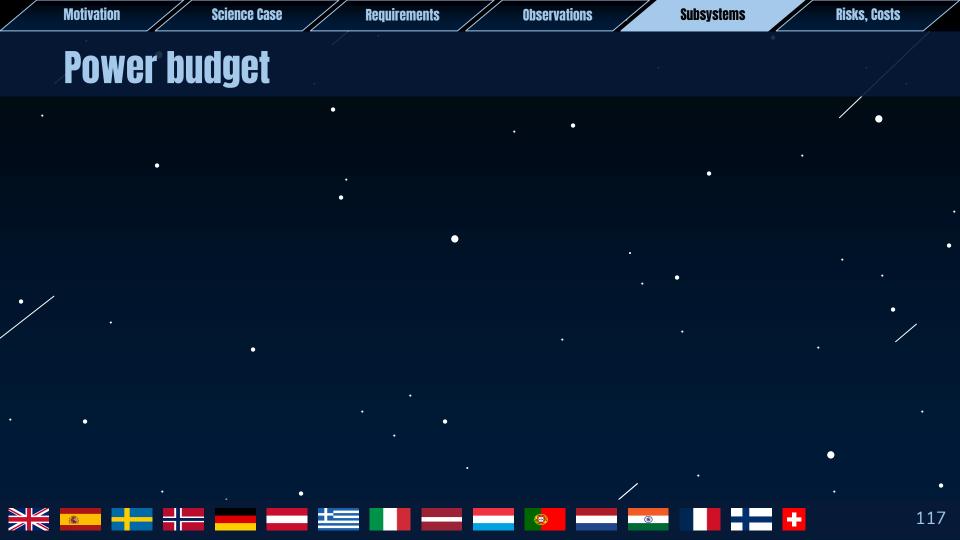
٠

Subsystems

Mission Timeline

Activities	Phas	e 0	Phas	e A	Phas	e B	Phas	e C	Pha	se D				P	hase	E						P	hase	F			
Function																											
Requirements																											
Definition																											
Verification																											
Production																											
Production																											
Utilisation																											
																							_				
Disposal																											
	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035	203	6 203	37 20	038	20	56 20								62 2		
Task	H1 H2	2 H1 H	12 H1 H	2 H1 H	12 H1	H2 H			H2 H	1 H2	H1 H	2 H1 H	12 H1	H2 H	1 H2	H'	1 H2 H	11									
MDR (Mission Design Review)																0											
PRR (preliminary Requirements)																р											
SRR (System Requirements)										-					_	e											
PDR (Preliminary Design)															_	r											
CDR (Crititical Design)															_	a											
QR (Qualification)																t i											
AR (Acceptance)															ter di	•											
ORR (Operational Readiness) FAR (Flight Acceptance)												Lau	nch->		-	0											
LRR (Launch Readiness)															-	n s											
CRR (Commissioning Result)																T											
SO (Science Operations)														Backu													
POE (Possitiblity of Extension)														launci		r a											
ELR (End of Life)														aunci		n											
MCR (Mission Close-out)																8											
more (mission ofose-out)																f											_
																e											
																r											
				1																			_	_			

115


٠

Subsystems

Testing Timeline

										Orbiter		Probe
				•				-		Wide FOV VIS		Time of Flight
								•		High res	Sub mm wave	mass
										camera	instrument	spectrometer
		•								Narrow FOV VIS High res	lon mass	Atmospheric Structure
										camera	analyser	Instrument
				•						LF	Electron	Doppler wind
	Test phas									magnetometer	detector	experiment
2026 2	2027 2028 2039	2030 2031	2032 2033	2034 2035 2036	2037 2038	2056 205	7 2058 205	59 2060 2061	1 2062 2063	and the second se	Langmuir	
Phase		Phase B				Phase E			Phase F	HF	probes (values	
				tional test						magnetometer	for all x4)	Nephelometer Public
			Shock							IFU Vis-IR	LP + HF mag	engagment
				Vibration						Spectrometer	DPU	camera
•				TV								
				EMC						UV image	I/N/E analyzers	
								•		spectrometer	DPU	radiometer
			•							Altimator	Ultra Stable	He abundance
										Altimeter	Oscillator Time of Flight	detector
											mass	
											spectrometer +	
										LENA detector	pressure gauge	
·	•					•				Energetic ions		
					·					and electrons		
										detector		
				•					<u> </u>			•
												110
									۱			116

