NOSTROMO Neptune Orbital Survey and TRitOn MissiOn **Final Presentation** • e e sa nostromo School Alpbach 2024 Team RED Alpbach Summer School 2024 Team RED

Agenda

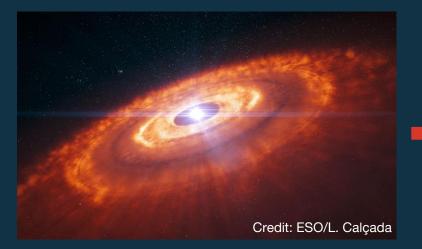
Observation Strategy

Science	Mission	System	Project
	Design	Design	Envelope
Mission Statement Science Case Mission Objectives Key Science and Mission Requirements Key Mission Drivers Measurement Principle Instrumentation	Mission Overview System Drivers Launcher & Transfer Mission Tradespaces Target Orbit Final Configuration	Spacecraft Concept Subsystems Overview Mission Operations Ground Segment Critical Technology	Schedule Critical Risks Descoping Options Cost Outreach

Agenda

Mission Statement Science Case **Mission Objectives** Key Science and Mission Requirements Key Mission Drivers Measurement Principle Instrumentation **Observation Strategy**

Mission Statement


"Study Neptune and its moon Triton to better understand planetary system formation and habitability."

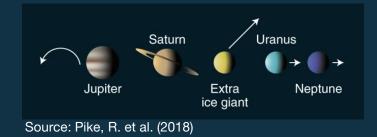
Credit: The Johns Hopkins University Applied Physics Laboratory

Planetary System formation

Star forms with circumstellar disk

 Ender for the second second

Planets form and accrete material



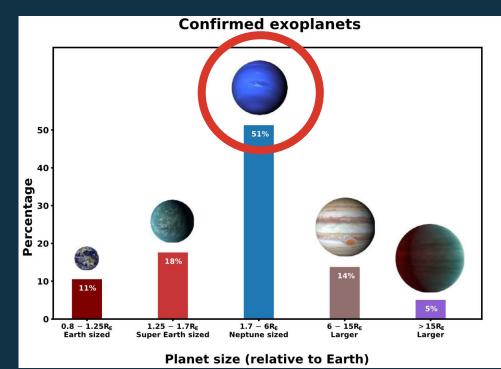
Planetary System formation

Many unknowns remain:

 Role of giant planet migration
 Formation of distant regions like the Kuiper Belt

Can be resolved by studying:**1. Neptune2. Triton**

Why Neptune?


Credit: NASA / Voyager 2

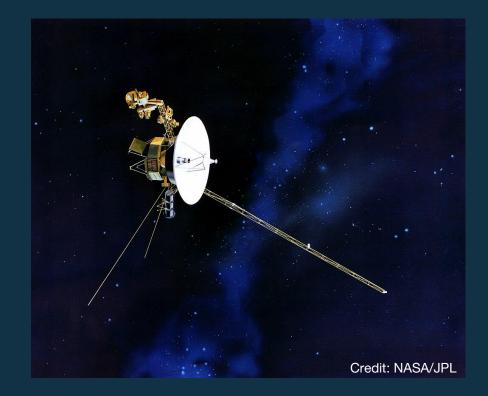
Neptune as an exoplanet

 Exoplanet systems: probe planetary system evolution stages

 Benchmark for exoplanet studies

• Neptune is poorly understood

Source: Atreya et al. 2020


Previous research

Earth/Space-based observations

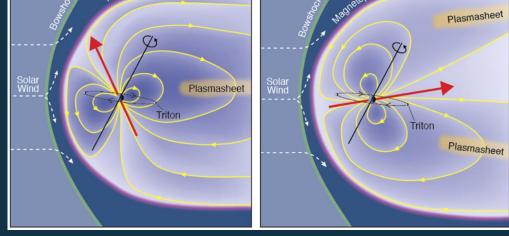
- Basic understanding of Neptune
- Discovery of Triton

Space missions

• Voyager 2 (1989 flyby)

Neptune as a weather system

• Thick **hydrogen**, **helium**, **methane** & trace elements atmosphere


• Strong storms and lightning observed

• Most meteorologically active atmosphere in the Solar system

Neptune as a magnetospheric laboratory

- Unclear origin of the highly axially-tilted, offset,
 multipolar magnetic field
- Highly dynamic
 magnetosphere
- UV to IR auroral emissions

Credit: NASA

Credit: Fran Bagenal & Steve Bartlett

Neptune as a (common?) ice giant

- Uranus likely experienced major collision
- Internal structure of Neptune likely
 less-altered compared to Uranus

Best proxy for ice giants!

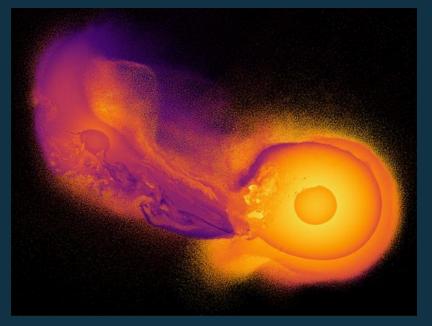
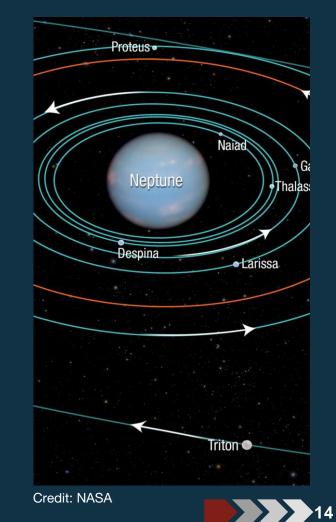


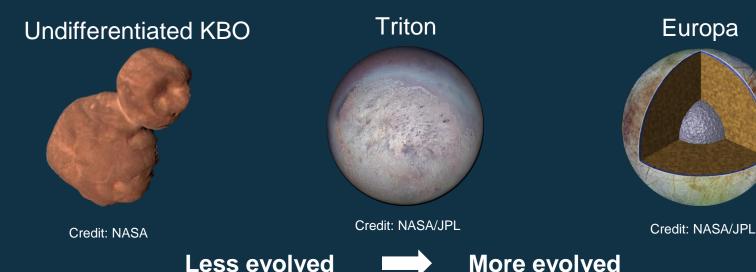
Image credit: Jacob Kegerreis, Durham University


Why Triton?

States

Triton as a captured Kuiper Belt Object¹ (KBO)

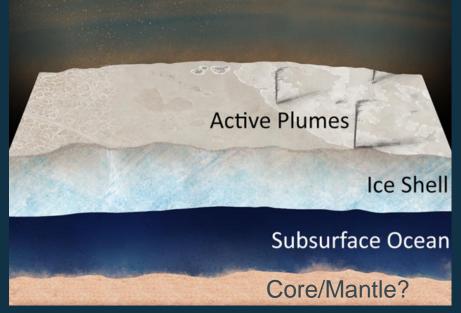
- Triton: Retrograde orbit
- Kuiper Belt: region with **pristine material**


Unique opportunity to study a KBO

¹ Source: Agnor and Hamilton, 2006, 10.1038/nature04792

Triton as a more evolved KBO

- Likely internally differentiated
- Bridge between primitive and evolved bodies


15

Triton as a possible habitable object

• Potential subsurface ocean

• **Plume** activity

- Dark plume deposits
- Possibly rich in complex
 organic compounds

Credit: NASA/JPL-Caltech

Previous proposal

Neptune Odyssey

- Orbiter & Probe (NASA planetary science & astrobiology Decadal Study, 2023-32)
- Not selected due to **lack of available trajectories** in that time frame

NOSTROMO

- Less-restricted launch window
- Reduced complexity

Objective 1

Investigate the origin and evolution processes of **Neptune** as a proxy for exoplanets to advance planetary system evolution theories

Sub-objectives:

- 1. Study the interior structure.
- 2. Characterise the composition and dynamics of **atmosphere**.
- 3. Characterise the **magnetospheric** environment.

Objective 2

Understand the formation and evolution of Triton as a key to understanding the formation of our Solar system

Sub-objectives:

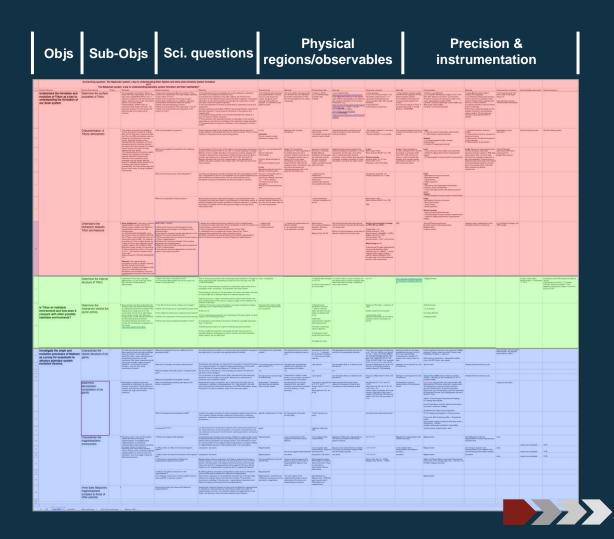
Determine the surface properties.
 Characterisation of the atmosphere.
 Understand the interactions

between Triton and Neptune.

Objective 3

Investigate if **Triton** is a **habitable** environment and how it compares with other possible habitable environments

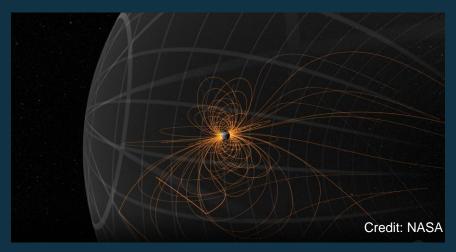
Sub-objectives:


 Determine the internal structure.
 Determine the mechanism behind the plume activity.

Science Traceability Matrix

 3 main science objectives
 SO1 SO2 SO3

 More than 24 science questions



SO1.3: Characterise the magnetic environment of Neptune

SO1.3.1: What is the topology of the magnetic field?

• Measurable: time-resolved magnetic field of Neptune

- Measurement requirements: The magnetic fields of Neptune shall be measured:
 - along 3 perpendicular axes
 - with an accuracy of **0.1 nT**
 - with a frequency of **1 Hz**
 - during the mission lifetime

- Instrument requirements: Instrument needed: a dual sensor fluxgate configuration combined with a scalar sensor The magnetometer shall have a:
 - measurement range of ±50'000 nT
 - measurement accuracy better than 0.1 nT
 - minimum measurement frequency of **1 Hz**

SO2.2: Characterisation of Triton's atmosphere

SO2.2.2: What is the atmospheric composition and underlying chemistry (incl. source/loss and ionisation processes)?

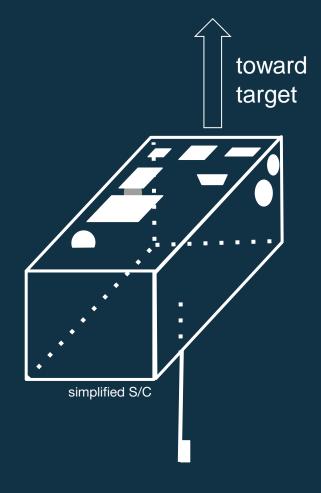
• **Measurable**: Absolute abundance of elementary and molecular neutrals and ions, possible more complex organic compositions and the D/H ratio.

• Measurement requirements: In-situ measurements shall:

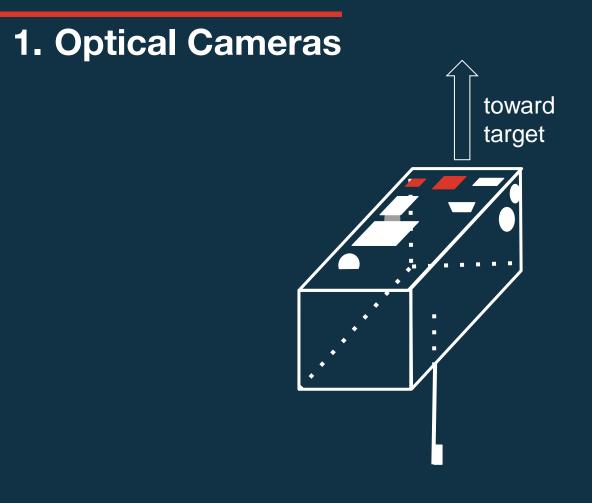
- detect neutrals and ions in the mass range 1 to 300 amu
- have mass resolution $M/\Delta M \ge 500$
- be performed in the range from **200** to **1000 km** altitude
- Instrument requirements:

Instrument needed: **Time-of-flight neutral and ion mass spectrometer** The mass spectrometer shall:

- take a spectra at least every **25 s** in Triton's orbit
- have two top-level modes: ion detection, neutral particle detection
- be able to operate at an ambient pressure of **5 x 10⁻⁵ mbar** or lower

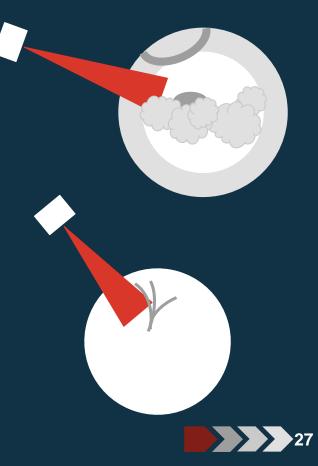

Mission Drivers

- Mapping of Triton's surface to study the dark plume deposits High inclination orbit around Triton to map the whole surface
- Composition mapping of the atmospheres of Neptune and Triton Distance smaller than 4000 km from Neptune and 900 km from Triton
- Sample ions and electrons in different regions of Neptune's magnetosphere Orbits with different apoapsis
- Measuring the magnetic field of Neptune Requires observation time of at least 180 hours

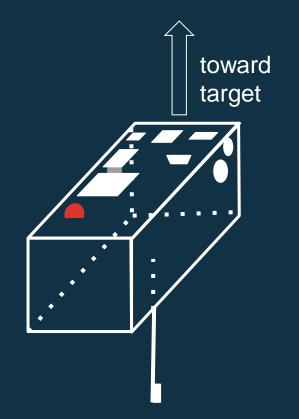


Instrument Suite

- 1. Optical Cameras
- 2. Mass Spectrometer + Pressure Gauge
- 3. VIS IR Spectrometer
- 4. UV Spectrometer
- 5. Magnetometer
- 6. In-situ Particle Environment Package
- 7. Radio Science
- 8. Laser Altimeter


1. Optical Cameras

- Wide Angle Camera (WAC) and Narrow Angle Camera (NAC)
- Remote imaging of:
 - cloud structures, dark spots and lightning
 - o aurora on Neptune
 - Triton's surface: geological **structures**
 - plume morphology and spatial distribution
- Possible detection and imaging of other Neptunian moons

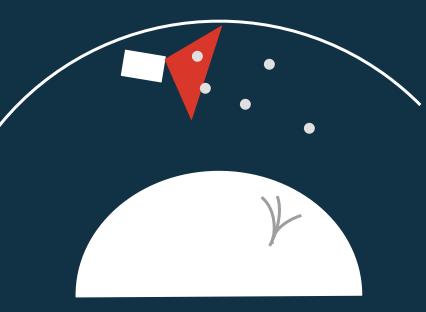

Characterise Neptune's atmosphere and Triton's surface [SO 1.2, 1.3, 2.1, 2.3]

Specifications

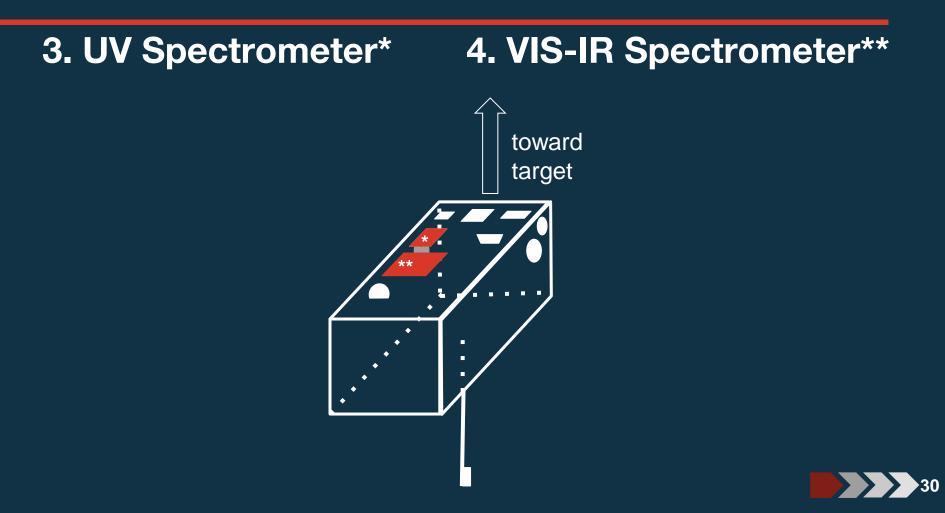
- WAC: low resolution, full coverage
- NAC: high resolution, small features obsv.

2. Mass Spectrometer & Pressure Gauge

2. Mass Spectrometer & Pressure Gauge


In-situ absolute abundance measurements of:

- elementary and molecular **neutrals and ions**
- possible more **complex organic** compositions
- **D/H ratio** in Neptune's & Triton's atmosphere


Determine the atmospheric composition of Neptune & Triton [SO 1.2, 2.2]

Specifications

- mass range: (1 300) amu
- mass resolution $M/\Delta M$ = min. 500 amu
- spatial resolution: 50 km or better

3. UV Spectrometer

4. VIS-IR Spectrometer

- Stellar occultation
- Scans of Triton's surface
- Observations of Neptune's **aurora**, **atmosphere**, **rings** and **lightning**

Characterise the interior structure and the atmosphere of Neptune and Triton and determine the surface properties of Triton [SO 1.2, 1.3, 2.1, 2.2, 3.2]

Specifications

- spectral range: (68 210) nm
- spectral resolution: 0.6 nm for point source
- spatial resolution: 350 µrad/pixel

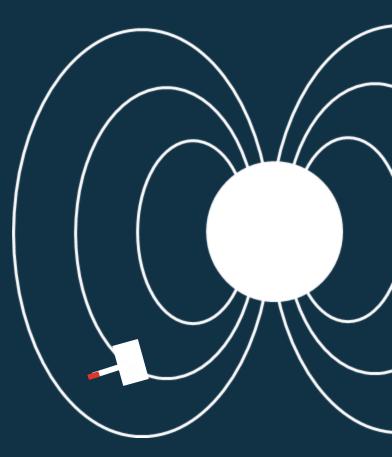
- spectral range: (0.5 5.55) μm
- spectral resolution: 0.6 nm [Vis-NIR], 5 nm [IR]
- spatial resolution: 180 µrad/pixel

5. Magnetometer • ۵

toward

target

. . . .


5. Magnetometer

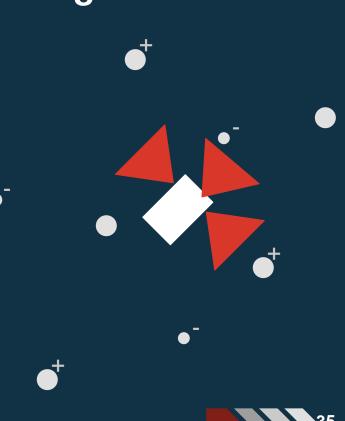
• Magnetic field measurements along 3 axes.

Determine the internal structure and the magnetospheric environment of Neptune, detect possible subsurface ocean in Triton and understand the interactions between Neptune and Triton [SO 1.1, 1.3, 2.3, 3.1, 3.2]

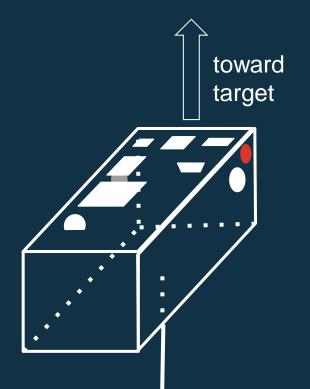

Specifications

- accuracy: 100 pT
- science mode (1 Hz) / burst mode (64 Hz)
- range: ± 50'000 nT

6. In-situ Particle Environment Package


6. In-situ Particle Environment Package

- Provides the 3D distributions of ions and electrons
- Global Energetic Neutral Atoms (ENAs) imaging of magnetosphere

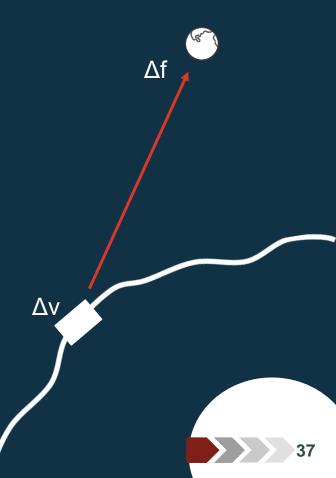

What are the characteristics of Neptune's and Triton's magnetospheric plasma environments? [SO 1.3, 2.3]

Specifications

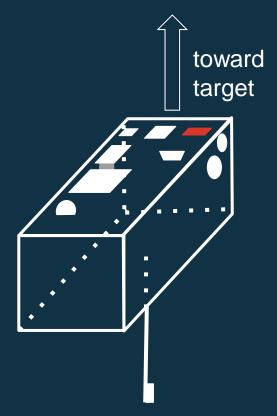
- Ion detector: 1 eV 41 keV
- Electron detector: ~1 eV 50 keV
- Neptunian ENAs ~0.5 300 keV, FoV: 90° x 120°
- Data Processing Unit (DPU)

7. Radio Science

7. Radio Science


• Tracks **Doppler shift** in radio signals sent between spacecraft and Earth, radio signal occultation.

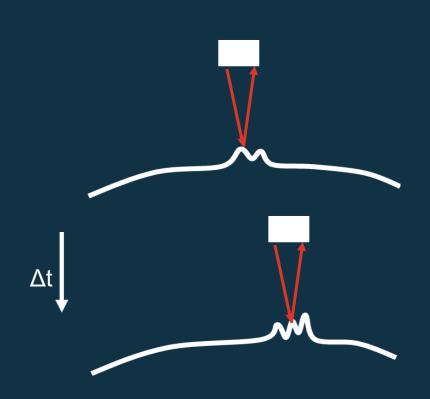
• Reveals changes in spacecraft's velocity due to gravitational forces from Neptune.


Constrain interior structure of Neptune and Triton. [SO1.1, 3.1]

Specifications

- Accuracy: Δv=10 µm/s
- Uses Ultra Stable Oscillator and 0.5 m Ka band antenna, which is already used for COM

8. Laser Altimeter


8. Laser Altimeter

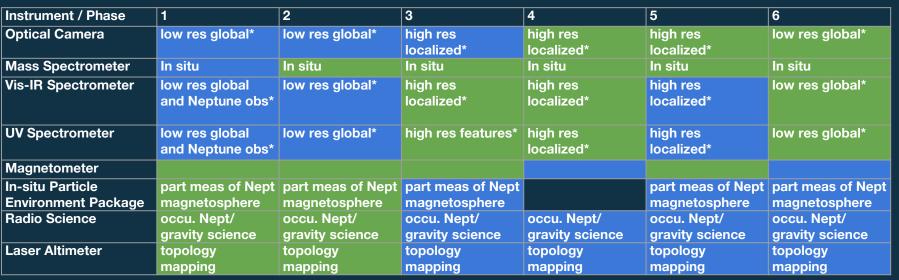
- **Topographical mapping** of Triton
- Measure **periodic surface elevations** to detect tidal deformation

Constraints on ice-shell thickness and presence of subsurface ocean. [SO 3.1]

Specifications

- Repetition rate: 10 Hz
- At altitude 400/1000 km: surface spot size = 20/50 m

Instrumentation: Heritage and Development


Instrument	Identified critical sub-systems (TRL drivers)	Instr TRL	Heritage
Optical Camera	Redesign of lens system for NAC/WAC.	5-6	ROSETTA
Mass spectrometer + pressure gauge	Redesign of detector. Components availability and operation modes drive TRL.	4-6	JUICE
VIS - IR spectrometer	Complete redesign of thermal system, apertures, optics. Functional performance needs to be demonstrated in the laboratory.	3-4	JUICE
UV Spectrometer	Redesign of aperture and optics drives TRL. Critical functions of new design needs to be verified	4-6	JUNO / JUICE / Cassini
Magnetometer	Components availability and operation modes drive TRL.	4-6	JUICE / MESSENGER / JUNO
In-situ particle environment package	Components availability and operation modes drive TRL. Removal of three instruments possible wrt. pep on JUICE.	4-6	JUICE (only 3 instruments out of package)
Radio Science	Components availability and operation modes drive TRL.	4-6	JUICE
Laser Altimeter	Components availability and operation modes drive TRL.	4-6	BepiColombo

Observatio Plan: Nept		345'841 k	 m	2		3 53450 km 1000 km
Primary * daylight Secondary **nighttime	9			Orb 6	ital period: 2.5 da	ays 5
Instrument / Phase	1	2	3	4	5	6
Optical Camera		low res global*	low res global*	high res localized*	low res global*	low res global*
Mass Spectrometer				In situ		
Vis-IR Spectrometer	Occu. Nept/Trit	Ilightning/aurora low res global and high res localized**	low res global*	high res localized*	low res global*	lightning/aurora low res global and high res localized**
UV Spectrometer	Occu. Nept/Trit	lightning/aurora low res global and high res localized**	low res global*	high res localized*	low res global*	lightning/aurora low res global and high res localized**
Magnetometer						
In-situ Particle Environnement Package	Magnetosphere particle meas	Magnetosphere particle meas	aurora particle meas		aurora particle meas	Magnetosphere particle meas
Radio Science	Occu. Nept/Trit	gravity science	gravity science	gravity science	gravity science	gravity science
Laser Altimeter						

Observation Plan: Triton

Primary * daylight Secondary **nighttime

1000 km

2

6

Orbital period: ~ 4 h

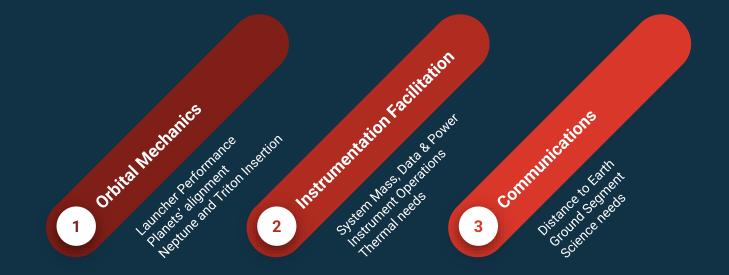
3

ŝ

518

5

200 km 4



Agenda

Mission Overview System Drivers Launcher & Transfer Mission Tradespaces Target Orbits

Mission Design Drivers

Mission Overview

Mission Launch	Journey to Neptune	Neptune Science Orbit	Triton Science Orbit	End of Life
Mission launch window between 2048 and 2054.	Transfer to Neptune.	Injection around Neptune, beginning of science phase 1.	Injection around Triton, beginning of science phase 2.	Decommissioning of the S/C on the surface of Triton marks the end of the mission.
	14-22 years	approx. 4 years	approx. 1 year	earliest 2067, latest 2081

Launcher

Conflicting requirements:

- Injection velocity (5.2 km/s)
- Payload mass (7.02 t)

Ariane 64 EVO:

- Fairing diameter 5.4 m
- Fairing height (14 or 20 m)
- 7.4 to 7.6 tons to Earth escape

Mission Design Tradespaces

 \rightarrow

Jupiter Neptune Transfer

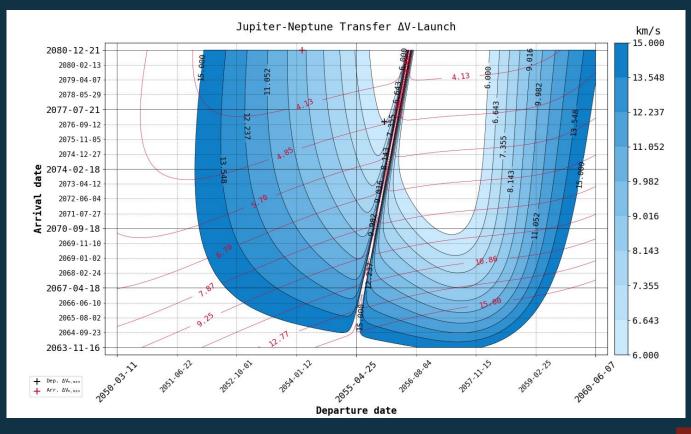
Identify the launch window.

Determine the optimal sequence of gravity assists.

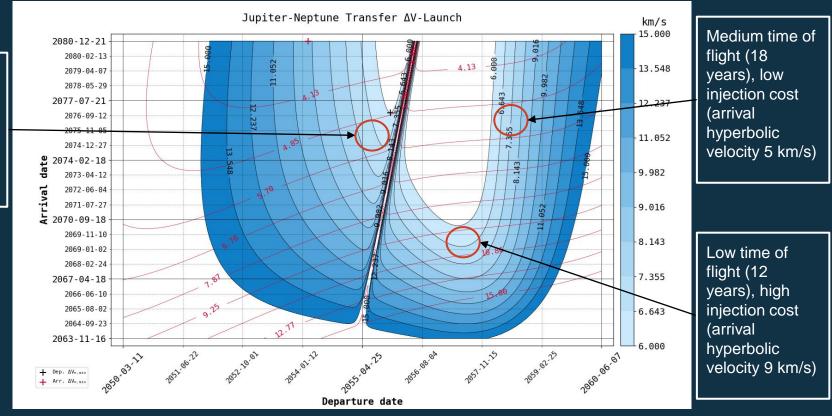

Science Orbits

 \rightarrow

Minimize injection costs while maximizing science return.

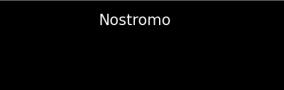


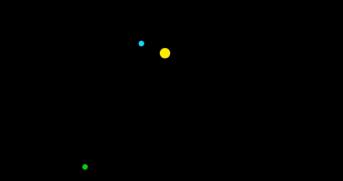
Trajectory tradespace - Jupiter to Neptune


Trajectory tradespace - Jupiter to Neptune

Trajectory tradespace - Jupiter to Neptune

Higher time of flight (21 years), low injection cost (arrival hyperbolic velocity 5 km/s)


50

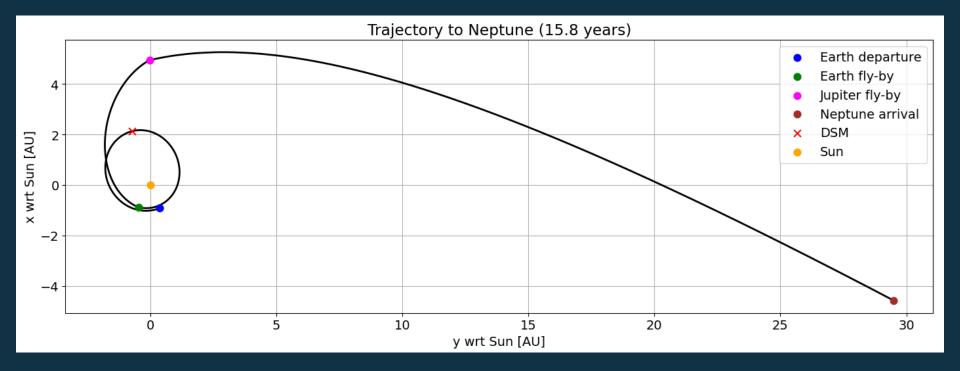

Trajectory Tradespace - Earth to Jupiter

Launch	Flyby sequence	Time of flight [years]	Launch V∞ [km/s]	C3 [km^2/s^2]	Δv [km/s]	Powered flybys	DSM maneuver
25-12-2048	EVEEJ	18.7	3.14	9.86	2.21	Yes (E,J)	No
25-12-2048	EVEEJ	20.9	3.17	10.0	1.81	Yes (E)	No
11-11-2048	EMEJ	20.7	5.19	26.9	3.28	Yes (E,J)	No
10-02-2054	E(DSM)EJ	15.8	5.23	27.3	2.32	No	590 m/s

- No suitable alignments with Mars during target launch window.
- Exploiting a gravity assist at Venus constraints the minimum time of flight required to reach Jupiter to approximately 6/7 years.
- A Deep space maneuver allows to target with much more time flexibility a Jupiter GA, but it requires more Δv cost.

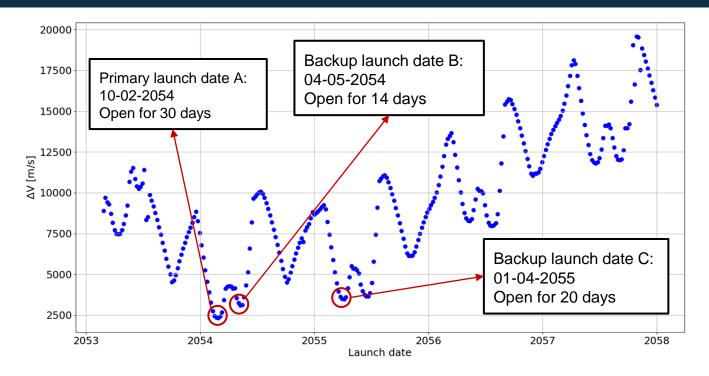
Velocity: 35.31 km/s 2054-2-25

Jupiter

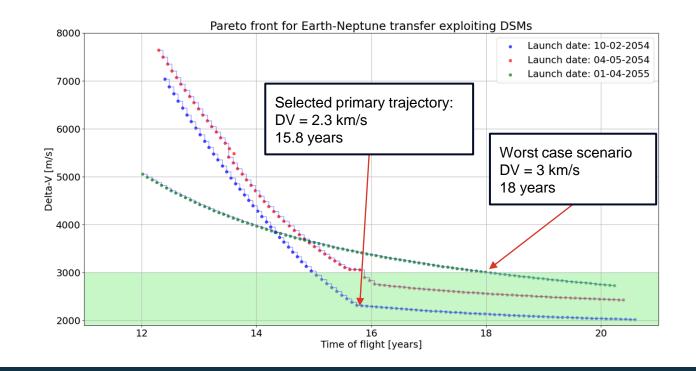

Neptune

Sun

 $\overline{}$


Nostromo
 Earth

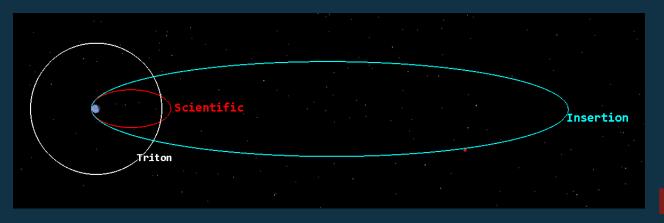
Selected trajectory



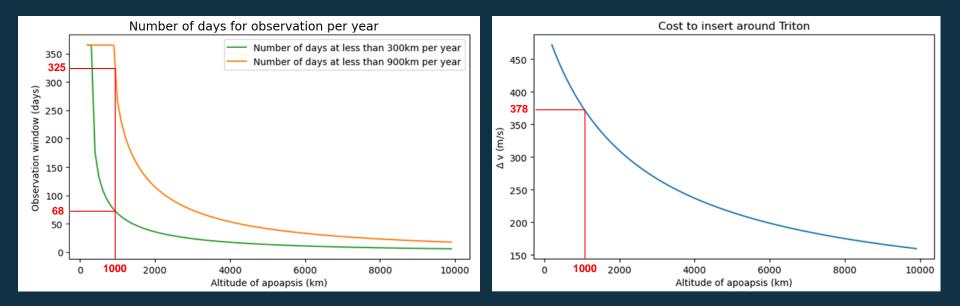
Launch window sensitivity analysis

Launch window sensitivity analysis

Orbiting Neptune


Injection orbit around Neptune:

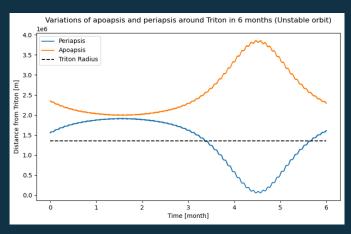
- Eccentricity: 0.98
- Periapsis altitude: 1000 km
- Apoapsis altitude: 2'525'872 km (103 R_N)
- Period: 41 days
- Retrograde in the plane of Triton


Scientific orbit around Neptune:

- Eccentricity: 0.88
- Periapsis altitude: 1000 km
- Apoapsis altitude: 345'841 km (14 R_N)
- Period: 2.5 days
- Retrograde in the plane of Triton

Trajectory Tradespace - Triton Science Orbit

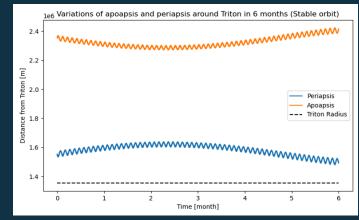
Selection of apoapsis: observation time vs injection cost



Orbiting Triton

→ Endgame to transfer from Neptune to Triton science orbit

Highly inclined orbit (6 months, unstable):


- Eccentricity: 0.20
- Periapsis altitude: 200 km
- Apoapsis altitude: 1000 km
- Period: 4 hours
- Inclination: 87° (nearly polar orbit)

Stop to compensate the change in inclination

Stabilized inclined orbit (6 months, stable):

- Eccentricity: 0.20
- Periapsis altitude: 200 km
- Apoapsis altitude: 1000 km
- Period: 4 hours
- Inclination: 35°

Orbiting Triton: station-keeping

• Unstable Orbit:

- 4.5°/month inclination drift
- 0.08 change/month in eccentricity

 \rightarrow One maneuver per month of 10 m/s for 6 months to stay on the polar orbit

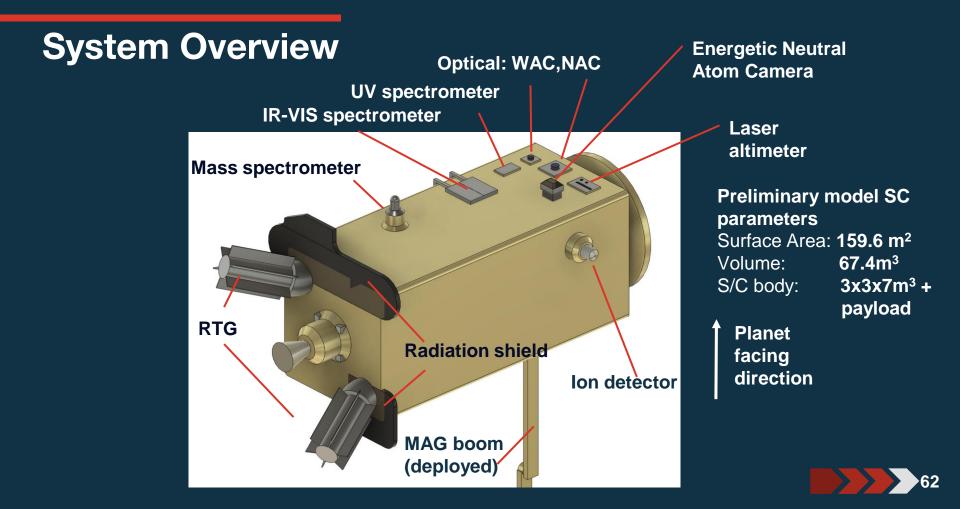
• Stable Orbit:

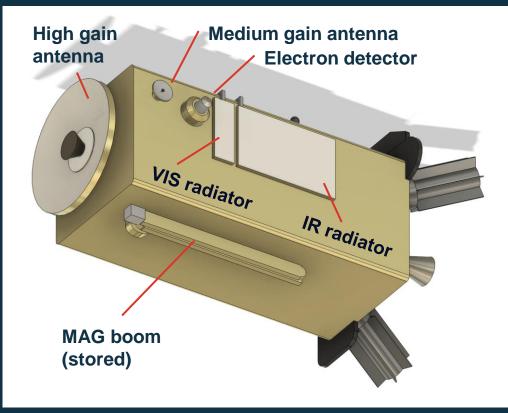
→ No cost to stay in the stabilized inclined orbit (35°) for 6 months (possible mission extension to one more year with no station keeping needed)

End of life and Decommissioning

Options:

- Crash into Neptune using 4.3 km/s Δv maneuver where 305 m/s are used to leave Triton
 - → Not feasible


Crash into Triton in 6 months with a small maneuver (5 m/s)
 → Controlled reentry for 30-60 min with mass spectrometer and magnetometer turned on with communication to Earth


Agenda

Science Design Design Envelope	Science	Mission Design	System Design	Project Envelope
--------------------------------	---------	-------------------	------------------	---------------------

Spacecraft Concept Subsystems Overview Mission Operations Ground Segment Critical Technology

System Overview

Preliminary model SC parameters Surface Area: 159.6 m² Volume: 67.4m³ S/C body: 3x3x7m³ + payload

Planet facing direction

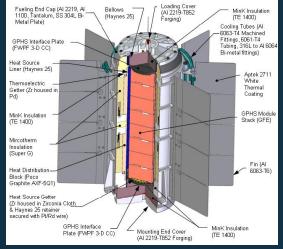
System Overview

Payload adapter

Instrumentation Budget

Instrument	Mass [kg] with Margin	Power (standby/average) [W]	Data rate (min/max) [kbit/s]
Optical Camera: NAC & WAC	20	3.5/8	40'000
Mass Spectrometer	6	8/12	31/384
UV Spectrograph	15	12/12	32/
Laser Altimeter	20	14/43	3/10
Vis-IR Spectrometer	30	20/25	182/
Magnetometer	5	5/10	0.45 (science mode), 12.07 (burst mode)
In-situ Particle Package	8	40/50	4/7
Radio Science Experiment	Included in COM		
Total instrumentation	104	109/170	40'253/40'627

Mass Budget


- Top-down: First estimates of subsystem masses adapted from similar concepts
- Bottom-up: Selection of specific existing components
 - \circ onboard computer
 - ADCS sensors & actuators
 - RTGs & batteries
 - propulsion system

Subsystem	best estimate	contigency	maximum expected value	bus dry mass contributio
command and data handling	46	10%	51	3.7%
guidance, navigation & control	64	10%	70	5.2%
power	261	10%		21.0%
harness	77	20%		6.8%
thermal	75	20%	90	6.6%
communications	120	20%	144	10.5%
propulsion	197	10%	217	15.9%
structures and mechanical payload adapter	305	20%	365 50	26.7% 3.7%
total bus	1144		1367	100.0%
payload	104	20%	150	
total dry	1248		1516	
total dry with system margin propellant		20%	1820 5205	
total wet			7024	
maximum possible mass Ariane64			7400	
margin kg			376	
margin %			5%	

Radioisotope Thermoelectric Generator

- 4 MMRTGs units: 238Pu 440 W (beginning of mission)
- 8000 W of thermal dissipation
- degradation after ~25 years (worst case mission scenario), 360 W power provided

Credit: NASA

Power Budget

Main drivers: Science mode with payload suite

Science mode with radio science experiment

Power required from battery

Subsystems \ Modes	Science	Science 2	Manoeuvre	Data-Link	Safe	Cruise	Battery
Payload	170	0	0	0	0	0	0
Command & Data	38	38	35	35	36	27	2
GNC	81	81	49	66	46	46	33
Power	45	45	45	45	45	45	45
Thermal	20	20	80	20	0	0	0
COMs	0	120	0	300	120	120	15
Propulsion	21	21	130	21	26	26	26
Total	375	325	338	486	273	264	121
Margin	30%	30%	30%	30%	30%	30%	30%
Total incl. Margin	487	422	439	632	355	343	157
RTG output (WC)	361	361	361	361	361	361	361
Excess	-126	-61	-78	-270	6	18	205
Power draw on battery	126	61	78	270	0	0	0

System Propulsion

- Aerojet Rocketdyne HiPAT Dual-Mode 445-N engine
- 326 s specific impulse
- Utilizing bipropellant
- Flight-qualified, same as Neptune Odyssey concept

Credit: satcatalog.com

System - ADCS

Component selection as per Neptune Odyssey concept:

- Actuators:
 - 4 reaction wheels
 - 16 4.4 N-thrusters
- Sensors:
 - Star trackers
 - Sun sensors
 - Inertial measurement unit

Driver: slew rates in science mode, worst-case at periapsis

- Neptune: 0.02 deg/s
- Triton: 0.006 deg/s

ADCS Mode	Modes	Sensor and Actuator
Fine acquisition mode	Science 1, Science 2, Data link	Sensors : Star Trackers, Sun sensors, IMU Actuator: Reaction wheels
Rough acquisition mode	Cruise, Battery charge	Sensors : Sun sensors, IMU Actuator: Reaction wheels
Slew mode	Manoeuvre	Sensors : Star Trackers/Sun sensors, IMU Actuator: Reaction wheels/Thrusters
Safe mode	Platform/Safe mode	Sensors : Sun sensors, IMU Actuator: Thrusters

Delta V Budget

Derived from trajectory calculation:

- 30% margin on transfer (launch delay & correction)
- 5% & 100% margins as per ESA margin philosophy
- 25% margin for new development safety factor

Phase	Delta V	Margin	Delta V		Inputs	Values
Transfer Earth-Neptune	3000 m/s	5%	3150 m	n/s	lsp	326 sec
Insertion into Triton orbit	472 m/s	5%	496 m	n/s		
Stationkeeping	80 m/s	100%	160 m	n/s	Delta V without margin	3806 m/s
Sum			3806 n	n/s	Propellant margin	25.00%
					Dry mass	1820 ka

Propellant

Total

5205 kg

7024 kg

Thermal Analysis

Main thermal drivers:

- RTG thermal interface
- Space environment
- IR Spectrometer operating conditions
 - requiring stable 90K
- Vis-NIR Spectrometer operating conditions
 - requiring stable 130K

Thermal Analysis - Spacecraft bus interior

Main contributing factors:

- SC/RTG thermal interface (main driver)
- SC absorption/emission

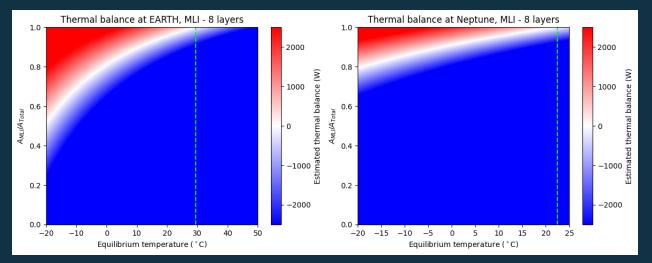


Figure: Spacecraft internal thermal balance around Earth and Neptune

Thermal Analysis - Vis-IR Operation Spec.

IR sensor requires stable 90K thermal environment (Rq-I13.1).

- System designed for Neptune environment
- Passively cooled only
 - Heatpipe & Radiator design
- Radiator sized to 3.7m²
 - sun facing at 90K
 - not sun facing 86K
- Stabilized via heating element

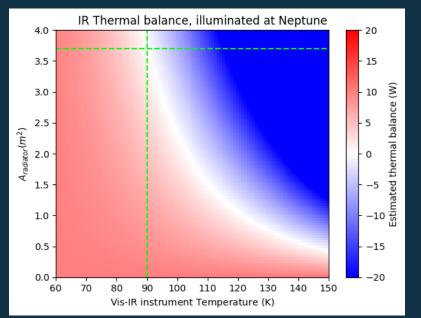


Figure: Instrumentation thermal balance, example of Vis-IR

Thermal Analysis - Vis-IR Operation Spec.

VIS-NIR sensor requires stable 130K thermal environment (Rq-I13.2).

- System designed for Neptune environment
- Passively cooled only
 - Heatpipe & Radiator design
- Radiator sized to 0.75m²
 - sun facing at 130K
 - not sun facing 128K
- Stabilized via heating element

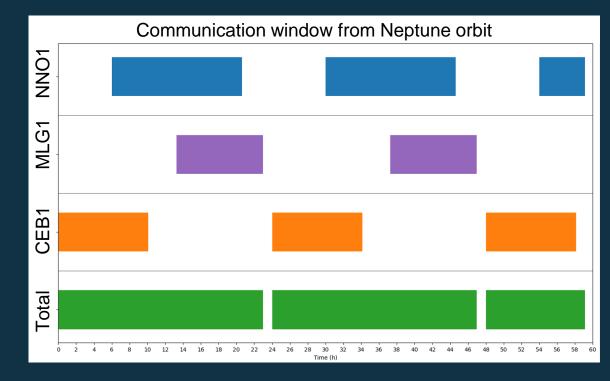


Figure: Instrumentation thermal regulation system

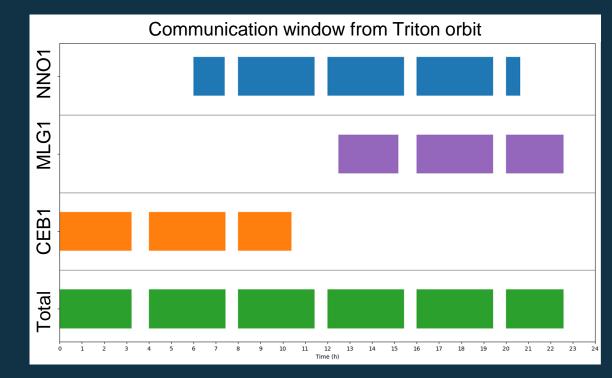
Ground Segment

- Ka Band (32.0 GHz)
- ESA 35m Deep Space Terminals
- CEB1 and MLG1
 - NNO1 to be upgraded
- NASA 70m terminal for critical maneuvers

Communications


- 3m diameter High Gain Antenna
 - Science data link
 - Antenna gain of **57.4 dB**
 - Maximum downlink of 8.05 Gbit/day
 - Maximum uplink of 1.9 Mbit/s
- 0.5m diameter Medium Gain Antenna
 - Telemetry & Housekeeping
 - Antenna gain of **41.9 dB**
 - Maximum downlink of **104 Mbit/day**
 - Maximum uplink of **52.9 kbit/s**

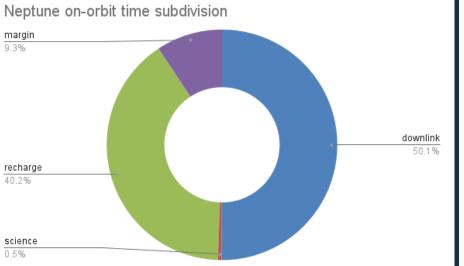
	Science Data	Telemetry					
Eb/En	-0.4 dB	-10.2 dB					
Doumlink	11.4 kbit/s	1.2 kbit/s					
Downlink	985 Mbit/d	104 Mbit/d					
	1.9 Mbit/s	52.9 kbit/s					
Uplink	164 Gbit/d	5.1 Gbit/d					

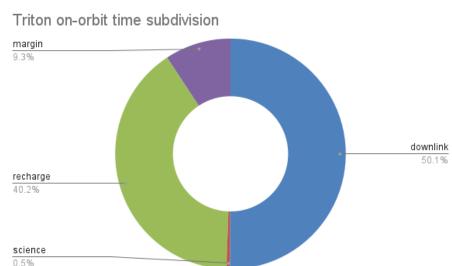

Communications Windows Neptune Orbit

COMs would allow for 23h/day available contact time while in SCI orbit around Neptune.

Communications Windows Triton Orbit

COMs would allow for 21h/day available contact time while in SCI orbit around Triton.




Data Budget & Onboard Computing

- Camera is dominant data budget driver (40 Mbit/s data rate)
- Consideration of
 - maximum science data rates
 - science time during orbit around Neptune and Triton
- OBC derived from reference missions:
 - Uranus Orbiter & Probe concept
 - Parker Solar Probe (flight heritage)
 - Van Allen Probe (flight heritage)
- → 1024 GB memory

On-orbit scheduling

Driver for: 4 year science phase(1) for Neptune

1 year science phase(2) for Triton

Agenda

Science	Mission	System	Project
	Design	Design	Envelope
			Schedule Critical Risks Descoping Options

Cost

Outreach

Mission phases and timeline (1/2)

Phase 0	Phase A	Phase B	Phase C	Phase D	
Approx. 5 years of development of technologies	Approx. 2037 conducting Feasibility Study of our concept	B1 2 years selecting industrial partners	Approx. 4 years of designing phase ending with the Critical Design	Start of testing in approx. 2049 Flight Model (FM) testing incl. ground	
Mission Objectives and Requirements Review (MCR)	Approx. 2041 Preliminary Requirement Review (PRR)	B2 1.5 years Approx. 2045 Preliminary Design Review (PDR)	Review (CDR) Ready for production	segment Ending with the Flight Acceptance Review (FAR)	

Mission phases and timeline (2/2)

Phase E

Phase F

10 February 2054 Launch of NOSTROMO

Possible extended science time

Back up launch date: 4 May 2054

Nominal science phase: 5 yrs

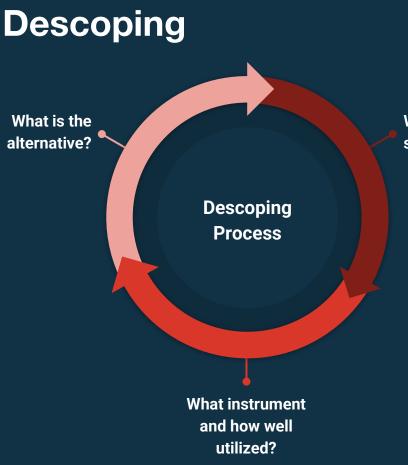
Mission Overview as prev. discussed

Approx. 2075 **Decommissioning** through controlled descent into Triton's atmosphere for safe disposal

Allowed* to crash on Triton following ESA's Planetary Protection Article IX:

Category II* : landing on Triton is allowed, but must be supported by an analysis of "remote" potential for contamination. (probability of introducing a single viable terrestrial organism of < 1 x 10-4)

Risk Assessment


5		R5: Planetary Protection Category				R#	Mitigation
		change of Triton				1	Know-how transfer planning.
4		R4: Launch window	R1: personnel training R2: long mission lifetime: (S/C mech.			2	Redundancy and extensive testing.
			parts e.g. reaction wheels)			3	Extensive testing.
3	R8: Non-availability of		R3: long mission			4	Room to maneuver in planning.
	instruments		lifetime: (Instr. mech. parts e.g. camera mirrors)			5	S/C decontamination
2			R6: Failing mag boom deployment				from organics needed.
						6	None: Partial loss of science objective.
1					R7: Update of atmospheric model of Neptune	7	Adaption of Neptune orbit.
	remote	unlikely	likely	highly likely	near certain		05

Preliminary Cost breakdown

Item	Estimation in Mio. €	Note
Industrial cost	650.00	Spacecraft including RTGs
Project team	162.50	
Mission and science operation cost	130.00	Due to long mission duration
Contingency & margin	141.38	
Launcher cost	150.00	Including nuclear restrictions
Total mission cost	1233.88	
Adjusted for 10% inflation	1357.26	Mio. €

What is the science priority?

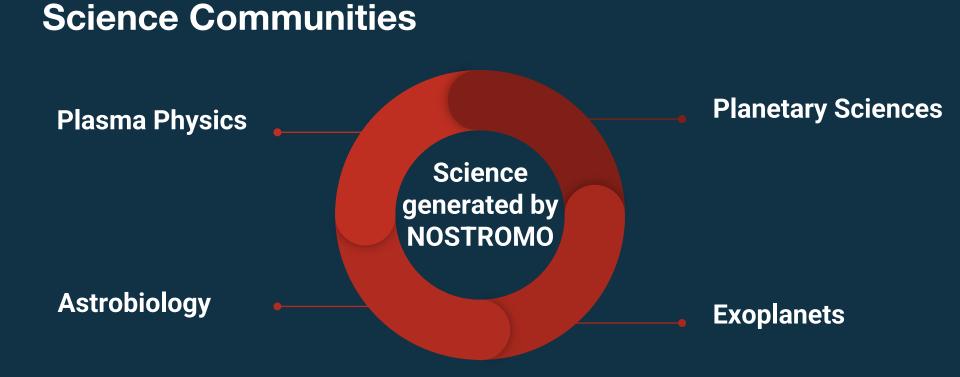
- Science Priority
- Instrument Utilization
- Alternative approaches

First to be descoped:

Laser Altimeter

- Only around Triton (lower prio.)
- Science partially recoverable

Outreach


In order to increase public support the following channels shall be considered:

- Education
- Traditional Media
- Social Media

Credit: ESA

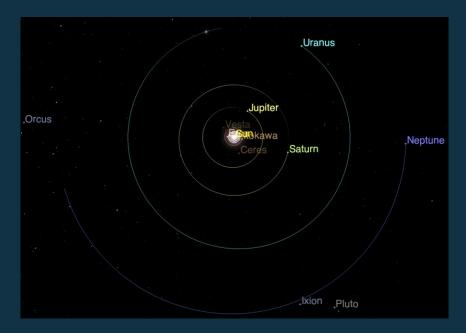
Tomas Formanek, Laura-Maximilia Pirker, Jiro Tanabe, Quentin Rommel, Lars Klingenstein, Ilse de Langen, Georgia Moutsiana, Julian Pflüger, Alexander Buehler, Luigi Serra, Delfine Vagenes, Gabriel Isaac Badia Estany, Romain Canu-Blot, Samuel Wyler, Aurélie Van den Neucker

Engineering tutor: Günter Kargl Science tutor: Elise Wright Knutsen

Trust the process!

Thank you!

Ream RED Stimmer School Alpbach 2024

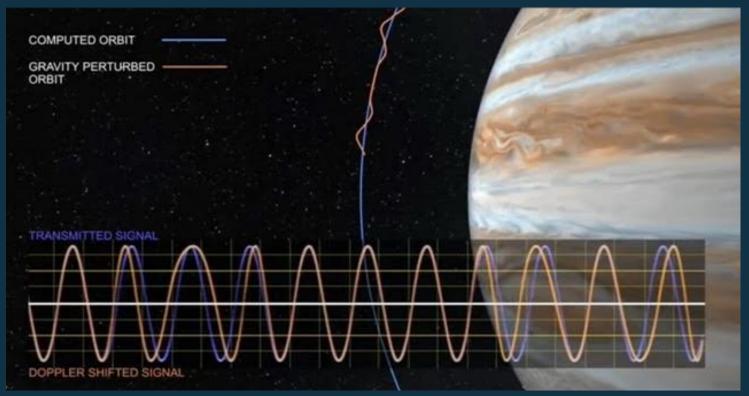

Backup Slides

$\bullet \bullet \bullet$

but wait, there is more...

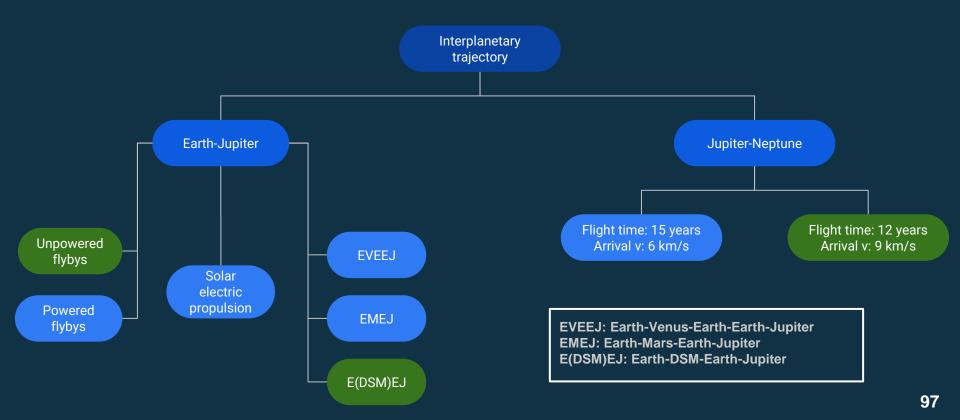
Why did we not bring more instruments?

- Core science objectives can be addressed with chosen instruments
- Very specific, almost single use instruments
- Neptune is 4x further away from the sun than Jupiter
 - \circ lots of constraints as
 - mass
 - power
 - COM


What instruments did we decide against?

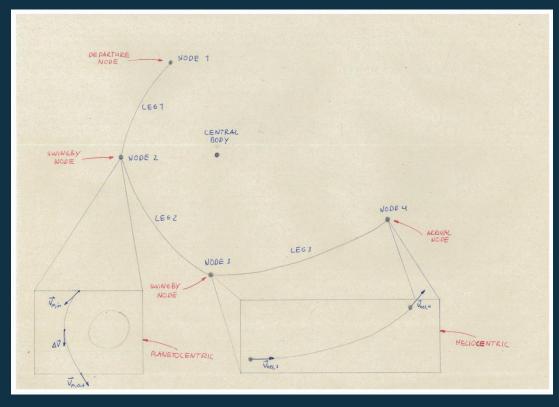
Science objective	Science sub-objective	Optical Camera (NAC-WAC)	UV spectrometer	Vis-IR spectrometer	Laser Altimeter	Magnetometer	In situ particle enviornment package (high energies)	Mass Spectrometer with pressure gauge	Radio science experiment	Thermal sounder (sub-milimeter wave)	lce penetrating radar	Radio and plasma wave instrument
	1.1 (interior structure)											
Origin&evolution of	1.2 (atmosphere)											
Neptune	1.3 (magnetic environement)											
	2.1 (surface properties)											
	2.2 (atmosphere)											
Origin&evolution of Triton	2.3 (interaction Neptune-Triton)											
	3.1 (internal structure)											
Habitability of Triton	3.2 (mechanisme of plumes)											

Why don't we have a probe?

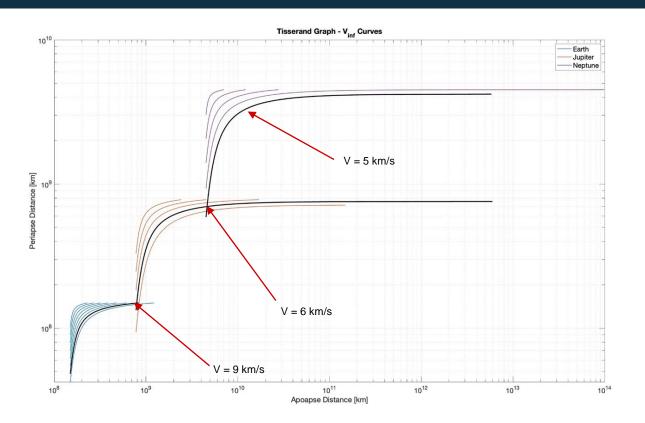

- Trade-off between science at Triton or deeper focus on Neptune
 - Triton orbit <u>or</u> Neptune probe

- Focus on different/more diverse science objective
 - more fundamental, long term, not specifically focused on Neptune's atmosphere

Trajectory Tradespace Overview

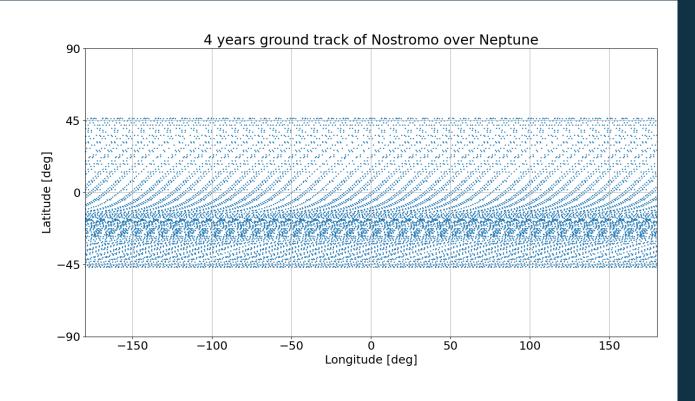


Methodology

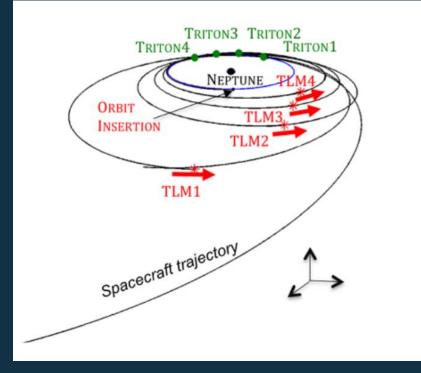

- Interplanetary transfer modeled as multi-lambert arc trajectory.
- Science orbits:
 - Two-body-problem (2bp) for Neptune
 - Perturbed 2bp for Triton
- Design space:
 - $\circ \quad \text{ departure time} \quad$
 - hyperbolic injection velocity
 - time for each swingby nodes
 - Deep space maneuver (DSM) location (if considered)

• Constraints

- maximum initial C3
- minimum periapsis for gravity assist (GA)
- Arrival declination angle at Neptune
- Global heuristic search



Launch window preliminary analysis

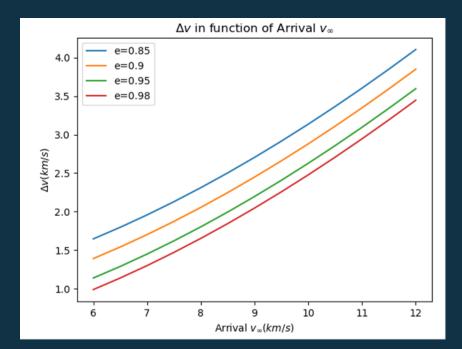


99

Ground track on Neptune

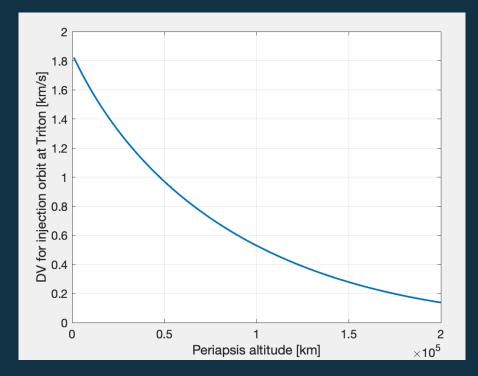
Neptune to Triton transfer

Credit: Campagnola, Stefano & Boutonnet, Arnaud & Schoenmaekers, Johannes & Grebow, Daniel & Petropoulos, Anastassios & Russell, Ryan. (2012). Tisserand-Leveraging Transfers.


Insertion Trajectory Design - Neptune Insertion

Insertion Orbit:

- => Objective: Minimize insertion cost
 - High eccentricity
 - Low periapsis altitude


Final selection:

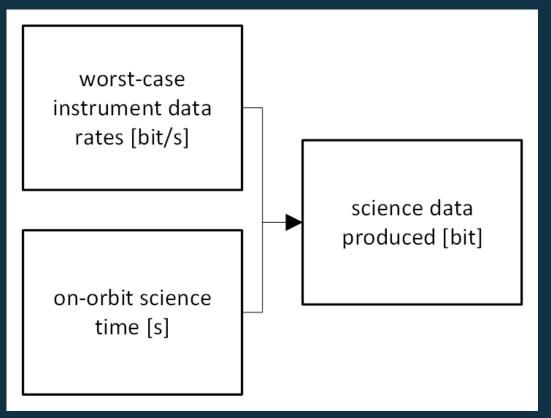
- Eccentricity = 0.98
- Periapsis altitude = 1000 km

Insertion Trajectory Design - Triton Insertion

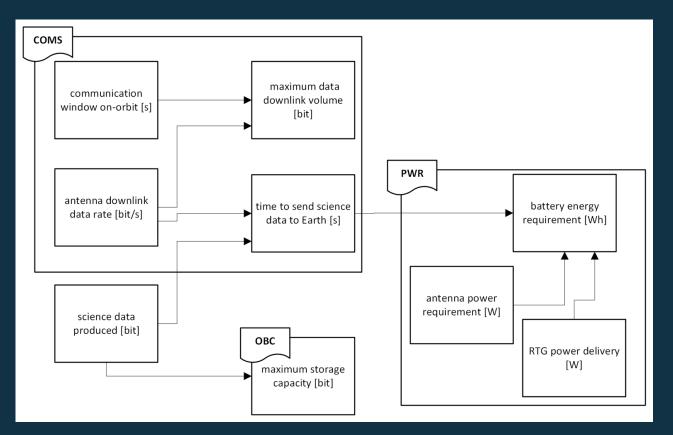
- Cost from science orbit would be very high.
- It can be reduced by increasing the periapsis altitude of the science orbit.

On-orbit scheduling

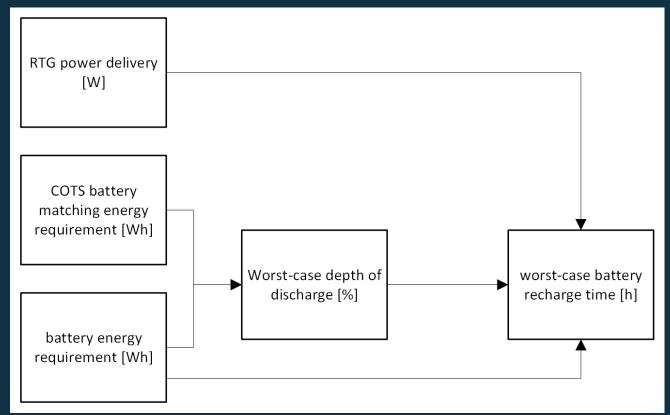
• Driving factors:


- Science data production
- Limited power source (rechargeable batteries in addition to RTGs)
- Limited communication windows
- Sizing for the worst case

Power source selection: battery sizing


- RTGs not sufficient to cover power-intensive science & downlink power demand
- Selection of COTS SAFT VL51 ES Li-Ion battery with
 - 9300 Wh nameplate energy (~8700 Wh after ~25 years)
 - 75-cell stack (~81 kg mass) sufficient to cover
 ~270 W power draw in downlink mode
 - Worst-case depth-of-discharge: 61% on Neptune orbit
 - Determines ~24 h recharge time of battery

Science data production



Memory & power sizing

107

Battery sizing

On-orbit scheduling

• Driving factors:

- Science data production
- Limited power source (rechargeable batteries in addition to RTGs)
- Limited communication windows
- Sizing for the worst case

Risk Assessment Instruments

- Due to an extended duration of the space mission, instruments may be at an increased risk of failure.
 e.g. Radiation damage, Mechanical damage, MMOD damage, Power
 - degradation.
- The extended delay before the launch may result in the technology used to design the spacecraft to be dated.
- The risk of failure of the mirror pointing mechanism of the spectrometer need to be taken into account.

Instrumentation

Instrument	Spec #1	Spec #2
Optical Camera	WAC spatial resolution of Neptune: (0.473 - 163.698) km	WAC/NAC focal length: 15 / 1500 mm
	NAC spatial resolution of Triton: (0.9 - 4.7) m	pixel size: 7.1 μm
Laser Altimeter	Measurement frequency: 10 Hz	
UV Spectrometer	spectral range: (68 - 210) nm spectral resolution: 0.6 nm	spatial resolution: 350 µrad/pixel
VIS - IR spectrometer	spectral range: (0.5 - 5.55) μm spectral resolution: 0.6 nm [Vis-NIR], 5 nm [IR]	spatial resolution: 180 µrad/pixel
Mass Spectrometer + Pressure Gauge	mass range of detected neutrals and ions: (1 - 300) amu	mass resolution M/ Δ M = min. 500 amu
Magnetometer	time resolution: 1 s	accuracy: 100 pT
Radio Science instrument	accuracy: Δv=10μm/s	uses ultrastable oscillator
In-situ particle environment package	Measured particles: electron, ions Energetic Neutral Atoms (ENAs)	Electron energy range: 1 eV - 50 keV Ion energy range: 1 eV - 41 keV