SIREN Saturn atmosphere and Investigation of Rings and ENceladus

TEAM YELLOW

C. Cencia M. Dannenmann A. Dunne V. Engesæt S. Esparis Matanza D. Grabowski C. Libert F. Martin A. Mastropietro

D. McCloskey M. Pinceloup V. Saz Ulibarrena R. Rianço-Silva R. Steinhöfler R. Wolfs

> O. Dhuicque D. Fischer

TABLE OF CONTENTS

Measurements

02

and Instruments

Science Case 01 and Objectives

04 Mission Segments

• × • • • + × × *

* * * * * + * * *

×

05 Programmatics

• • • + • • × 03 Mission Design

$\mathbf{2} \cdot \mathbf{2} \cdot$

× × + + • +

Science Case and Objectives

3

SCIENCE CASE & OBJECTIVES

Saturnian System Exploration

First probe to encounter Saturn

Pioneer 11 (1979)

Voyager 2 (1981) -

Continued atmosphere characterizations

BACKGROUND

Voyager 1 (1980)

Titan Flyby Saturn Atmosphere

Cassini-Huygens (2004-2017)

> Titan probe Ring transit

What do we know about Saturn's atmosphere?

Dynamic environment

Extreme weather: Solar radiation and internal heat

Chemistry should reflect interior composition and planetary formation

BACKGROUND

Open Questions

- Abundance of volatile species, nobles gases and isotopic ratios
- Cloud vertical distribution
- Moist movement
- Interior Structure and Equation of State

A natural laboratory for Giant Planet Formation, Atmospheric Volatile Distribution and Extreme Atmospheric Physics

What do we know about Saturn's Rings Environment?

Moon-forming disk around exoplanet PDS 70c

• Saturn's rings

- Instabilities and collisions by gravity waves
- µm-km sized rocky/icy objects
- Plasma environment
 - Source Enceladus: E-ring
 - Charged particles interact with
 rings and Saturn's atmosphere

BACKGROUND

Open Questions

- Ring dynamics and lifetime
- Detailed gravity-plasma-radiation interaction
- Meter-size barrier problem in planetary formation

A natural laboratory for Gravity, Radiation and Plasma interactions in a protoplanetary disks

What do we know about Enceladus?

- Global liquid subsurface ocean
- Moderate salinity and pH 9-12
- Continuous water plume activity
- Evidence for hydrothermal activity
- Requirements for life as we know it

Enceladus

BACKGROUND

Open Questions

- Unambiguous plume chemical composition
- Ocean's oxidation state
- Ice shell structure
- Surface composition
- Complex organics: Geo-/Biosignatures

A natural laboratory for Icy Moon Subsurface Ocean Geochemistry and Habitability

SCIENCE CASE & OBJECTIVES

7

Science Case Saturn atmosphere and Investigation of Rings and ENceladus

BACKGROUND

Mission Goals

G1: Study Saturn's formation and evolution reflected in its atmospheric composition

G2: Study the Saturnian ring and moon formation and evolution as a proxy for accretion processes

G3 - Study what chemical processes shape Enceladus' potentially habitable subsurface and surface environment

SCIENCE CASE & OBJECTIVES

MISSION GOALS

G1: Study Saturn's formation and evolution reflected in its atmospheric composition

G1S1 - What is Saturn's tropospheric volatile composition and vertical profile?

- In-situ vertical profiles of volatile and noble gas species
- In-situ vertical profiles of cloud structure and weather
 - From 0.5 bar to 20 bar (bottom of the H_2O cloud layer)

Mission	Vertical Profile	He fraction	+ CH ₄	H ₂ O, H ₂ S, NH ₃ , Ne, Ar, Kr, Xe
Cassini	Unknown	0.11 - 0.16	450 ppm	Unknown
SIREN	0.5 km vertical resolution	Uncertainty < 100 ppm	Uncertainties < 1 ppm	

MISSION GOALS

Model of Saturn's clouds structure

G1: Study Saturn's formation and evolution reflected in its atmospheric composition

G1S2 - What is the structure of Saturn's atmosphere?

- Gravity field and ionospheric science
- Context for in situ measurements: Correlating Ground Truth with Remote Sensing
- Monitoring temporal variability of weather layer
 - Imaging Saturn across distinct wavelengths (distinct atmospheric depths)

	+ Mission +	Spectral Resolution
	Cassini in NIR	R ~ 100
ŧ	SIREN in NIR	R > 1000

MISSION GOALS

Saturn's Great White Storm

G2: Study the Saturnian ring and moon formation and evolution as a proxy for accretion processes

G2S1 - What are the processes behind small bodies formation within Saturn's rings?

- Address *Meter-size Barrier problem* by studying shepherd moons & ring system
 - Perform statistical survey of meter-sized ring material

× Mission	B ring	A ring
+ Cassini	- + 360 m/px	330 m/px
SIREN	≤ 10 n	n/px

B ring at 360 meters per pixel from Cassini

G2: Study the Saturnian ring and moon formation and evolution as a proxy for accretion processes

G2S2 - What are the interactions of (charged) dust and particles from Enceladus within the Saturnian magnetosphere and ring system?

- Constrain the formation and evolution of the planetary environment
 - Measure the plasma environment, the electric field and the magnetic field of the Saturnian System
- × Open Questions:
 - What are the plasma transport routes?
 - How does Enceladus' plume affect the plasma environment?

MISSION GOALS

- ⁺ SIREN's observations:
 - Energy, directions, density and fluxes of particles
 - Charged particles and dust

Saturn's Aurora

G3 – Study what chemical processes shape Enceladus' potentially habitable subsurface and surface environment

G3S1 - What is the structure and composition of the plume, including prebiotic chemistry, biosignatures, isotopic ratios and hydrothermal products?

- Biosignatures[×]
- Isotopic ratios and noble gas abundances
- Geothermometer measurements
 - Composition of ice grains at < 1 Da resolution and up to > 500 Da mass
 - Composition of gas phase at < 1 Da resolution and up to > 200 Da mass
 - Composition of gas phase from UV occultations and NIR emission (R > 1000)

MISSION GOALS

- Asymmetry of the plume
- Ice grain densities and size distribution

G3 – Study what chemical processes shape Enceladus' potentially habitable subsurface and surface environment

G3S2 - What is the structure and composition of Enceladus' surface on a global and local scale?

- Terrain features and ground elevation mapping
- Surface chemical composition characterization
- Ice grains cohesiveness measurement for future landers
- Geomorphological survey
- Surface mapping at high resolution
 - CASSINI: 50 m/px
 - SIREN: 6 m/px

3.6 µm water ice reflectance map in Enceladus' south pole

G3 – Study what chemical processes shape Enceladus' potentially habitable subsurface and surface environment

G3S3 - How does Enceladus sustain a global liquid ocean?

- Cassini's observations indicates a global ocean
- Numerical models indicate insufficient tidal heating
- Measurement of tidal deformation
- Surface features indicating subsurface ocean (tilted blocks)
- Surface temperature mapping
- Measuring Ice shell thickness and structure
- Compositional differences of ice grains from individual jets

MISSION GOALS

A model of Enceladus' subsurface

Measurements and Instruments

SCIENCE CASE & OBJECTIVES

MEASUREMENTS & INSTRUMENTS

Generic Science Payload

Orbiter

- UV-VIS Spectrometer
- NIR Spectrometer
- Thermal Infrared Spectrometer
- VIS Camera
- Ion and Neutral Mass Spectrometer
- Impact Ionization Mass Spectrometer

PAYLOAD

- Ice Penetrating Radar
- Laser Altimeter
- Radio Science Experiment
- Magnetometer

MEASUREMENTS & INSTRUMENTS

- Top-Hat Analyser
- Electric Field Antenna

Atmospheric Probe

- Mass Spectrometer
- Nephelometer
- Net Flux Radiometer
- Atmospheric Sensing Instrument
- Helium Abundance Detector

Saturn's Atmospheric Probe Instruments

Instrument	What for?	Science Drivers	Traceability	Heritage
Mass Spectrometer	Atmospheric composition	Resolution: Isotopic ratios, Sensitivity to 1 ppm level	+ + ×	NMS (Galileo)
Nephelometer	Cloud composition			NEP (Galileo)
Net Flux Radiometer		Vertical resolution: 0.5 km Altitude range: 0.5 to 20 bar	G1S1	NFR (Galileo)
Atmospheric Sensing Instrument	Weather	* * * *		HASI (Huygens)
Helium Abundance Detector	Origin +	Sensitivity to 100 ppm level	× •	HAD (Galileo)

PAYLOAD

Orbiter Optical Instruments

Instrument	What for?	Science Drivers	Traceability	Heritage	
UV-VIS Spectrometer	Saturn's atmosphere Enceladus' plume & surface	Spectral resolution R >1000	G1S2 G3S1 G3S2	UVIS (Cassini)	?
NIR Spectrometer		Spectral Resolution: R > 1000 Spatial Resolution in Enceladus: 5 m/pix		· VIRTIS (Rosetta)	•
Thermal Infrared Spectrometer	Saturn's atmosphere Enceladus' surface	Thermal Resolution: 0.1 K Spatial Resolution: <25km/px	G1S2 G3S2	OTES (OSIRIS-REx)	
VIS Camera	Saturn's atmosphere & rings Enceladus' plume & surface	Spatial resolution at Ring particles: 10m/px	G1S2 G2S1 G3S2 G3S3	JANUS (JUICE)	•

PAYLOAD

Orbiter Mass Spectrometers, Radar, Altimeter and Radio Science Instruments

Instrument	Instrument What for?		Traceability	Heritage
lon and Neutral Mass Spectrometer	Enceladus' plume	Resolution for isotopic ratios	G2S2 G3S1	NGIMS (MAVEN)
Impact Ionization Mass Spectrometer	Enceladus' plume and surface, Particle Flows	Resolution/Range for complex organics Orientation in flight direction	G2S2 G3S1 G3S2 G3S3	SUDA (Europa Clipper)
Ice Penetrating Radar	Enceladus' surface,	Penetration depth >18 km	G3S2 G3S3	RIME · (JUICE) ·
Laser Altimeter	Particle Flows	Spatial resolution of 5m/px for future lander	G3S2	GALA (JUICE)
Radio Science Experiment	Saturn and Enceladus gravity field	Precise position tracking	G1S2 G3S3	-3GM (JUICE)

PAYLOAD

MEASUREMENTS & INSTRUMENTS

Orbiter Plasma Instruments

Instrument	What for?	Science Drivers	Traceability	Heritage

motramone			naooabiirty	nontago	
Magnetometer	Magnetic field	Dust and plasma transport mechanisms	G2S2 G3S1	JMAG (JUICE)	
Top-Hat Analyser	Plasma field	Three-dimensional and energy ion distribution	0202	MIA (BepiColombo) 🗼	•
Electric Field Antenna	Electric field	Larger antennas to reach larger Debye length	+ G252+ ×	LP-PWI (JUICE)	×.

PAYLOAD

+ * + + * * * * *

× * * × _

+ + +

×

× × •

۲

Mission Design

+

15

× × * + × ×

+ • •

· · · · · · · ·

SCIENCE CASE & OBJECTIVES

>MEASUREMENTS & INSTRUMENTS >

MISSION DESIGN

+ ×

23

KEY System Drivers

Orbit

- Saturn rings must be close enough to observe
- Far from the rings spacecraft protection
- Planetary protection

Power generation

- Solar intensity ~ 100 times less than at Earth
- Management of high power needs via RTGs

PHASES

26

Science Operations

Decommissioning

Interplanetary

Transfer

BACKGROUND

Interplanetary Transfer Solar Electric Propulsion (SEP)

- NASA Evolutionary Xenon Thruster
- Heritage missions using SEP
- Proposed transfer orbit avoids interior Solar System (less radiation/heat)
- Launch windows annually

LEOP +

Commissioning

••

28

Mission Phases - Science Operations

SCIENCE OPERATIONS

MISSION DESIGN

Mission Phases - Science Operations

LEOP + Commissioning

MISSION DESIGN

Interplanetary Transfer

PHASES

Science Operations

Phase X Additional Objectives

Decommissioning

Additional Objectives

Extended ring analysis duration

Casual encounters with other Saturnian moons

- Mapping
- Composition analysis

Decommissioning

<u>Planetary Protection</u>: Spacecraft Disposal Restrictions

- Chance of impact at LoC
- Avoid impact with:
 - Moons
 - Ring systems

Mission Segments

>MEASUREMENTS & INSTRUMENTS

> MISSION DESIGN

MISSION SEGMENTS

SCIENCE CASE & OBJECTIVES

×35

+ * * * * * * * * *

Configuration

MISSION SEGMENTS

SPACE SEGMENT

\$0
Orbiter Probe Transfer Configuration

37

Module

MISSION SEGMENTS

SPACE SEGMENT

TRANSFER MODULE

- Ionic Propulsion (DART)
 o Power = 26.7 kW
- Folding solar panels (LUCY)
 Area = 83 m²
- Minimal subsystems jettisoned

MISSION SEGMENTS

ARGO

<u>Atmospheric Research and Gas composition Observer</u>

40

MISSION SEGMENTS

Probe

ARGO - Requirements

Scientific requirements

- Measure Saturn's atmosphere:
 - Resolution: every 500 m
 - Between altitudes from ~0.5 bar till 20 bar
- Key design drivers:
 - Dive into Saturn's atmosphere
 - Survive to 20 bar
 - Relay data to orbiter

ARGO - Design

42

- Key parts:
 - Pressure vessel
 - Heat shield (HEEET)
 - Link: UHF direct to orbiter
 - Parachutes
- Total mass = 420 kg
 - Payload: 24.5 kg (~6% of total mass)
 - TPS mass: 210 kg: (~50%)
- Data budget = 3 MB

Orbiter

MISSION SEGMENTS

SPACE SEGMENT

[•]Primary source

Am-241 RTG 6 x 50 W modules 300 W (BOL) 293 (EOL)

Secondary source Li-ion batteries Energy = 12.5 kWh

Power

SPACE SEGMENT

Orbiter power budget (W)

■ Payload ■ AOCS ■ Comunications ■ Command ■ Propulsion ■ Power ■ Thermal control ■ Margin

MISSION SEGMENTS

Thermal Control Subsystem

Attitude Determination & Control Subsystem

- 4× Reaction Wheels
- 12× ACS Thrusters (~20N)

•	Sensors	Qty	Typical Performance Range	×
	Sun sensors	6	0.005 - 3 [deg]	
	Star Trackers	2	0.0003 - 0.01 [deg]	
	IMU	2	0.003 - 1 [deg/hr]	•

SPACE SEGMENT

Actuators

Sensors

Data Budget

Mission Phase	Data Gathered 10% Margin	Lossless Compression Rate	Memory Budget	
Atmospheric Probe Total Phase 1	3.02 Mbit	1.25	10 MB	
Saturn + Enceladus Per Orbit in Phase 2	5.01 Gbit	- 16	1 2 TB	
Saturn + Rings Per Orbit in Phase 3	5.03 Gbit		•	

SPACE SEGMENT

MISSION SEGMENTS

Link Budget

Fixed High Gain Antenna \rightarrow 2.5 m

- UHF-Band \uparrow Data rate \rightarrow 1 16 kbps
- X-Band $\uparrow \downarrow$ Data rate \rightarrow 8.6 32.3 kbps
- Ka-Band $\uparrow \downarrow$ Data rate \rightarrow 80.2 421.3 kbps

Movable Mid Gain Antenna $\rightarrow 0.5$ m

• X-Band $\uparrow\downarrow$ Data rate \rightarrow 0.42 - 1.06 kbps

Space Segment Summary

SPACE SEGMENT

Orhiter Subsystem Power	Power Budget in Phases [W]			
	Enceladus	Orbit	Rings	
Payload	+ 302 *	0	330 ·	
AOCS	96	39	96	
Communications	0	0 ×	• 0 × ·	
Command	53	53	53	
Propulsion	0 ×	11	. 0	
Power Conditioning and Distribution Unit (PCDU)	× 95 +	95	95	
Thermal Control	38	38	38 -	
System Margin (20%)	117	47	122	
Total	699	218 [×]	[°] 732	

Subsystem margin - 5%

Power

MISSION SEGMENTS

Space Segment Summary

SPACE SEGMENT

Mass Budget	Basic Mass [kg]	Margin	Total Mass [kg]
ARGO Probe Mass	420	20%	504
Transfer Module Dry Mass	1009,30	20%	1211,16
Propellant Mass (Electric)	497,80	10%	547,58
Transfer Module Wet Mass	1758,74	n/a	
Orbiter Dry Mass	1847,05	20%	2216,46 × 🔒
Propellant Mass (Bipropellant)	2129,38	10%	2342,32
Orbiter Wet Mass	4558,78	n/a	
Overall Spacecraft Dry Mass	3931,62	n/a	
Launch Mass	+ 6821,53 _×		

Mean component margin - 14 % Mean subsystem margin - 17 %

Mass

Launch Segment

Mass is budgeted for Earth Escape

Launcher: Ariane 64 Launch Site: Kourou, French Guiana Launch Windows: ~1 per year

Launchers	Infinite Velocity [m/s]	Mass limit [kg]	
Ariane 64	2500	6900	
Ariane 64 Block II	3000	9000	

MISSION SEGMENTS

Ground Segment

ESTRACK Deep Space Antennae (DSA):

- DSA 1 New Norcia (Australia)
- DSA 2 Cebreros (Spain)
- DSA 3 Malargüe (Argentina) •
- DSA 4 Perth (Australia) soon \bullet

Note: NASA's DSN can be used as support or backup

Operations:

- Science Data Downlink $\rightarrow \sim 19h$ / week
 - Routine Operations $\rightarrow \sim 3h / day$ 0

MISSION SEGMENTS

54

× + ×

Programmatics

SCIENCE CASE & OBJECTIVES > MEASUREMENTS & INSTRUMENTS > MISSION DESIGN

55

PROGRAMMATICS

Synergies

• Proposed Mission NASA Enceladus OrbiLander

SYNERGIES

Planetary Science and Astrobiology Decadal Survey 2023-2032

- Planned Missions
 - Saturn
 - NASA Dragonfly to Titan
 - Jupiter
 - Juice (ongoing)
 - Europa Clipper.

NASA DragonFly

ESA's Voyage 2050 L4 Missions

- Science Questions related to Habitability
- Enceladus

۲

- Contact between ocean and rocky core
 - Dust environment
- Hydrothermal vents
- Mission Profile Priority
 - Saturn orbiter + plume sampling

Technology Development

Current Components

- Existing Components: Adapted from previous missions
- Current TRLs: TRL 4 5
 - Expected to reach TRL 7 8 by mission development through planned advancements

Critical Elements:

- RTGs
 - Americium RTGs used as a safer, more responsible source of nuclear energy for deep space missions
- Instruments requiring development from their heritage references
 - Spectrometers: UV-VIS & NIR
 - Impact Ionization Mass Spectrometer

TECHNOLOGY

• Ice Penetrating Radar

Mission Schedule

× × × × × ×

+ * + * + + . _ * * <u>- *</u>

Cost Analysis

ltem Cost [M€] **Industrial Cost** 1200 **Project Team ESA** 300 Mission Operations (MOC) 180 Science Operations (SOC) Launch 150 Contingency 252 Total 2082 +10% Inflation 2290

COSTING

* + * * * * * * * * * * * * *

PROGRAMMATICS

			Risk Matrix	×			
	.5	R-01 RTG environmental damage R-16 Instruments development not ready	R-05 Spacecraft impact on Enceladus				
ty [*]	4	R-09 Launcher unavailable R-12 Probe does not turn on R-13 Failure of drogue chute deployment	R-03 RTG technology not mature enough R-08 Electronics failure due to radiation R-15 Deployment of Solar Array not complete				
Severi	3	R-14 Failure of main parachute deployment	R-04 Negative dV budget R-11 Long-lead items availability	R-02 Radioisotope acquisition R-17 Spacecraft AOCS failure			
	2	R-06 Spacecraft is influenced by Enceladus plume during flyby R-10 Micrometeoroid strike	R-07 Deployment mechanism failure			+	
	1			× +			
+	×	1 × · · · ·	² Likelihood	3	4 +	5	•
PROGR	RAMN	NATICS	RISKS				× *

×60

Descoping

Priority	1	2	3	4
Instrument	Top Hat Analyzer Electric Field Probe		UV-VIS Spectrometer	Atmospheric Probe
Consequence	Energy, directior fluxes of plasm Saturn's environm charact	ns, density and a particles on ent are less well- erized	Incomplete Enceladus Plume chemical characterization	Loss of in-situ measurements of Saturn's atmosphere
Action	Remove Instrument			Remove

Outreach

Schools and universities: Workshops, colouring books for children, involvement in data analysis with supporting scientists (early access to data)

General public: Social media presence, websites, live streaming, public science events (exoplanet of the week), VR platform

Science community: Dedicated events for early-career scientists

OUTREACH

PROGRAMMATICS

SIREN Saturn atmosphere and Investigation of Rings and ENceladus

Transfer Vehicle Orbiter 12 instruments

ARGO Atmospheric Research and Gas composition Observer

Atmospheric Probe 5 instruments

Conclusion

Mission Key Facts 14 years 2290 M€ 17 Instruments

Saturn atmosphere and Investigation of Rings and ENceladus

<u>TEAM YELLOW</u>

Bibliography

Ando, H. et al. (2018). Local time dependence of the thermal structure in the Venusian equatorial upper atmosphere: Comparison of Akatsuki radio occultation measurements and GCM results. Journal of Geophysical Research: Planets, 123(9), 2270-2280

Arianespace. (2021). Ariane 6 user's manual, issue 2 rev 0.

Birnstiel, et al. (2011). Growth and Transport of Dust Grains-How to Cross the Metre Size Barrier. In Workshop on Formation of the First Solids in the Solar System.

Buratti, et al. (2019). Close Cassini flybys of Saturn's ring moons pan, daphnis, atlas, pandora, and epimetheus. Science, 364(6445).

Čadek, et al. (2019). Long-term stability of Enceladus' uneven ice shell. *Icarus*, 319, 476-484.

Choblet, et al. (2017). Powering prolonged hydrothermal activity inside Enceladus. *Nature Astronomy*, *1*(12), 841-847.

Crow-Willard et al. (2015). Structural mapping of Enceladus and implications for formation of tectonized regions. *Journal of Geophysical Research: Planets*, 120(5), 928-950.

Deschamps S., Rouchit P. (2023). Juice: Thermal Control Interface Document, Airbus.

ESA. (2010a). Planetary Entry Probes (PEP) for Venus and the Outer Planets. CDF Assessment study.

ESA. (2019a). EPIG CDF Study Summary Report. Report: ESA-SCI-F-ESTEC-RP-2019-001.

ESA. (2019b). CDF Study Report_Ice Giants_A Mission to the Ice Giants – Neptune and Uranus. Report: CDF-187(C).

Garcia-Melendo, (2011), Saturn's zonal wind profile in 2004-2009 from Cassini ISS images and its long-term variability, *Icarus*, 215, 1, 62–74.

Gibbs, R. (1996). Cassini spacecraft design. Cassini/Huygens: A Mission to the Saturnian Systems.

Glein, et al. (2015). The pH of Enceladus' ocean. Geochimica et Cosmochimica Acta, 162, 202-219.

Gombosi, T. I., and A. P. Ingersoll, (2010), Saturn: atmosphere, ionosphere, and magnetosphere, *Science*, 327, 5972,

Hanel, R. et al (2003), Exploration of the Solar System by Infrared Remote Sensing, Cambridge University Press, Cambridge, UK.

Holmberg. (2015). A study of the structure and dynamics of Saturn's inner plasma disk. Doctoral dissertation.

Hsu et al. (2015). Ongoing hydrothermal activities within Enceladus. *Nature*, 519(7542), 207-210.

Irwin. (2009). Giant Planets of Our Solar System, Springer Berlin, Heidelberg, Germany

Khawaja, et al. (2019). Low-mass nitrogen-, oxygen-bearing, and aromatic compounds in Enceladean ice grains. *Monthly Notices of the Royal Astronomical Society*, 489(4), 5231-5243.

Machado, P., et al, (2017). Venus cloud-tracked and Doppler velocimetry winds from. CFHT/ESPaDOnS and Venus Express/VIRTIS in April 2014. *Icarus*, 285, 8-26

Markley F. L., Crassidis J. L. (2014). Fundamentals of Spacecraft Attitude Determination and Control, Space Technology Library - Springer.

Matson, et al. (2002). The Cassini/Huygens mission to the Saturnian system. Science Reviews, 104(1), 1-58.

Postberg, et al. (2011). A salt-water reservoir as the source of a compositionally stratific plume on Enceladus. *Nature*, 474(7353), 620-622.

Bibliography

Peter et al. (2024). Detection of HCN and diverse redox chemistry in the plume of Acceladus. *Nature Astronomy*, 8(2), 164-173.

Postberg, et al. (2009). Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature, 459(7250), 1098-1101

Postberg et al. (2018a). Macromolecular organic compounds from the depths of Enceladus. *Nature*, 558(7711), 564-568.

Postberg, F. et al. (2018b). Plume and Surface Composition of Enceladus, In: Enceladus and the Icy Moons of Saturn, University of Arizona Press, pp. 129-162.

Porco, et al. (2006). Cassini observes the active south pole of Enceladus. *science*, 311(5766), 1393-1401.

Ray, et al. (2021). Oxidation processes diversify the metabolic menu on Enceladus. *Icarus*, 364, 114248.

Robinson et al. (2023). Ethene-ethanol ratios as potential indicators of hydrothermal activity at Enceladus, Europa, and other icy ocean worlds, *Icarus*, 406, 115765

Rocchi, A. and Khan, M. (2023). Solar electric propulsion boosted transfers to the outer solar system. *AAS*, 23-263.

Sánchez-Lavega (2011). Introduction to Planetary Atmospheres, CRC Press, Boca Raton, Florida, USA

Shastry et al. (2017). Current Status of NASA's NEXT-C Ion Propulsion System Development Project, 68th International Astronautical Congress, Adelaide, Australia

Spencer J. et al. (2010). Mission Concept Study: Planetary Science Decadal Survey Enceladus Orbiter, NASA.

Thomas et al. (2016). Enceladus's measured physical libration requires a global subsurface ocean. *Icarus*, *264*, 37-47.

Villanueva et al (2023), JWST molecular mapping and characterization of Enceladus' water plume feeding its torus, *Nature Astronomy*, 7, 1056–1062

Waite et al.. (2006). Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. *science*, *311*(5766), 1419-1422.

Waite et al. (2017). Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. *Science*, *356*(6334), 155-159.

Wertz J.R. et al. (2003). Space Mission Analysis and Design, 3rd ed., Space technology Library.

* * * * * + + + *

Appendix

Probe instruments

Instruments - Google Sheets

68

What do we know about Enceladus?

- Warm interior with liquid ocean of pH 9 -12
- Ice particles and gas continuously plume ejected at South pole
- Requirements for life as we know it on Earth

Gas (INMS))	Solids (CDA)		
H ₂ O 96 - 99 %		NaCl	0.5 - 2 M	
CO ₂	0.3 - 0.8 %	NaCO3	0.01 – 0.1 M	
CH ₄	0.1 - 0.3 %	KCI	0.5*10 ⁻³ – 2*10 ⁻³ M	
NH ₃	0.4 - 1.3 %	Na3PO4	1*10 ⁻³ – 20*10 ⁻³ M	
H ₂	0.4 - 1.4 %	SiO2	~ 0.001	
C ₂ , C ₃ ~ 0.1 % organics		Simple and complex organics (unidentified)		

 Cassini/INMS mass degeneracy, low spectral resolution in Cassini/UVIS and VIMS prevent complete plume chemical characterization.

Methane Water Vapo

20

Mass (in Daltons)

40

- Plumes allow probing Ocean World Interiors, allowing search for <u>Geosignatures</u> and <u>Biosignatures</u> (given enough spectral resolution).
- Extent of the subsurface Ocean, Ice Shell structure and radiolytic chemistry poorly constrained.

A natural laboratory for Icy Moon Subsurface Ocean Geochemistry and Habitability.

System Engineering Plan

System Engineering Plan - Example

Functional

Requirements

G3S1 What is the structure and composition of Enceladus' plume?

For Enceladus' plume ejected at its South pole the mission shall measure:

1. Composition of ice grains

What?

- 2. Composition of charged and neutral gaseous
- 3. Spatial differences in the plume composition (solids, gas).
- 4. Reflectance at UV-VIS-NIR wavelengths [100 nm to 5 μm] with R > 1000.
- 5. Density distribution of dust particles.
- 6. Dust particles size distribution.
- 7. Plume's asymmetry and migration.

During all flybys at Enceladus

System Engineering Plan - Example

G3S1 What is the structure and composition of Enceladus' plume?

How well?

Up to at least 500 Da.

Down to ppm levels.

Resolution of 1 Da.

Why?

Biosignatures: Amino acids, fatty acids Hydrothermal products: Ethane/Ethanol

Salinity, low abundances (S, Fe), Oxidation state, pH

Isotopic ratios: 13C/C12, 15N/14N, 18O/16O, 17O/16O
System Engineering Plan - Example

G3S1 What is the structure and composition of Enceladus' plume?

Impact ionization mass spectrometer

- Composition of single ice grains
- Measuring the mass-to-charge ratio of molecules present in a sample.
- Ionization by impact, TOF of charged fragments
- Sensitive to cations and anions
- Mass resolution: 150 300 m/Dm
- Maximum recorded mass: ~500 u

System Engineering Plan - Example

G3S1 What is the structure and composition of Enceladus' plume?

Impact ionization mass spectrometer

 Fragmentation and detection of compounds depend on impact speed: Optimal detection of certain compounds can be simulated

×74

System Engineering Plan - Example

Observation Strategy Requirements

G3S1 What is the structure and composition of Enceladus' plume?

The mission shall:

- 1. Measure the ice grains ejected at Enceladus south pole at an impact velocity of 4-6 km/s.
- 2. Measure the ice grains ejected at Enceladus south pole at altitudes of 25, 50, 100, 500, and 1000 km from the surface.
- 3. Pass Enceladus' plume during at least 3 flybys per altitude.

Saturn's Atmospheric Probe Instruments

Instrument	What for?	Mass (Kg)	Power (W)	Dimensions (cm x cm x cm)	Data Rate (kbps)	Operational Temperature (K)	Heritage	
Mass Spectrometer	Atmospheric composition	13.2	+ 25	18.5 x 18.5 x 45.2	32	240 - 260	NMS (Galileo) •	× .
Nephelometer	Clouds composition	2.76	3.6	13 x 19.5 x 16	10	240 - 260	NEP (Galileo)	•
Net Flux Radiometer	Clouds composition	2.88	7.56	11 × 14 × 28	60	240 - 260	NFR ⊧(Galileơ) •	
Atmospheric Sensing Instrument	Weather	+ 3 +	12	20 x 20 x 20	2	240 - 260	HASI (Huygens)	
Helium Abundance Detector	Origin	1.4	0.9	+ 10 x 10 x 10	4	240 - 260	● HAD ● (Galileo)	

Orbiter Optical Instruments

Instrument	What for?	Mass (Kg)	Power (W)	Dimensions (cm x cm x cm)	Data Rate (kbps)	Operational Temperature (K)	Heritage	
UV-VIS Spectrometer	Saturn's atmosphere Enceladus' plume & surface	14.46	11.83	48 x 30 x 23	32.096	150 - 190	UVIS (Cassini) •	
NIR Spectrometer	Saturn's atmosphere Enceladus' plume & surface	33	50	91,2 x 76,5 x 35,6	TBD	65 - 90 (IR) 150 - 190 (VIS)	VIRTIS (Rosetta & Venus Express)	•
Thermal Infrared Spectrometer	Saturn's atmosphere Enceladus' surface	6.27	10.8	37.5 x 28.9 x 52.2	5.7	+ TBD +	OTES (OSIRIS-REx)	•
VIS Camera	Saturn's atmosphere & rings Enceladus' plume & surface	29	43.2	67.2 x 60.2 x 31.5	10000 TBC	280.15 - 290.15	JANUS (JUIÇE)	•

Orbiter Mass Spectrometers

Instrument	What for?	Mass (Kg)	Power (W)	Dimensions (cm x cm x cm)	Data Rate (kbps)	Operational Temperature (K)	Heritage	×
lon and Neutral Mass Spectrometer	Saturn's rings Enceladus' plume	8.8	22.6	TBD	TBD	248.15 - 298.15	NGIMS (MAVEN)	•
Impact Ionization Mass Spectrometer	Saturn's rings Enceladus' plume and surface	16	58.7	26.8 x 25.0 x 17.1	TBD	TBD	SUDA (Europa Clipper)	

Orbiter Radar, Altimeter and Radio Science Instruments

Instrument	What for?	Mass (Kg)	Power (W)	Dimensions (cm x cm x cm)	Data Rate (kbps)	Operational Temperature (K)	Heritage
Ice Penetrating Radar	Enceladus' surface	16.8	30.1	25.6 x 18 x 14	TBD	TBD	RIME (JUICE)
Laser Altimeter	Enceladus' surface	× 19.6	× 56.8	38 x 28 x 31.1	+ TBD +	TBD	GALA (JỤIỆE)
Radio Science Experiment	Saturn, rings and Enceladus orbits	7	46.5	23.6 x 20.8 x 15	TBD	253.15 - 323.15	3GM (JUICE) •

Orbiter Plasma Instruments

× Instrument	What for?	Mass (Kg)	Power (W)	Dimensions (cm x cm x cm)	Data Rate (kbps)	Operational Temperature (K)	Heritage
Magnetometer	Magnetic field	5.9 30 boom	• 11.1 ×	29.9 x 18.2 x 17.55 10m boom	TBD	x TBD	JMAG (JUICE)
Top-Hat Analyser	Plasma field	5.4	7.8	40 x 13 x 20	1.2	TBD	MIA (BepiColombo)
Electric Field + Antenna	Electric field	0.9 6.3 boom	5.4	10 x 10 x 10 2.5m boom	TBD •	TBD	LP-PWI (JUICE)

Instruments Traceability

Goals	Objectives	Functional Measurements	Part of the mission	Instrument	Requirements	Physical Instrument
		Measure molecular composition vertical abundance profiles on Saturn's atmosphere	ATM probe	Mass spectrometer	SR-20, SR-40, SR-50, SR-70, SR-80	NMS (Galileo)
	G1S1: What is Saturn's atmospheric volatile composition?	Measure cloud composition vertical abundances on Saturn's atmosphere	ATM Probe	Nephelometer/ Net Flux Radiometer	SR-30, SR-70, SR-80	NEP (Galileo) NRF (Galileo)
		The mission shall measure the temperature, pressure, winds speeds, He content, downward velocity (atmospherics sensing intruments)	ATM Probe	Atmospheric sensing instrument (miniaturised weather station)	SR-60, SR-70, SR-80	HASI (Huygens)
G1: Study Saturn's		The probe shall mesure the He content	ATM Probe	Helium abundance detector	SR-41	HAD (Galileo)
formation and evolution reflected in its atmospheric composition	G1S2: What is the structure of Saturn's atmosphere?	Observe Saturn's atmosphere in high spatial resolution allowing cloud tracking	Saturn orbiting	UV VIS spectrometer	SR-110	UVIS Cassini
		estimation of vertical profiles of the planetary atmosphere, tracking Temperature, Density and Static Stability/ Cloud Tracking measurements allow atmospheric dynamics studies by providing wind speed measurements at distinct latitudes and altitudes	Saturn-spacecraft -earth occultation (when the saturn atmosphere is between the sc and ground)	Radio tracking (Movable radio antenna)	SR-90, SR-100, SR-120	3GM (JUICE)
		Measure gravity	Saturn orbiting	Radio tracking (Movable radio antenna) + ultrastable oscillator	SR-120	3GM (JUICE)
	G2S1 - What are the processes behind small bodies formation within Saturn's rings?	Observe Saturn's ring in high spatial resolution	Close Rings flyby	VIS camera	SR-130, SR-140, SR-150, SR-160, SR-170, SR-180	JANUS (JUICE)
G2: Study the Saturnian ring and moon formation	G2S2 - What are the	Measure the Saturn environment magnetic field	Saturn orbiting	Magnetometer	SR-190, SR-200	JMAG (JUICE)
and evolution as a proxy for accretion processes	interactions of charged particles and (charged)	Measure the Saturn environment electric field	Saturn orbiting	Electric field antenna	SR-250, SR-260	LP-PWI (JUICE)
accretion processes	within the Saturnian magnetosphere and rings system?	Measure plasma density, energy (velocity), composition (particle size, type)	Saturn orbiting	Top Hat Analyser + Impact ionization Mass Spectometer + Ion and neutral mass spectrometer	SR-210, SR-220, SR-230, SR-270	MIA (BepiColombo) SUDA (Europa Clipper) NGIMS (MAVEN)

×81

Instruments Traceability

Goals	Objectives	Functional Measurements	Part of the mission	Instrument	Requirements	Physical Instrument
63 - Study what chemical processes shape Enceladus' potentially nabitable subsurface and surface environment	G3S1 - What is the structure and composition	Measure the composition and density of the solid particles of Enceladus plume	Enceladus Flyby	Impact Ionization Mass Spectrometer	SR-280, SR-290, SR-320, SR-550, SR-490, SR-500, SR-550	SUDA (Europa Clipper)
	prebiotic chemistry, biosignatures, isotopic ratios and hydrothermal products?	Measure composition of volatile fraction of Enceladus plume	Enceladus Flyby	lon and neutral mass spectrometer + magnetometer	SR-310, SR-550, SR-490, SR-500, SR-520, SR-530, SR-550	
		Measure composition, structure and migration of Enceladus plume	Enceladus Flyby	UV VIS spectrometer, NIR spectrometer	SR-300, SR-340, SR-490, SR-510, SR-520, SR-330	
	G3S2 - What is the structure and composition of Enceladus' surface on a global and local scale?	Measure the composition of Encelaudus surface material (reflectance + composition of ice grains ejected from the surface)	Enceladus Flyby	UV VIS spectrometer + Impact Ionization Mass Spectometer	SR-370, SR-380, SR-410, SR-411	SUDA (Europa Clipper)
		Measure the ice shield thickness, detect liquid pocket within the ice shield, level of water in the ice cracks, and map the terrain features, elevation, particle sizes, cohesiveness particles, and ground slopes of Encelauds' surface	Enceladus Flyby	Radar	SR-360, SR-390, SR-420, SR-450, SR-460, SR-470, SR-480	RIME (JUICE)
		Map the temperature variation of Encladus surface'	Enceladus Flyby	Infrared camera, NIR spectrometer	SR-350, SR-410	OTES (OSIRIS-REx) VIRTIS (Rosetta & Venus Express)
	G3S3 - Does Enceladus	Measure the extent of the subsurface liquid ocean	Enceladus Flyby	Radio tracking (Movable radio antenna) + ultrastable oscillator	SR-440	3GM (JUICE)
	ocean?	Measure compositional differences in ice grains ejected from individual jets at Encedalus	Enceladus LOW Flyby	Impact Ionization Mass Spectometer	SR-290, SR-540, SR-550	SUDA (Europa Clipper)

Power source trade-off study

•		Option 1	Option 2	Option 3	Option 4	Option 5	Option 6
		MMRTG	GPHS-RTG	Am-241 RTG	Solar Arrays	Fuel Cells	Hybrid
	Layout/Picture						
	Remarks	NASA developed Pu-238 Used on: Dragonfly, MSL, Perseverence	GE developed Pu-238 Used on : Cassini, Galileo, New Horizons	European developed Am-241 TRL 4 (bench tested)	Based on Juice solar cells but with 4X less solar intensity	Very early concepts in development for HERACLES lunar lander mission, flight heritage with NASA on STS and Apollo	Combination of small RTG (either MMRTG or Am-241 RTG) and solar arrays to reach required power numbers
Criteria	Weight (1-5)	í de la companya de l	_	Grade	(0-10)		
Mass	5	8	9	5	3	6	5
Performance	2	6	9	6	3	8	5
Longevity	3	4	4	8	7	5	8
Price	1	3	3	6	7	6	5
Acquisition	4	4	2	6	10	3	6
	Total	83	86	91	89	79	88
Specific p	oower	× 2.4	5.5	× 1.5 ⁺	0.9 - 1.3	? •	

Mission Phases

Delta V Budget	Maneuver	Delta v (m/s)	Delta v + 5% (m/s)	Delta v_cumul (m/s)	Delta mass (kg)	Mass (kg)	Mass consumed (kg)	Propellant
Launch	Launch	0	0	0	0	6,900	0	-
E-S transfer	Arc 1 Earth	939.00	985.95	985.95	0	6,744	156	Xenon
	Arc 2 Earth	1,150.00	1,207.50	2,193.45	0	6,558	342	Xenon
	Boost	900.00	945.00	3,138.45	0	6,416	484	Xenon
	TOTAL			3,138.45		6,416	484	
Transition phase	Propulsion separation	0.00	0.00	0.00	1000	5,416	1,000	Chemical
	Probe deployment	15.00	15.75	15.75	380	5,010	1,406	Chemical
	SOI	633.00	664.65	680.40	0	4,095	2,321	Chemical
	PRM	300.00	315.00	995.40	0	3,722	2,694	Chemical
Enceladus	Titan GA's	150.00	157.50	1,152.90	0	3,548	2,868	Chemical
observation	Enceladus South Pole i sweep	125.00	131.25	1,284.15	0	3,410	3,006	Chemical
	Enceladus South Pole resonance	50.00	52.50	1,336.65	0	3,356	3,060	Chemical
	Inclination change to Enc. N-Pole	5.00	5.25	1,341.90	0	3,351	3,065	Chemical
	Resonant orbit h_E = 50 km (N-pole)	25.00	26.25	1,368.15	0	3,324	3,092	Chemical
Ring study	Change to ring orbit	10.00	10.50	1,378.65	0	3,313	3,103	Chemical
	Ring orbit	700.00	735.00	2,113.65	0	2,651	3,765	Chemical
Decomission	Move into decomission orbit	0.00	0.00	2,113.65	0	2,651	3,765	Chemical
	Crash with Saturn	0.00	0.00	2,113.65	0	2,651	3,765	Chemical
	TOTAL			2.113.65	1380	2.651	3,765	

Mission Analysis: Resonant orbit

Resonance 0:E 1:2, T = 2.75 days, a = 3.78E+05 km, e = 0.37, v_rel = 2.95 km/s, r_a = 518472.82 km Resonance 0:E 1:3, T = 4.12 days, a = 4.96E+05 km, e = 0.52, v_rel = 4.06 km/s, r_a = 753383.97 km Resonance 0:E 1:4, T = 5.50 days, a = 6.01E+05 km, e = 0.60, v_rel = 4.66 km/s, r_a = 963060.71 km Resonance 0:E 1:5, T = 6.87 days, a = 6.97E+05 km, e = 0.66, v_rel = 5.04 km/s, r_a = 1155771.66 km Resonance 0:E 1:6, T = 8.25 days, a = 7.87E+05 km, e = 0.70, v_rel = 5.31 km/s, r_a = 1335958.91 km Resonance 0:E 1:7, T = 9.62 days, a = 8.72E+05 km, e = 0.73, v_rel = 5.51 km/s, r_a = 1506356.96 km Resonance 0:E 2:3, T = 2.06 days, a = 3.12E+05 km, e = 0.24, v_rel = 1.91 km/s, r_a = 386384.75 km

Mission Analysis: Ring study

Spacecraft - Modes

	LEOP + NECP + Interplanetary Transfer	Phase 1 SOI and Probe Science	Phase 2 Enceladus Science	Phase 3 Ring Science	+		
	 BOOT Stabilization Telecom Hibernation Burn 	 Pointing Telecom Safe Burn 	• × +	+	* +		
Safe Mo	ode	 On-board issue availability requ Power required 	 On-board issues with need of Ground Segment action -> link availability requested Power required to orient and communicate with the Earth 				
Decom	missioning	 Use as much as possible the spacecraft for science in the Satu system Planetary protection -> de orbiting on saturn atmosphere 					

Cost Analysis

Code	Item	Percent	Cost [M€]
#1	Industrial Cost • Orbiter • SEP • Probe • RTGs	~40-50% of total	1200 • 500 • 150 • 350 • 200
#2	Project Team ESA	15% of Industrial Cost	300
#3	Mission Operations (MOC) Science Operations (SOC)	15% of Industrial Cost	180
#4	Launch Launcher RTG factor 	Mission Class Ariane 64	150 • 130 • 20
#5	Contingency	15% (1+2+3)	252
	Total	Sum (1-5)	2082
	+10% Inflation		2290

Lossless Compression

CCSDS 120.0-G-4

Table 6-1: Summary of Data Compression Performance for Different Scientific Data Sets

Paragraph	Instrument Data Set	Compression Ratio
Imaging	a) Thematic Mapper	1.83
	b) Hyperspectral imager (HSI)	2.6
	c) Heat Capacity Mapping Radiometer	2.19
	d) Wide Field Planetary Camera	2.97
	e) Soft X-Ray Solar Telescope	4.69
Non-Imaging	f) Goddard High Resolution Spectrometer	1.72
	g) Acousto-Optical Spectrometer	2.3
	h) Gamma-Ray Spectrometer	5 to 26 ¹

¹ depending on integration time

a) Thematic Mapper (TM)

Transmission Rates - HGA

Link Budget of Ka-Band HGA

Link Budget of X-Band HGA

X-Band HGA Transmission Time

Data Rates (kbps)

Transmission Rates - MGA

Link Budget of X-Band MGA

X-Band MGA Transmission Time

Data Rates (kbps)

* * * * * * * * * * * + + * * *

ARGO- Mission Profile (backup)

Probe Mission Profile

- Probe coast < 20 days
- Interface at around 700 km above 1 bar altitude
- Entry angle: -25 deg
- Entry velocity: 36 km/s
- Drogue chute remove back cover at ~1 Mach
- Main chute limits speed to 50 m/s
- Drop heat shield
- Measure and relay data from 0.5 bar till 20 bar

Probe Design

- Total mass ~420 kg
 - Payload ~24.5 kg (~6% of total mass)
 - TPS mass ~210 kg:
 - Total heat load ~1.70E+09
 J/m²
 - Maximum heat flux ~115[•] MW/m²
 - Added 25% mass margin
- Power capacity ~1550 Wh
- Data budget (D2Sat) : ~ 4MB

Mass Budget -Orbiter

| Prope | llant (chemical) | 2129.38 | 10% | 2342.32 | 34.34% | 34.34% |
|-----------|---------------------------------------|---------|-----|---------|--------|--------|
| Orbite | r Dry Mass | 1847.05 | 20% | 2216.46 | 32 49% | 32 49% |
| P | ower Subsystem | 345.6 | 10% | 380 16 | 5.57% | 17 15% |
| | RTG | 200 | 20% | 240 | 3 52% | 63 13% |
| | Batteries | 50 | 20% | 60 | 0.88% | 15 78% |
| | PCDU | 38 | 20% | 45.6 | 0,67% | 11,99% |
| St | ructure | 250 | 20% | 300 | 4 40% | 13 54% |
| M | chanisms | 57.6 | 20% | 69.12 | 1,10% | 3 12% |
| | Antennas Boom Deployment
Mechanism | 35 | 20% | 42 | 0,62% | 60,76% |
| | Probe Deployment Mechanism | 13 | 20% | 15,6 | 0,23% | 22,57% |
| A | DCS | 88 | 10% | 96,8 | 1,42% | 4,37% |
| Pr | opulsion (Bipropellant) | 300 | 20% | 360 | 5,28% | 16,24% |
| O | BC & OBDH | 10 | 20% | 12 | 0,18% | 0,54% |
| Co | ommunication | 134 | 20% | 161 | 2,36% | 7,25% |
| | HGA | 66 | 20% | 79 | 1,16% | 49,25% |
| | MGA | 28 | 10% | 31 | 0,45% | 19,15% |
| | LGA | 20 | 20% | 24 | 0,35% | 14,93% |
| Pa | yload | 212,88 | 10% | 234,17 | 3,43% | 10,57% |
| | Ion and Neutral Mass Spectrome | 8,8 | 10% | 9,68 | 0,14% | 4,13% |
| | Impact Ionization Mass Spectror | 16 | 10% | 17,6 | 0,26% | 7,52% |
| | NIR Spectrometer | 33 | 10% | 36,3 | 0,53% | 15,50% |
| | Thermal Infrared Spectrometer | 6,27 | 10% | 6,897 | 0,10% | 2,95% |
| | UV-VIS Spectrometer | 14,46 | 10% | 15,91 | 0,23% | 6,79% |
| | VIS Camera | 29 | 10% | 31,9 | 0,47% | 13,62% |
| | Radio Science Experiment | 7 | 10% | 7,7 | 0,11% | 3,29% |
| | Magnetometer | 30 | 10% | 33 | 0,48% | 14,09% |
| | Electric Field Antenna | 7,2 | 10% | 7,92 | 0,12% | 3,38% |
| | Ice Penetrating Radar | 16,8 | 10% | 18,48 | 0,27% | 7,89% |
| Altimeter | | 19,6 | 10% | 21,56 | 0,32% | 9,21% |
| | Top-hat Analzyer | 5,4 | 10% | 5,94 | 0,09% | 2,54% |
| Th | ermal Control Subsystem | 110 | 20% | 132 | 1,94% | 5,96% |
| Ha | irness | 85 | 20% | 102 | 1,50% | 4,60% |

Mass Budget -Transfer Module

Transfer Module Dry Mass 1009,30 20% 1211,16 17,75% 17,75% Power Subsystem 215 10% 236,5 3,47% 19,53% Solar array 154 10% 169,4 2,48% 71,63% PCDU 38 20% 45,6 0,67% 19,28% Structures 150 20% 180 2,64% 14,86% Mechanisms 276 10% 303,6 4,45% 25,07% Solar Array Deployment Mechar 30 20% 36 0,53% 2,97% Separation Mechanism 100 20% 120 1,76% 9,91% 20% 120 1,76% Separation Adapter 100 9,91% AOCS 20% 37,2 0,55% 3,07% 31 Thermal Control Subsystem 20% 30 0,44% 2,48% 25 Propulsion (Electric) 135 20% 162 2,37% 13,38% Harness 50 20% 60 0.88% 4,95%

Thermal Control Subsystem Detailed Thermal Requirements

| | | Temperature R | Heat Dissination [W] | |
|---|--|---------------|----------------------|------------------------|
| | | Min. | Мах | field Dissipation [11] |
| | lon and neutral mass spectrometer | 248.15 | 298.15 | 88.2 |
| | Impact ionization mass spectrometer | ? | ? | ? |
| | UV VIS spectrometer | 150 | 190 | 70 |
| | NIR spectrometer | 120.15 | 160.15 | 24.7 |
| | UV-VIS Camera | 280.15 | 290.15 | 8 |
| | Infrared camera | ? | ? | 10 |
| | Ice penetrating radar | 253.15 | 323.15 | 30.1 |
| | Laser Altimeter | 273.15 | 313.15 | 56.8 |
| | Radio tracking + Ultra Stable Oscillator | 253.15 | 323.15 | 46.5 |
| - | Magnetometer | 253.15 | 323.15 | 11.1 |
| | Top-hat analyser | 223.15 | 323.15 | ? |
| | Electric field antenna | 253.15 | 323.15 | 20.3 |

BOX01 Instruments ("cold" chamber): [150; 160.15]

BOX02 Instruments ("hot" chamber): [280.15; 290.15]

No available data

Thermal Control Subsystem

Thermal Preliminary Detailed Configuration

Thermal Radiators Area: 3.08 [m²]

| | Components | Margin
[%] | Total weight
[kg] | Power
Consumption
[W] | | | | | | |
|---------|-------------------|---------------|----------------------|-----------------------------|--|--|--|--|--|--|
| | PASSIVE | | | | | | | | | |
| | MLI | 20% | 45.97 | 0 | | | | | | |
| | Thermal Surfaces | 20% | 1.71 | 0 | | | | | | |
| | Thermal Traps | 20% | 18.96 | 0 | | | | | | |
| Orbitor | Heat Pipes | 20% | 25.68 | 0 | | | | | | |
| Orbiter | Thermal Radiators | 20% | 12.96 | 0 | | | | | | |
| | ACTIVE | | | | | | | | | |
| | Thermistors | 20% | 1.848 | 12 | | | | | | |
| | Heaters | 20% | 3.024 | 31.2 | | | | | | |
| | TOTAL | 110.15 | 43.2 | | | | | | | |
| | | 20% | 132.18 | 51.84 | | | | | | |

Risk Matrix & Assessment

| Risk ID | Title | Cause | Effect | Likelihood | Cost impact | Schedule impact | Severity | Risk Rating |
|---------|---|---|--|------------|--------------|-----------------------------|----------|-------------|
| R-01 | RTG environmental damage | Launch vehicle failure, Earth
fly-by failure. | Thousands of humans exposed
to high levels of radiation. | | Incalculable | None | 5 🕶 | 5 |
| R-02 | Radioisotope acquisition | Limited quantities available,
difficult to manufacture and
expensive. | Launch date slippage, delay in
subsystem integration. | 3 ¥ | High | Depends on launch
window | 3 🕶 | 9 |
| R-03 | RTG technology not mature
enough | The RTG selected for the
mission is not avaiable on time. | Launch delay | 2 💌 | Significant | Might be critical | 4 🕶 | 8 |
| R-04 | Negative dV budget | Launch vehicle reaches lower
orbit than required. | The mission plan cannot be
completed, as the delta budget
is not sufficient | 2 💌 | None | None | 3 🕶 | 6 |
| R-05 | Spacecraft impact on Enceladus | Spacecraft performs too close
flyby to Enceladus.
Invalid maneouver. | Loss of mission.
Violation of Planetary Protection. | 2 💌 | None | None | 5 🕶 | 10 |
| R-06 | Spacecraft is influenced by
Enceladus plume during flyby | Spacecraft performs too close
flyby to Enceladus. | Possible orbit change | 1 | None | None | 2 🕶 | 2 |
| R-07 | Deployment mechanism failure | Environmental conditions cause
mechanism to fail. | Mechanism is unable to deploy
desired configuration of
spacecraft | 2 🕶 | None | None | 2 🕶 | 4 |
| R-08 | Electronics failure due to
radiation | Radiation dose is too high for
selected components. | Some of the subsystems may fail. | 2 🔻 | None | None | 4 💌 | 8 |
| R-09 | Launcher unavaiable | Selecter launcher vehicle is
unavaible at selected launch
date. | Launch is delayed, possibility of
missing launch window | | Significant | Might be critical | 4 🕶 | 4 |
| R-10 | Micrometeroid strike | Spacecraft is hit bz
micrometeroid | Possible damage to spacecraft
subystems | | None | None | 2 🕶 | 2 |
| R-11 | Long-lead items avaiability | Sub-contractor is unable to
provide long-lead item on time. | Possible delay | 2 🔹 | None | Depends on launch
window | 3 🕶 | 6 |
| R-12 | Probe does not turn on | Failure of the Probe electric
system | Probe mission is lost, no
atmospheric measurements
acquired | 1 | None | None | 4 👻 | 4 |
| R-13 | Failure of drogue chute deployme | Failure in either command
execution, mechanical or
electical failure | Probe will be unable to eject
back cover, and blocks further
deployment of main chute. | 1 | None | None | 4 🕶 | 4 |
| R-14 | Failure of main chute deployment | Failure in either command
execution, mechanical or
electical failure | Probe will not be stable during
descent and freefall instead of
controlled descent. Heat shield
might hit descent module. | P | None | None | 3 🕶 | 3 |
| R-15 | Deployment of Solar Array not
complete | Jammed components, failing
hardware | Power not quaranteed, affects
mission lifetime | 2 🔹 | Significant | Might be critical | 4 🕶 | 8 |
| R-16 | Spacecraft is influenced by
Saturn's rings | Spacecraft collides with Saturn's
rings material | Possible damage to the
spacecraft | 2 🔹 | None | None | 4 💌 | 8 |
| R-17 | Spacecraft AOCS failure | AOCS is unable to control
orientation of the spacecraft | Spacecraft is unable to fulfill
poinitng requirements | 3 🕶 | None | None | 3 🕶 | 9 |

RISKS

| | damage | Enceladus | | | | |
|--|--|---|---|---|---|----|
| 4 | R-09
Launcher unavaiable
R-12
Probe does not turn on
R-13
Failure of drogue chute
deployment | R-03
RTG technology not mature
enough
Electronics failure due to
radiation
R-15
Deployment of Solar Array not
complete
sparents influenced by
Saturn's rings | | | | |
| S
e
v
e
r
3
r
i
t
y | R-14
Failure of main parachute
deployment | R-04
Negative dV budget
R-11
Long-lead items avaiability | R-02
Radioisotope acquisition
R-17
Spacecraft AOCS failure | | | |
| 2 | R-06
Spacecraft is influenced by
Enceladus plume during
flyby
R-10
Micrometeroid strike | R-07
Deployment mechanism
failure | | | | •× |
| 1 | | | | | | |
| | 1 | 2 | 3 | 4 | 5 | |

PROGRAMMATIC

Thermal Control Subsystem Preliminary Design

6 RTGs \rightarrow 6 × 1000 [W] ~ Heat Dissipation

Infrared Instruments Cooling

Passive Heat Circuit

Control of Heat Fluxes from RTGs

Mission Analysis: ΔV Budget

• •

lsp = 4190 s M_wet = 6.9 tons

| Delta V Budget | Maneuver | Delta v (m/s) | Delta v + 5% (m/s) | Delta v_cumul (m/s) | Delta mass (kg) | Mass (kg) | Mass consumed (kg) | Propellant | |
|------------------|-------------------------------------|---------------|--------------------|---------------------|-----------------|-----------|--------------------|------------|--------|
| Launch | Launch | 0 | 0 | 0 | 0 | 6,900 | 0 | - | |
| E-S transfer | Arc 1 Earth | 939.00 | 985.95 | 985.95 | 0 | 6,744 | 156 | Xenon | • |
| | Arc 2 Earth | 1,150.00 | 1,207.50 | 2,193.45 | 0 | 6,558 | 342 | Xenon | • |
| | Boost | 900.00 | 945.00 | 3,138.45 | 0 | 6,416 | 484 | Xenon | \sim |
| | TOTAL | | | 3,138.45 | | 6,416 | 484 | | |
| | | | | - | | | | | |
| Transition phase | Propulsion separation | 0.00 | 0.00 | 0.00 | 90 | 6,326 | 90 | Chemical | |
| • | Probe deployment | 15.00 | 15.75 | 15.75 | 380 | 5,916 | 500 | Chemical | |
| | SOI | 633.00 | 664.65 | 680.40 | 0 | 4,836 | 1,580 | Chemical | |
| | PRM | 300.00 | 315.00 | 995.40 | 0 | 4,395 | 2,021 | Chemical | |
| Enceladus | Titan GA's | 150.00 | 157.50 | 1,152.90 | 0 | 4,190 | 2,226 | Chemical | |
| observation | Enceladus South Pole i sweep | 125.00 | 131.25 | 1,284.15 | 0 | 4,026 | 2,390 | Chemical | |
| | Enceladus South Pole resonance | 50.00 | 52.50 | 1,336.65 | 0 | 3,963 | 2,453 | Chemical | |
| | Inclination change to Enc. N-Pole | 5.00 | 5.25 | 1,341.90 | 0 | 3,956 | 2,460 | Chemical | |
| | Resonant orbit h_E = 50 km (N-pole) | 25.00 | 26.25 | 1,368.15 | 0 | 3,925 | 2,491 | Chemical | |
| Ring study | Change to ring orbit | 10.00 | 10.50 | 1,378.65 | 0 | 3,912 | 2,504 | Chemical | |
| | Ring orbit | 700.00 | 735.00 | 2,113.65 | 0 | 3,130 | 3,286 | Chemical | |
| Decomission | Move into decomission orbit | 0.00 | 0.00 | 2,113.65 | 0 | 3,130 | 3,286 | Chemical | |
| | Crash with Saturn | 0.00 | 0.00 | 2,113.65 | 0 | 3,130 | 3,286 | Chemical | |
| Extended mission | | 0.00 | 0.00 | 2,113.65 | 0 | 3,130 | 3,286 | Chemical | |
| | | 0.00 | 0.00 | 2,113.65 | 0 | 3,130 | 3,286 | Chemical | |
| | TOTAL | | | 2,113.65 | | 3,130 | 3,286 | | ~~ |
| • • | + • | Ť | | | ~ | | + · ^ · | | UU |

ESOC (European Space Operations Centre)

ESA's European Space Operations Centre, in Darmstadt, Germany

- a. Technical management of a mission operations (Spacecraft and Payload)
- b. Data links between ground controllers and their satellites in orbit.

ESAC (European Space Astronomy Centre)

ESA's centre for space science (astronomy, Solar System exploration and fundamental physics)

- a. Hub for operating planetary and astronomy missions
- b. Experts in the mission science areas

Trade-off matrix

| 2 | | Option 1 | Option 2 | Option 3 | Option 4 | Option 5 | Option 6 | Option 7 | Option 8 | Option 9 | Option 10 | Option 11 | Option 12 | l |
|--------|---------------------------------------|---|---|---|---|--|--|---|--|--|---|-----------------------------------|---------------------------------|---------|
| Spaced | raft | | | 7 | × | | ÷. | +1 | | | | | | |
| Po | wer Subsystem | 1.1.1 | 10.00 | 111220 | - | | Sec. 19 | - | 1.00 | | | | | |
| • | Primary Power Source | MMRTG | GPHS-RTG | Am-241 RTG | Solar Arraya | Fuel Cells | Hybrid | | . in . | | | | • • | |
| | Secondary Power Source | Li-lon batteries | Fuel Cells | - | + | - | | | 1.00 | | | | n Sele | cted |
| 18 m | PCDU | - | | | | | | 5. | 1.00 | 121 | | olutio | | olea |
| Str | uctures & Mechanism | | - | | + | ÷ | * | e . | | | | | | |
| - | Primary Structure | | 1.8 | | | | | | (e.) | | 1.4 | 5e | - | |
| 1.0 | Secondary Structure | | | | ~ | | | - | - | | | م ام ا | | |
| Me | chanisms | | | | + | + | + | + | | | | lde | ntitied | |
| | Antennas Boom Deployment
Mechanism | Cailed Rods | Coiled Mast | Flexible Shell | Wire Cutter +
Telescopic antenna
deployment | Rigid Beam
Deployment
(similarly as SADM) | Rigid Tubular
Segment + Tape
spring | Fast Mast | 1.00 | | | Alternatives | | 24 |
| | Probe Deployment
Mechanism | Huygens | NASA pneumatic | ÷. | | | 1 . | +5 | 1.4 | 1.0 | | | | .0 |
| AC | CS | - | | | | 1. A. | | | | | _ | | | • |
| | Sensors | Sun Sensors | Star Trackers | Star Scanners | Horizon Sensors
(staring sensors) | Horizon Sensors
(Pippers) | Magnetometers | IMU | (*) | | | Only O | ne Ont | tion |
| | Actuatore | Reaction Wheels | Thrusters AC \$ | Magnetorquers | CMGs | * | * | | | | | | ne op | |
| Pr | opulaion | Electric
Propulsion (Hall) | Monopropellant
Propulsion | Bipropellant
Propulsion | Solid Propulsion | ÷ | 1 | | 1 | 1 | | Av | ailable | |
| OE | C & OBDH | GVSC-1750 A | Beyond gravity
OBC NG | | e - | - | - | 20 C | 1.00 | 141.
1 | | | | |
| Co | mmunications | Cassini Based | Juno Based | | | | | 7. | 1.2.1 | 1.27 | 1.2 | | | |
| | TM & TC | | - | | + | | | | | | 24 | | + | • |
| | Science Data | | 1.8 | | | | | | (e.) | | 1.8 | 1.0 | | |
| Pa | yload | | | | | | | - | - | - | - | - | ~ | |
| | G1 \$2 | UV-VI\$
\$pectrometer -
UVI\$ (CaseIni) | UV-VIS
Spectrometer - UVS
(JUICE) | Radio Science
Experiment - 3GM
(JUICE) | Radio Science
Experiment -
Gravity/Radio
Science (Europa
Clipper) | <i>6</i> 1 | 30 | 72 | 1.5 | 150 | 57 | 1 | 2 | × |
| | G2 \$1 | VIS Camera -
OSIRIS (Rosetta) | VIS Camera -
JANUS (JUICE) | | - | | - | | 1 | S47 | 1 | аў.
С | 0 | |
| | G2 82 | Magnetometer -
J-MAG (JUICE) | Magnetometer -
ICEMAG (Europa
Clipper) | Impact Ionization
mass
spectrometer -
SUDA (Europa
Cilpper) | Impact ionization
mass spectrometer
- CIDA (Stardust) | Top-hat analzyer -
MIA/SERANA
(BepIColombo) | Top-hat analzyer -
HPCA
(Magnetospheric
Multiscale) | Electric Field
Antenna - LP-PWI
(JUICE) | Electric Field
Antenna - RPWS
(Cassini) | | | | * | + |
| | G3 \$1 | UV-VIS
Spectrometer -
UVIS (CaseIni) | UV-VIS
Spectrometer -
VIRTIS-M
(Rosetta/Venus
Express) | Impact Ionization
mass
spectrometer -
SUDA (Europs
Clipper) | Impact ionization
mass spectrometer
· CIDA (Stardust) | Ion and neutral
mass spectrometer
- MASPEX (Europa
Clipper) | lon and neutral
mass
spectrometer -
NGIMS (MAVEN) | NIR Spectrometer -
MAJIS (JUICE) | NIR Spectrometer
- VIRTIS-M/H
(Rosetta/Venus
Express) | | | 2 | Ċ. | × |
| | G3 52 | UV-VIS
Spectrometer -
UVIS (Cassini) | UV-VIS
Spectrometer -
VIRTIS-M
(Rosetta/Venus
Express) | impact ionization
mass
spectrometer -
SUDA (Europa
Clipper) | Impact ionization
mass spectrometer
- CIDA (Stardust) | Ice Penetrating
Radar - REASON
(Europa Clipper) | ice Penetrating
Radar - RIME
(JUICE) | NIR Spectrometer -
MAJIS (JUICE) | NIR Spectrometer
- VIRTIS-M/H
(Rosetta/Venus
Express) | Thermal Infrared
Spectrometer -
E-Themis (Europa
Clipper) | Thermal Infrared
Spectrometer -
OTE \$
(O SIRIS-Rex) | Laser Altimeter -
GALA (JUICE) | Laser Altimeter -
MOLA (MGS) | |
| | G3 53 | Radio Science
Experiment - 3GM
(JUICE) | Radio Science
Experiment -
Gravity/Radio
Science (Europa
Clipper) | Impact Ionization
mass
spectrometer -
SUDA (Europa
Cilpper) | Impact ionization
mass spectrometer
· CIDA (Stardust) | ÷ | | | | | | 7 | + | |
| Th | ermal Control Subsystem | MLI Blanket | Surface Finishes | Heaters | Radiatora | Heat Pipes | Louvers | +-; | | | -+ | ÷ | * | |
| Pr | obe | - | | | - | | | - | | | | 2 | | . • |
| | Probe Deployment
mechanism | Mortar | Slug gun | Springs | | | | - | (e) | | | | ÷ | • |
| | G181 | Mass Spectrometer
- NMS (Galileo) | Mass Spectrometer | Nephelometer
(Galileo) | Nephelometer - ? | Net Flux
Radiometer
(Gailleo) | Net Flux
Radiometer - LIR
(Venus Probe) | Atmospheric
sensing
instrument
(Huygens) | Atmospheric
sensing instrument
- ASI (Galileo) | Helium abundance
detector (Galileo) | Helium abundance
detector - ? | | | · · · × |

Transfer Module

odule

• •

+ • + • + + • • *

> + • ×

Bepi Colombo - Wikipedia

Lucy (NASA) - Wikipedia

^{*}Link Budget - What do we need?

• Science Data

 \rightarrow Ka-Band 26.5 - 40 GHz

• TM & TC

 \rightarrow X-Band 8 - 12.4 GHz

• Atmospheric Probe \rightarrow UHF-Band 0.2 - 0.45 GHz

• Orbital Manoeuvres \rightarrow Movable Antenna

Attitude Determination and Control Subsystem Preliminary Configuration

| | Nbr [-] | Margin [%] | Total weight [kg] | Power
Consumption [W] | | | | | | |
|---------------|---------|------------|-------------------|--------------------------|--|--|--|--|--|--|
| Actuators | | | | | | | | | | |
| RWs | 4 | 10% | 51.04 | 59.95 | | | | | | |
| ACS Thrusters | 12 | 10% | 8.25 | 0 | | | | | | |
| | Sensors | | | | | | | | | |
| Sun sensor | 6 | 10% | 0.43 | 0 | | | | | | |
| Star tracker | 2 | 10% | 0.99 | 1.54 | | | | | | |
| IMU | 2 | 10% | 27.5 | 119.46 | | | | | | |
| Total | | 10% | 97.03 | 199.05 | | | | | | |

* × × · · · + * × · ×

• •
Probe Deployment

Based on Cassini-Huygens mission.

- Pyrotechnic explosive bolt
- Stainless steel spring
- Axial rollers running along a helical track

~ 23 [kg]

~50 [W]

Mechanisms Preliminary Configuration

Antennas/Booms Deployment

Considered options dependent on the selected antennas:

 Rigid beam deployment (JUICE)

Weight:

Power:

Tape spring with rigid tubular segment Solar Array Deployment

Based on CDF EPIG 2019, CDF-77

 Based on LUCY mechanism

Separation Mechanisms

- Pyro nuts, Springs Design considerations:
 - Safety margin, Fretting, shock loading, ..

2x 100 kg

10

<u>Weight:</u> Power:[‡]

÷ ~

~ 35 [kg] <u>Weight:</u> ~TBD [W] <u>Power:</u> ~ 30 [kg] 20 [W] . <u>Weight:</u> <u>Power:</u>

Propulsion Preliminary Configuration

Transfer Module

- Electric Propulsion Ion engine
- Xenon
- Isp = 4190 s
- Propellant mass: 550 kg
- Thrust: 4x 0.25 N
- Expected dry mass: 135 kg

Orbiter

- Bipropellant Propulsion
- Monomethylhydrazine (MMH)
 - +
 - MON-3 (Mixed Oxides of Nitrogen)
- Baseline: Ariange Group Bipropellant
 Apogee Motor
- Isp = 320 s
- Propellant mass: 2370 kg
- Thrust: 420 N
- Expected dry mass: 300 kg TBC

+ + . × * *

Technology Development

(Mostly) Already existing components (~ Heritage)

No Recent Saturn Environment Verification

TECHNOLOGY

TRL < 5

| | | Component Name | Qty | TRL | Dev.
Level | Ready in
12 years ? |
|-------------------|---------------------------------------|---------------------------------------|-----|-----|---------------|------------------------|
| Orbiter | Payload | UV-VIS Spectrometer | 1 | 3 | | у |
| | | NIR Spectrometer | 1 | 3 | | у |
| | | Thermal Infrared Spectrometer | 1 | 3 | | у |
| | | Ice Penetrating radar | 1 | 3 | | у |
| | Structure &
Mechanism | Structure | 1 | 1 | | у |
| | | Probe Separation Mechanism | 1 | 3 | | у |
| | | Tranfer Vehicule Separation Mechanism | 1 | 4 | | У |
| Tranfer
Module | Structure &
Mechanism | Solar Panel Deployment Mechanism | 2 | 3 | | у |
| | | Separation Adapter | 1 | 3 | | у |
| | | Separation Mechanism | 1 | 3 | | у |
| | | Structure | 1 | 1 | | у |
| Probe | Structure &
Mechanism | Parachutes deployment mechanism | 2 | 3 | | у |
| | Thermal
Protection
System (TPS) | rmal
action Heatshield
n (TPS) | | 3 | | у |

PROGRAMMATIC

| | | | Saturn ring science | | Enceladus science | | | Orbit | | |
|---------------------|---|------|---------------------|-----------------|-------------------|-----------|-----------------|-------|--------------------------|--|
| Element | Component | Mode | Power (W) | Total power (W) | Mode | Power (W) | Total power (W) | Mode | Power (W) Total power (V | |
| Payload | | | | 329.8365 | | | 302.19 | | | |
| | Magnetometer | ON | 11.1 | | ON | 11.1 | | OFF | 0 | |
| | Impact ionization Mass Spectrometer (IMS) | ON | 58.7 | | ON | 58.7 | | OFF | 0 | |
| | Ion and neutral mass spectrometer | ON | 88.2 | | ON | 88.2 | | OFF | 0 | |
| | Ice penetrating radar | OFF | 0 | | ON | 61 | | OFF | 0 | |
| | Hyperspectral imaging (vis to near IR) | ON | 50 | | OFF | 0 | | OFF | 0 | |
| | Radio science experiment: Radio tracking (Movable | | | | | | | | | |
| | radio antenna) + Ultra Stable Oscillator (USO) | ON | 46.5 | | OFF | 0 | | OFF | 0 | |
| | Electric field antenna | ON | 6 | | OFF | 0 | | OFF | 0 | |
| | Visable camera | ON | 34 | | ON | 34 | | OFF | 0 | |
| | Top Hat Analyser | ON | 7.8 | | OFF | 0 | | OFF | 0 | |
| | UV VIS spectrometer | ON | 11.83 | | OFF | 0 | | OFF | 0 | |
| | Thermal Infrared Spectrometer | ON | | | ON | 34.8 | | OFF | 0 | |
| | Margin (5%) | n/a | 15.71 | | n/a | 14.39 | | n/a | 0 | |
| AOCS | | | 1 | 95.76 | | | 95.76 | | 38.5 | |
| | Reaction wheel | ON | 54.5 | | ON | 54.5 | | ON | 0 | |
| | IMU | ON | 27.2 | | ON | 27.2 | | ON | 27.2 | |
| | Star trackers | ON | 9.5 | | ON | 9.5 | | ON | 9.5 | |
| | Margin (5%) | n/a | 4.56 | | n/a | 4.56 | | n/a | 1.84 | |
| Comunications | | | | 0 | | | 0 | | | |
| | High Gain antenna | OFF | 0 | | OFF | 0 | | OFF | 0 | |
| | Medium gain antenna | OFF | 0 | | OFF | 0 | | OFF | 0 | |
| | Margin (5%) | n/a | 0 | | n/a | 0 | | n/a | 0 | |
| Command | | | | 52.5 | | | 52.5 | | 52 | |
| | On board computer (OBC) | | 50 | | | 50 | | | 50 | |
| | Margin (5%) | n/a | 2.5 | | n/a | 2.5 | | n/a | 2.5 | |
| Propulsion | | | | 0 | | | 0 | | 10 | |
| | SEP | OFF | 0 | | OFF | 0 | | OFF | 0 | |
| | Main engines (chemical) | OFF | 0 | | OFF | 0 | | ON | 10 | |
| | Margin (5%) | n/a | 0 | | n/a | 0 | | n/a | 0.5 | |
| Power | | | | 94.5 | | | 94.5 | | 94 | |
| | PCDU | ON | 90 | | ON | 90 | | ON | 90 | |
| | Margin (5%) | n/a | 4.5 | | n/a | 4.5 | | n/a | 4.5 | |
| Thermal control | | | | 37.8 | | | 37.8 | | 37 | |
| | Thermistor | ON | 10 | | ON | 10 | | ON | 10 | |
| | Heaters | ON | 26 | | ON | 26 | | ON | 26 | |
| | Margin (5%) | n/a | 1.8 | | n/a | 1.8 | | n/a | 1.8 | |
| System margin (20%) | | | | 122 | | | 117 | | | |
| Total | | | | 732 | | | 600 | | 2 | |

112

Total

Net power across orbit

+ 420 W total

