TEAM ORANGE

Atmospheric Drag, Occultation 'N' Ionospheric Scintillation Mission

Summer School Alpbach 2013

Space Weather: Science, Missions and Systems

July 16-25, Alpbach/Tyrol, Austria

Outline

- Mission Statement & Objectives
- Mission Requirements
- Instrumentation
- Orbit
- Space Segment
- Ground Segment & Operations
- Development, Cost & Risks
- Disposal
- Summary

Mission Statement & Objectives

ADONIS Mission

Summer School Alpbach 2013

Mission Statement & Objectives

Mission Statement

The mission goal is to study the **dynamics of the thermosphere and ionosphere** over a **full solar cycle (i.e. 11 years)** in LEO.

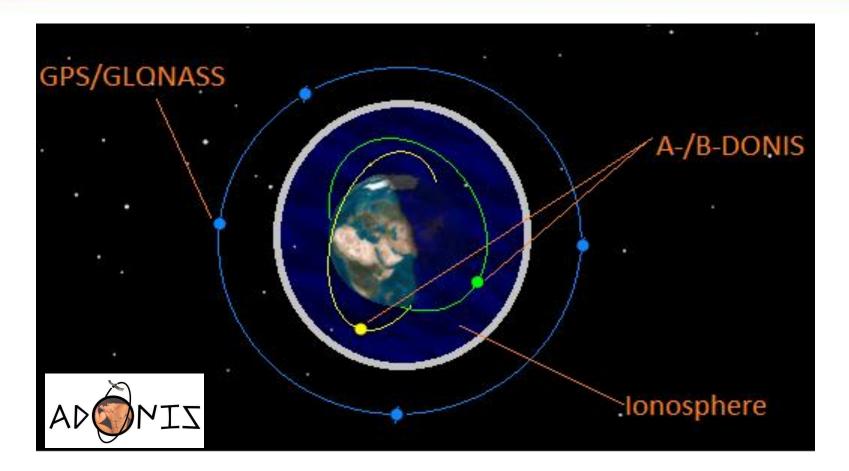
Mission objectives

- Build a model for **satellite drag** in relation to Space WEather (SWE).
- Provide data to improve **ionospheric models.**
- Provide **near real-time Total Electron Content (TEC) data** in the northern polar region.
- Contribute to models for radio communication perturbation in relation to SWE.
- Operate for a **full solar cycle (11 years)** to gather significantly improved statistics.

Why are thermosphere and ionosphere important?

= the atmospheric layer where we experience space weather (= SWE)

Incomplete understanding of Solar activity and SWE effects on the terrestrial thermosphere and ionosphere


Ionospheric space weather causes:

- 1. Satellite drag: better description needed for launch planning, prediction of uncontrolled re-entries, control of LEO s/c
- 2. Disturbances related to variations in Total Electron Content (TEC):
 - a. in critical **HF communications** during polar flights, emergency relief, military operations
 - b. in **GNSS signals**
 - c. in satellite telecommunication and broadcasting
 - ightarrow Safety, commercial and strategic impacts

Source: Worldpress

Overview of the ADONIS Mission

Ionosphere	GPS	GLONASS	A-/B-DONIS	LEO
100 - 1000 km	20 200 km	19 100 km	300 - 800 km	160 - 2000 km

ADONIS Mission

Summer School Alpbach 2013

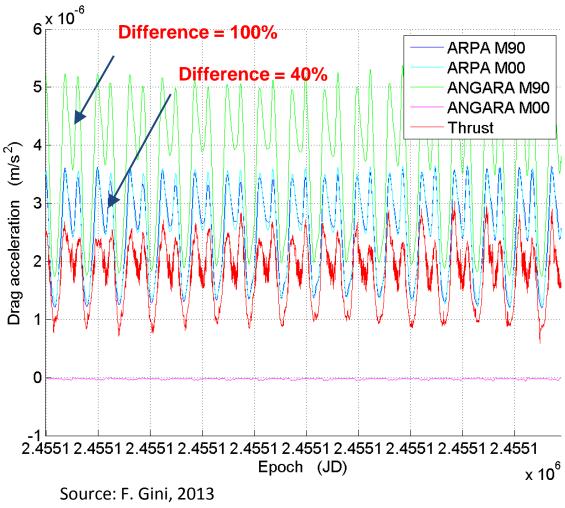
Improve the quality and reliability of current satellite drag models by measuring in-situ

both the drag and the parameters relevant to model it.

International Space Station As Flown Altitude Profile

(Based on MCC-M/USSP Tracked SV Data)

- ISS altitude from 11/1998 to 5/2001
- Drag causes constant dropping of altitude
- Altitude boosts needed
- Note drop due to Bastille day event

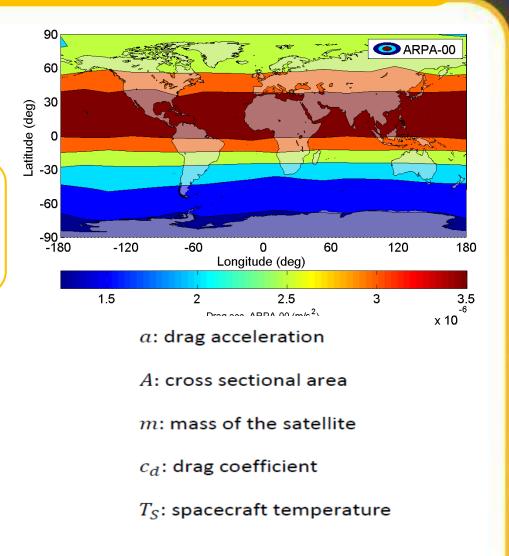

Source: Chammons 2001

ADONIS Mission

- GOCE thrust compared to drag modelling
- Thrust is compensating directly the drag
- Note the difference between accelerations computed and observed

Necessary parameters for derivation of the drag:

$$a = \frac{\rho A v^2}{2m} c_d(T_0, T_S, m_p, n_p)$$


 T_0 : atmospheric temperature m_p : average mass of the particles

 n_p : particle density

 ρ : atmospheric density

 $\boldsymbol{v} {:} \text{ velocity of the satellite with }$

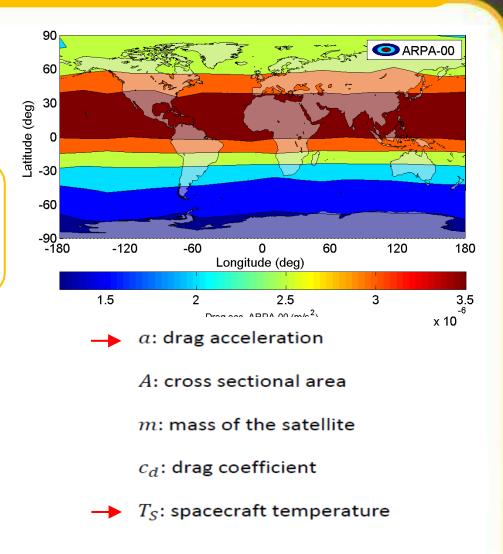
respect to the atmosphere

ADONIS Mission

Summer School Alpbach 2013

Team Orange

9


Necessary parameters for derivation of the drag:

$$a = \frac{\rho A v^2}{2m} c_d(T_0, T_S, m_p, n_p)$$

 \bullet T_0 : atmospheric temperature

- m_p : average mass of the particles
- \rightarrow n_p : particle density
 - ρ: atmospheric density
- v: velocity of the satellite with

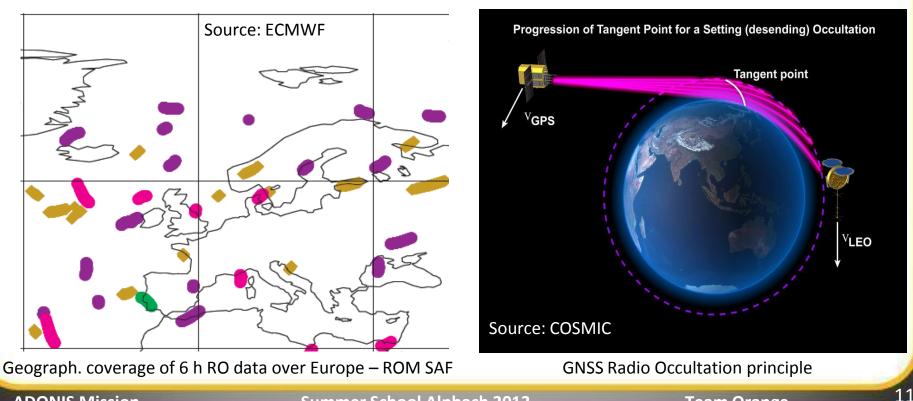
respect to the atmosphere

Instruments: Spectrometer, Thermistor, Accelerometer, Langmuir Probe, Particle Analyser

ADONIS Mission

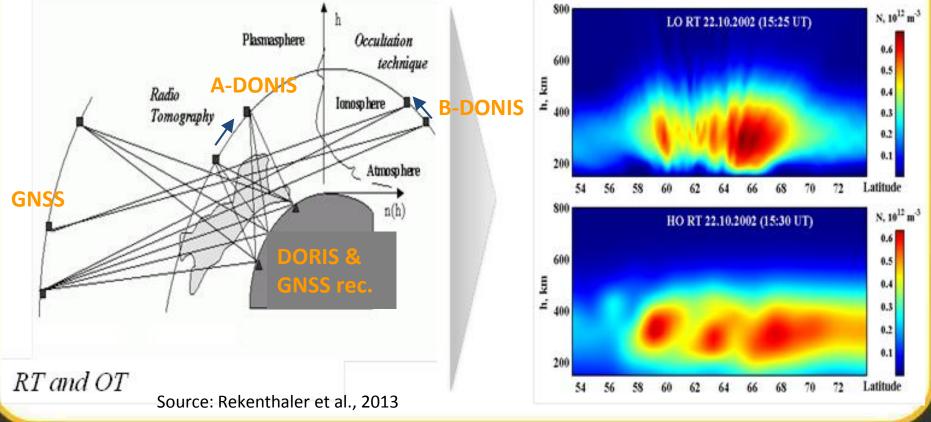
Mission Benefits I

Related missions: GOCE, QB50


Benefits

- **Observe different altitude** and **wider altitude range** than GOCE
- Measure all the parameters important for drag in-situ
- **Connect SWE** with drag
- Orbit design allows the study of **daily to seasonal variations**
- Long duration: large statistics for different SWE
- Continue the drag measurements during de-orbiting and end of mission

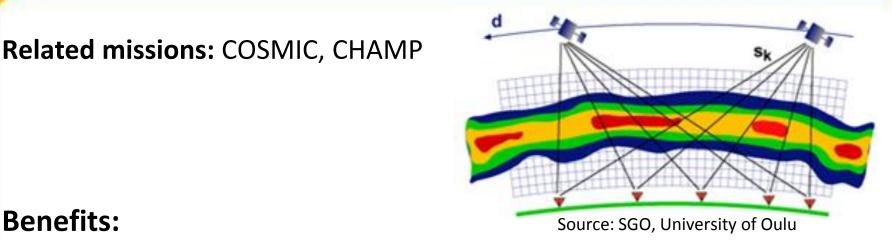
Provide additional Total Electron Content (TEC) data for ionospheric monitoring. Radio occultation (RO)


- Doppler shift of GNSS signal measured on LEO polar S/C provides more high-resolution vertical profiles of the electron density above 80 km of regions with sparse coverage.
- Near Real Time (NRT) monitoring of Arctic region (NRT downlink to Svalbard GS)

Summer School Alpbach 2013

Ionospheric tomography with scintillation and occultation combined

- Scintillation from 10 LEO S/C and 56 DORIS GS beacons (global: lat. 70°S 80°N) interpreting ionospheric irregularities ranging from a few up to hundreds of meters
- LEO ionospheric tomography (higher resolution than GNSS tomography)



ADONIS Mission

Summer School Alpbach 2013

12

Mission Benefits II

Benefits:

- The only available TEC with scintillation from orbital S/C S/C links: in average 20 contacts per day per S/C (20–40 min each, up to 200 Hz)
- Scintillation from 56 DORIS ground stations **no S/C currently provides**
- Hi-res LEO tomog., use high ratio of frequencies: 5.1, 2.6 (GPS use 1.3)
- 1k occultations per day in average (250 events per S/C per GNSS system)
- 3D global TEC maps, NRT data in the arctic region

Mission Requirements

ADONIS Mission

Summer School Alpbach 2013

Team Orange

14

Mission Requirements

M.1.	Perform measurements related to S/C drag coefficient at LEO		
M.2.	Ionospheric tomography from LEO based on radio occultation and scintillation		
0.1.	Obtained results shall be delivered to scientific community		
0.2.	Obtained occultation results shall enable provision of near real-time service		
0.3.	Duration of mission shall cover one full solar cycle (i.e. 11 yrs)		
0.4.	The S/C shall keep the same cross area normal to the velocity vector		
D.1.	S/C shall fit into Vega fairing		
D.2.	On-board components shall not interfere with each other		
D.3.	S/C shall provide on-board payload instruments to meet the mission objectives		
D.4.	GS shall provide uplink and downlink capability		
P.1.	The acceleration shall be determined at least once per second		

M: Mission goal; O: Operational req; D: Design req; P: Performance req.

ADONIS Mission

Science Requirements

Requirements	Range/Sensitivity	Instrument		
Particle composition	0–50 amu, 128 bins, 1 Hz NRT	Ion & Neutral Mass Spectrometer (INMS)		
On-board temperature	1°C accuracy, 1 Hz	Thermistors		
S/C acceleration	10 ⁻⁸ m/s², 1 Hz	Italian Spring Accelerometer (ISA)		
Plasma velocity, temp.	10 eV–30 keV, 1 Hz NRT	3D Particle Analyser (3DPA)		
Plasma density	10 ⁹ –10 ¹² /m³, 1 Hz NRT	Langmuir Probe (m-NLP)		
TEC from RO	1k RO events, 0.001 TECU rel. (3 TECU abs.), 10Hz	Radio occultation instr. (IGOR+)		
Ionospheric scintillation	0.003 TECU rel. (1 TECU abs.) 10Hz S4	Radio tomography receiver (CITRIS)		
Magnetic field	+/-80 μT, 0.5 nT, 0.1 Hz NRT	Flux Gate Magnetometer (FGM)		
		All TRI 9 except 2DDA		

	Drag	Ionospheric/thermospheric dynamics		Both	All I (will
-	ADONIS	Mission Summer Sch	ool Alpb	ach 2013	

All TRL 9 except 3DPA (will fly in Dec. 2013)

Instrumentation

ADONIS Mission

Summer School Alpbach 2013

Payload: Occultation and Scintillation

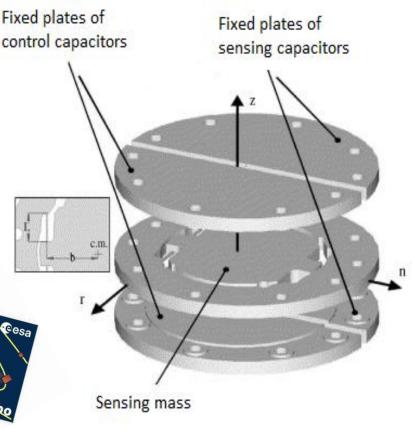
IGOR+ radio occultation instrument:

- RO of 2 GNSS (GPS, GLONASS)
- 5 kg, 22 W, 21.8×24.0×14.4 cm³
- Flight heritage, modified for KOMPSAT-5 (2013)
 Tri-G (+ GALILEO) TBC follow-up mission (50 W req.)

CITRIS ionospheric tomography instrument:

- Reconstruction of scintillation parameters
- Receiving 56 DORIS GS @ 401, 2036 MHz
- 10 satellite transmitter sat. receiver links
 @150, 400, and 1067 MHz
- Sampling up to 200 Hz
- 4.5 kg, 12.3 W, 40.0×31.0×12.0 cm³
- Flown on STPSAT1 (3/2007 10/2009)

Both only receivers, no RF interference with plasma instrument suite


ADONIS Mission

Payload: Accelerometer

Italian Spring Accelerometer (ISA)

- Planned for BepiColombo
- Full acceleration vector of the satellite
- Sensitivity of ~10⁻⁸ m/s²
- Modification needed in order to measure at higher frequencies (at 1 Hz)

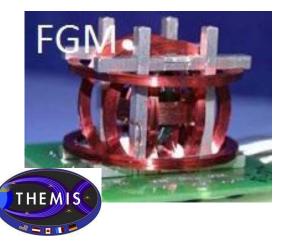
Payload: INMS, 3DPA, m-NLP, FGM

Ion and Neutral Mass Spectrometer (INMS)

- Resolves ions 0.1 28 eV and neutrals O, O₂, N₂
- QB50 planned

3D Particle Analyser (3DPA)

- Resolves ions and electrons few eV–30 keV
- Two detectors on top and bottom of satellite
- Test flight on sounding rocket mission ICI-4, Dec. 2013


Multi-Needle Langmuir Probe (m-NLP)

- 0.6 m booms, 3 probes
- Flown on CubeSTAR, QB50 planned

Flux Gate Magnetometer (FGM)

- +/-80 μT, resolution 0.5 nT
- Boom-mounted (1 m in front)
- Flown on Cluster, THEMIS, etc.

Team Orange

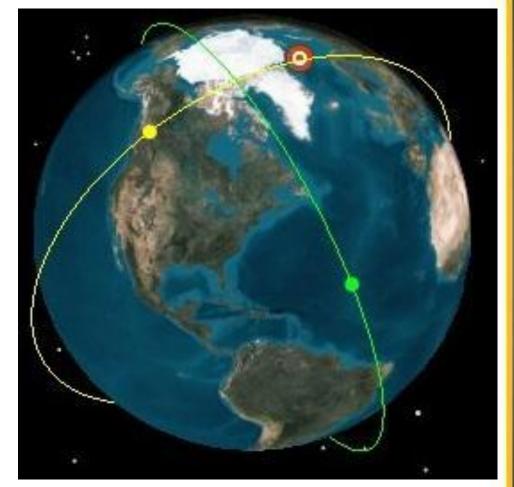
m-NLP

20

Orbit

ADONIS Mission

Summer School Alpbach 2013


Team Orange

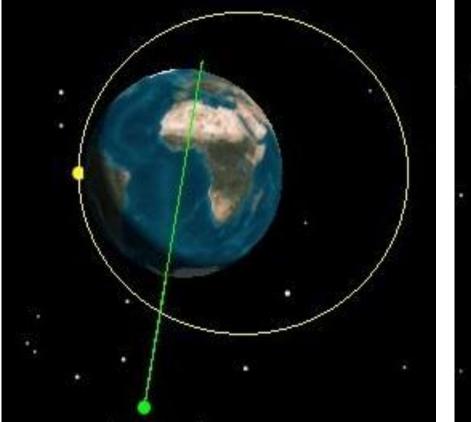
21

Orbit

Final constellation:

- 2 elliptical orbits with apogee altitude 800 km, perigee altitude 300 km and 80° inclination.
- 90° difference in the plane of the two orbits (Right Ascension of the Ascending Node – RAAN) and 90° difference in argument of perigee.

→ Space and time resolution, different local times at passage.

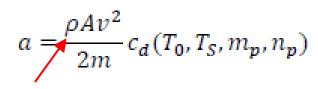

ADONIS Mission


Summer School Alpbach 2013

Team Orange

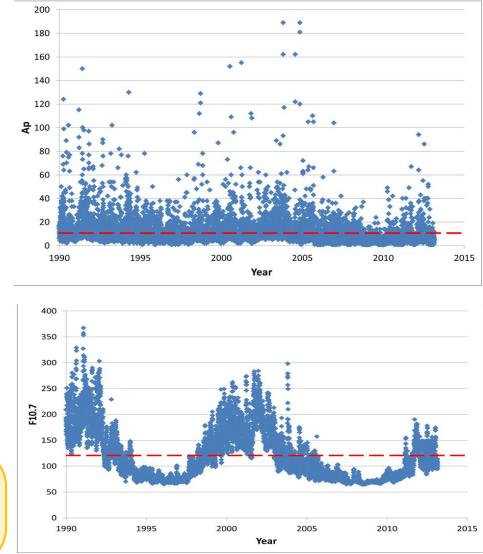
22

Amplified View



ADONIS Mission

Perigee Determination

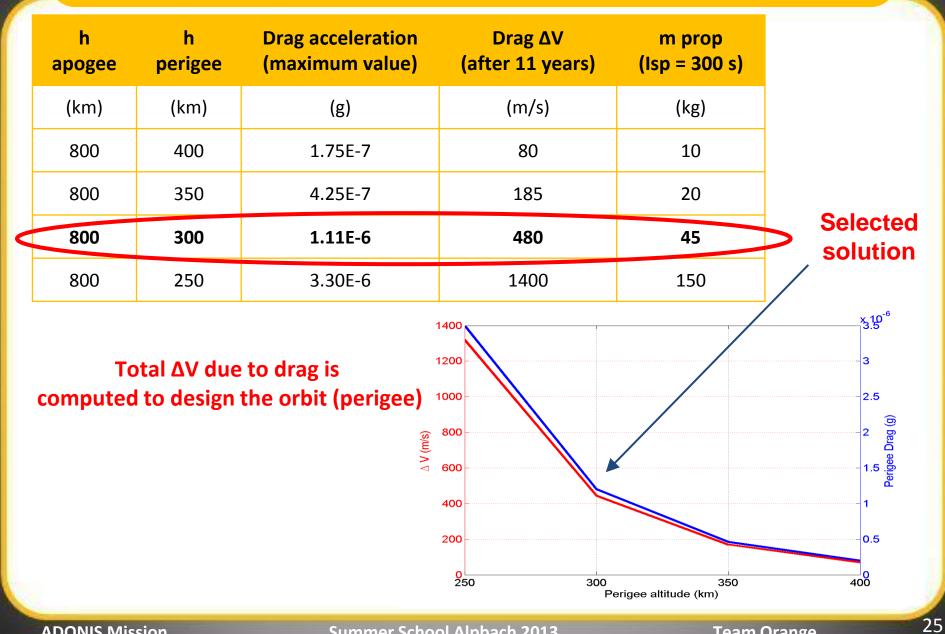

The main driver of satellite drag is air density

solar activity

For the following computations an **overestimated average solar activity** was selected, and **NRLMSIS-00** was used as atmospheric model.

> Ap = 11.8 F10.7 = 118.2E22 W/m²Hz

For elliptical orbits the drag exponentially increases with decreasing altitude of the perigee.



ADONIS Mission

Summer School Alpbach 2013

24

Perigee Determination

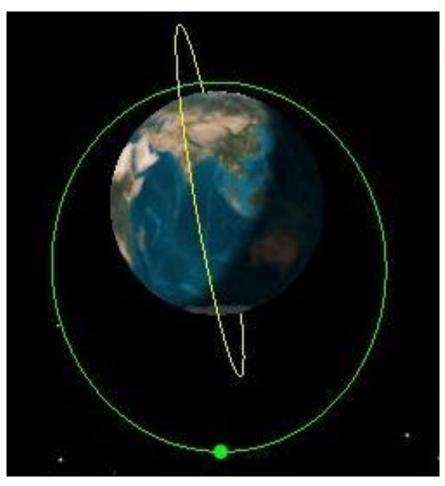

ADONIS Mission

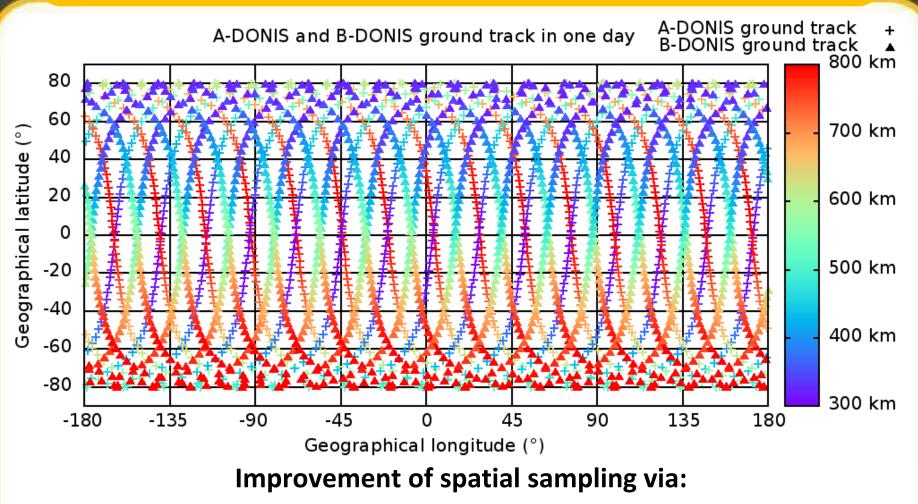
Summer School Alpbach 2013

Orbit

Constellation build up:

- Begin with 2 satellites in 800×300 km, 80° inclination orbit.
- A-DONIS: ΔV = 0.14 km/s to make one orbit circular (800 km), with same inclination.
- B-DONIS: ΔV = 0.09 km/s to make one orbit elliptical (300×500 km), with same inclination.
- → provides different precession rates of RAAN


Start constellation


Orbit

- Relative precession rate of ascending node: 0.255°/day
- Difference in RAAN becomes equal to 90° (340 days after launch)
 - \rightarrow apply the same ΔV (apogee kick burn) to make the two orbits identical, but with different orbital planes

Ground Track

- 90° difference in the argument of perigee
- Temporal changes in the orientation of the perigee at same precession rates for both satellites

ADONIS Mission

Orbit

The **mission can be expanded** by increasing the coverage with two more satellites (45° difference between the planes).

ADONIS Mission

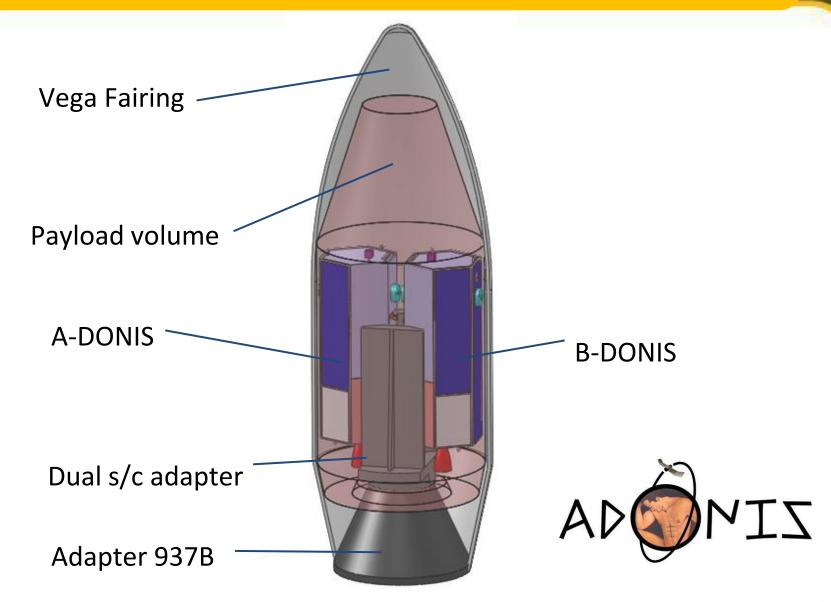
Space Segment

ADONIS Mission

Summer School Alpbach 2013

Launcher: Vega

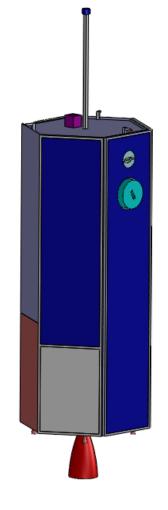
Arianespace Vega


- Cost: **35 M€**
- Liftoff mass: 137 tonnes
- Payload: **1.5 tonnes** to
 800 km altitude
- Mission with **2 s/c**
- Launch site: Guiana

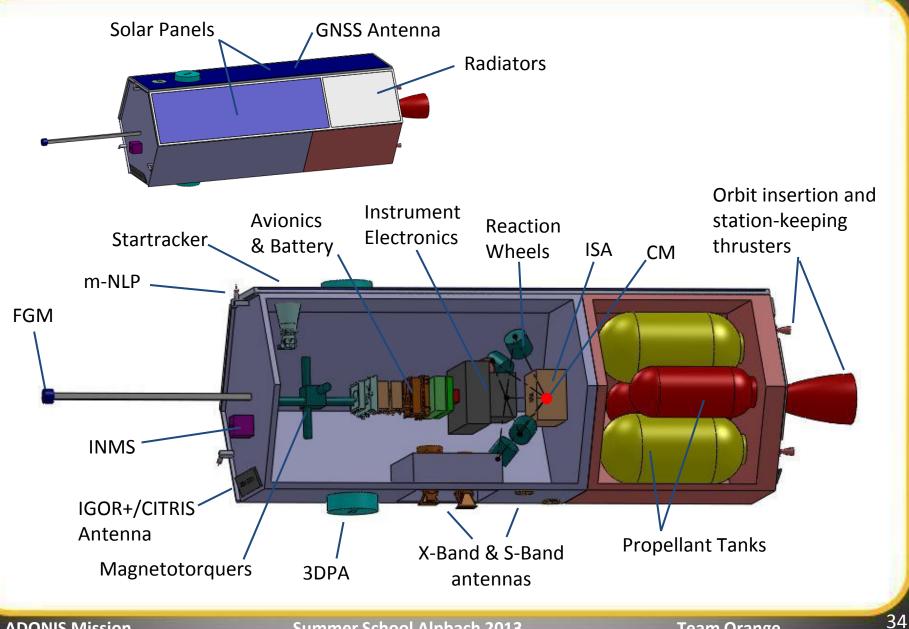
Space Centre, Kourou,

French Guiana

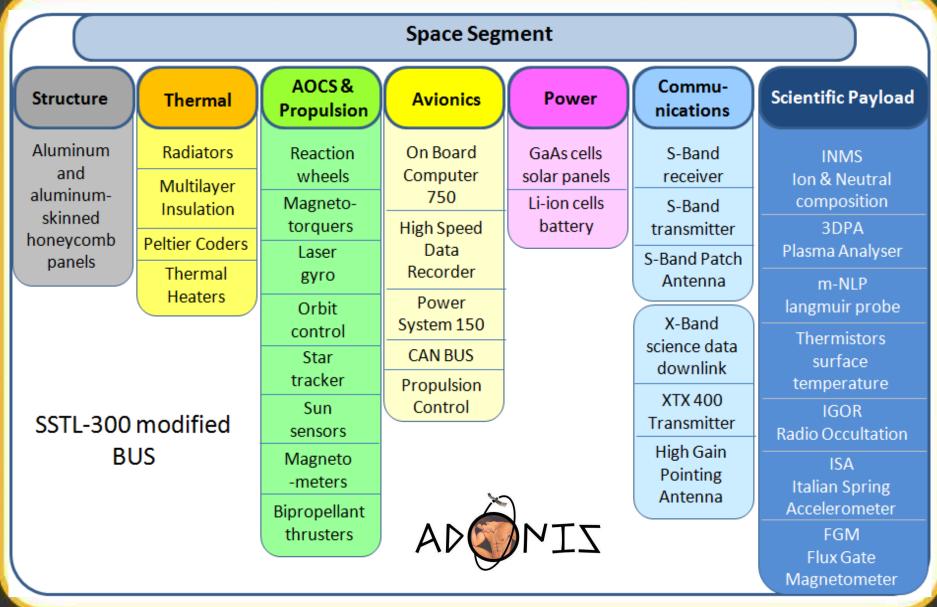
Configuration of S/C in VEGA Fairing



Overview

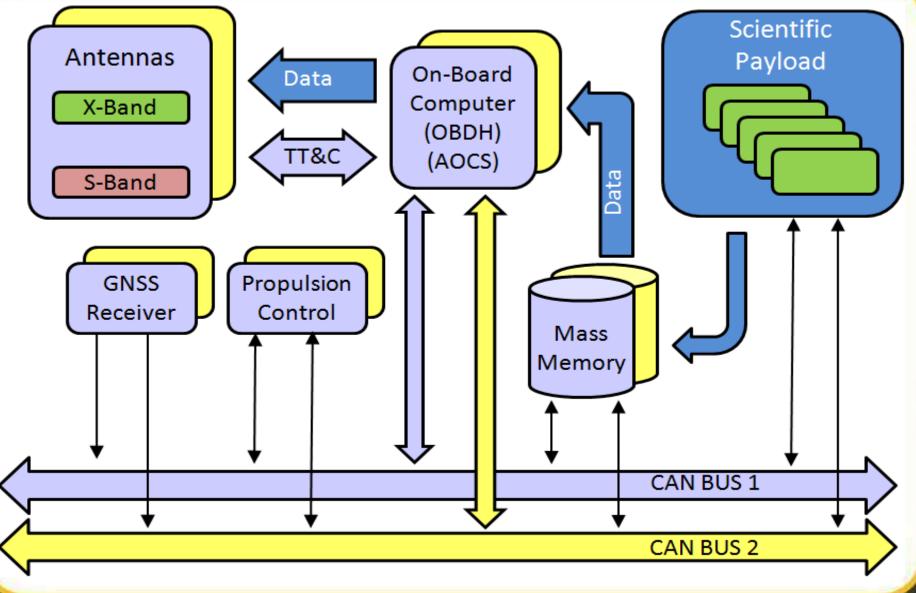

Based on commercial Surrey SSTL-300 platform,

customised to meet mission requirements:


- Small frontal area and simple shape
- Propulsion for orbit insertion and stationkeeping
- Increased lifetime for full solar-cycle
 coverage
- Lightweight structure to meet payload capacity of Vega launcher

Overview

Spacecraft Product Tree


ADONIS Mission

Summer School Alpbach 2013

Team Orange

35

Spacecraft Avionics Architecture

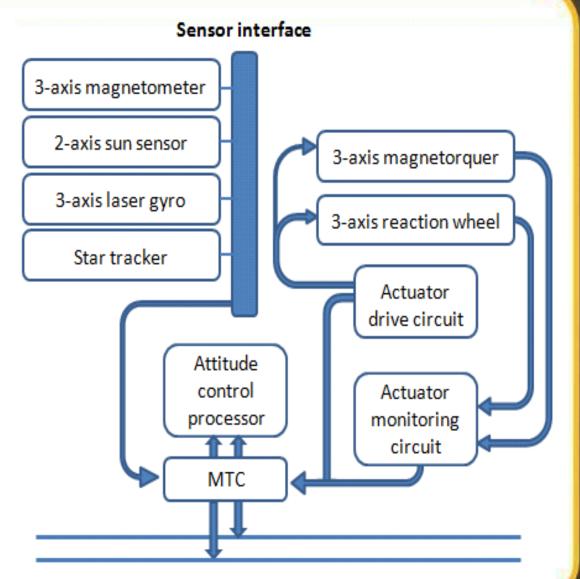
ADONIS Mission

Summer School Alpbach 2013

Team Orange

Propulsion System

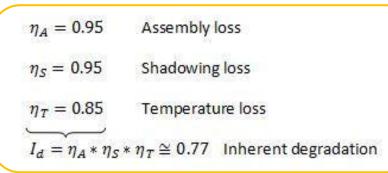
		Modular Elements			
	275 bar He He He He		Maneuver	A-DONIS	B-DONIS
HP Helium Vessels	PCA Pressure Control Assembly			ΔV = 2×140 m/s	ΔV = 2×93 m/s
	MMH 18.5 bar	Pressure Control Assembly	Orbital injection	→ 58 kg (25% margin)	→ 32 kg (25% margin)
			Temporary	ΔV = 5 m/s	ΔV = 100 m/s
Propellant Prop Tanks	ellant Isolation Assembly PIA Fuel PIA Oxid		orbit correction	→ 2 kg (50% margin)	→ 28 kg (25% margin)
	╔┺╦═┛═┨═╤╂╗	Assembly	Elliptical	ΔV = 500 m/s	ΔV = 500 m/s
Fill & Drain Valves F = 10 N Isp = 300 s	et the		orbit correction	→ 75 Kg (40% margin)	→ 75 Kg (40% margin)
130 - 500 3	Apogee Motor	Tubes & Fittings	Avoidance maneuvers	15 kg	15 kg
			Sum	150 kg	150 kg
	F = 1				
	Isp =	300 s Rans orm			

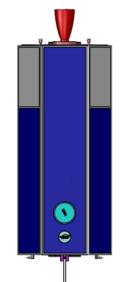

Attitude Control

Attitude control

- Reaction wheels (4 wheels, 0.02 Nm)
- Desaturation with magnetorquers (3 rods,110 Am²)

Attitude determination

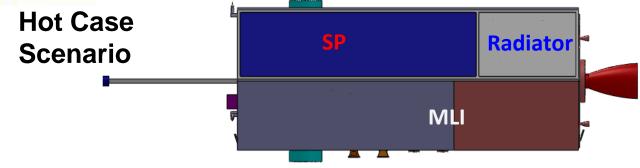

- 2 axis Sun sensors
- 3 axis magnetometers
- Star tracker
- 3 axis gyroscopes (laser gyros)


Power

Solar Panels (SP) design: worst case scenario

	Time spent pr. orbit	Power needed
Sunlight	T _d = 48 min	P _d = 115 W
No SP exposed to sun	T _e = 48 min	$P_{e} = 90 W$

Selected SP cells: (Power Positive)


- NeXt Triple Junction (XTJ): $P_0 = 398 \text{ W/m}^2$ $A_{SP} = 2.5 \text{ m}^2$
- GaInP2/GaAs/Ge $y_{deg} = 2.75\% \rightarrow L_d = 0.72$ (after 12 years)

Lithium Ion Batteries: (Power Negative)

- Capacity: 38 Ah Nominal voltage: 3.6 V
- Max. Current : 38 A 1 battery with mass = 950 g (75% discharge)

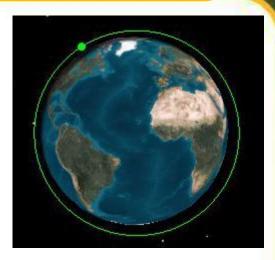
ADONIS Mission

Thermal

Passive Thermal control

- Multilayers Insulation (MLI): exposed surfaces and underneath Solar Panels.
- Radiators: 3 radiators are needed: 2 at the sides and 1 in the back.

$$P_{BOL-SA} + \alpha S \left(\Phi_S + \Phi_{E_{alb}} \right) + \varepsilon S F_{SP} \Phi_{E_{IR}} = n \varepsilon S \sigma T^4$$

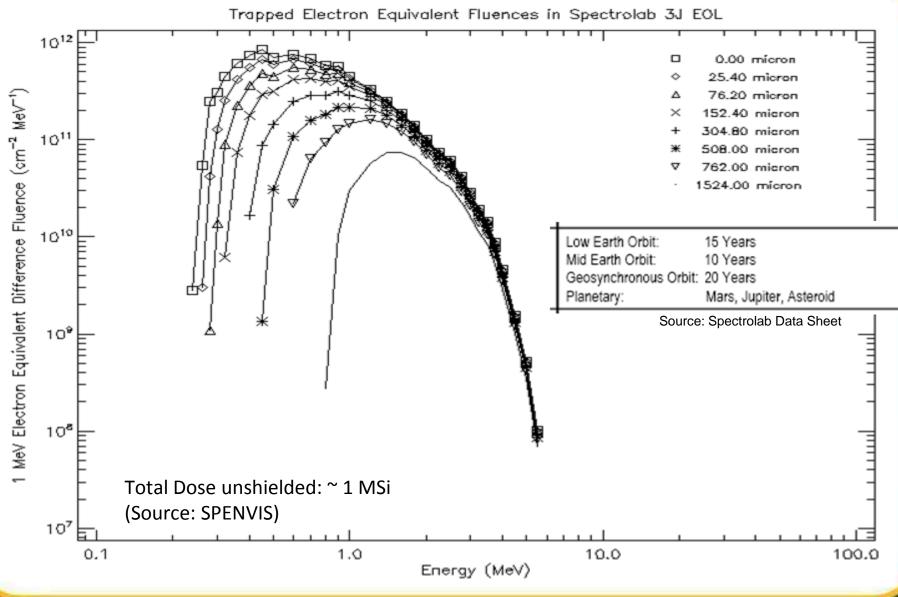

$$S_{rad} = 0.4 \text{ m}^2 \blacktriangleleft$$

The area was selected to

Each radiator will be equipped with louvers.

Active Thermal Control

- Peltier Coolers will be used to "move" the internal heat toward the radiators.
- Thermal Heaters during eclipses.


- : Power to dissipate ~ 275 W P_{BOL-SA}
 - Radiator Absorption α : coefficient ~ 0.1
 - : Radiator area S
 - Solar flux $\sim 1366 \text{ W/m}^2$ Φ_S :
 - $\Phi_{E_{alb}}$: Earth flux due to albedo $\sim 239W/m^2$
 - $\Phi_{E_{IB}}$: Earth flux due to Infra-Red $\sim 400 W/m^2$
 - Stephan-Boltzmann constant σ
 - Emissivity ~ 0.8 : ε
 - F_{SP} : Shape factor ~ 0.4
 - n : number of radiations=3

ADONIS Mission

Summer School Alpbach 2013

Team Orange

Radiation Dose and Solar Cell Degradation


```
ADONIS Mission
```

Summer School Alpbach 2013

Spacecraft Mass Budget

Subsystem	Total (kg)
Structure & Subsystems	325
Avionics & Communications	22
Fuel	165
INMS	3.6
3DPA	1.2
m-NLP	0.3
Boom	3
Thermistors	0.036
CITRIS	5.4
IGOR+	6.96
ISA	9.78
FGM	1.8
TOTAL	545

Mass for launch (kg)			
2 x s/c	1090		
Vega capacity	1500		
Margin for dual s/c adapter	410		

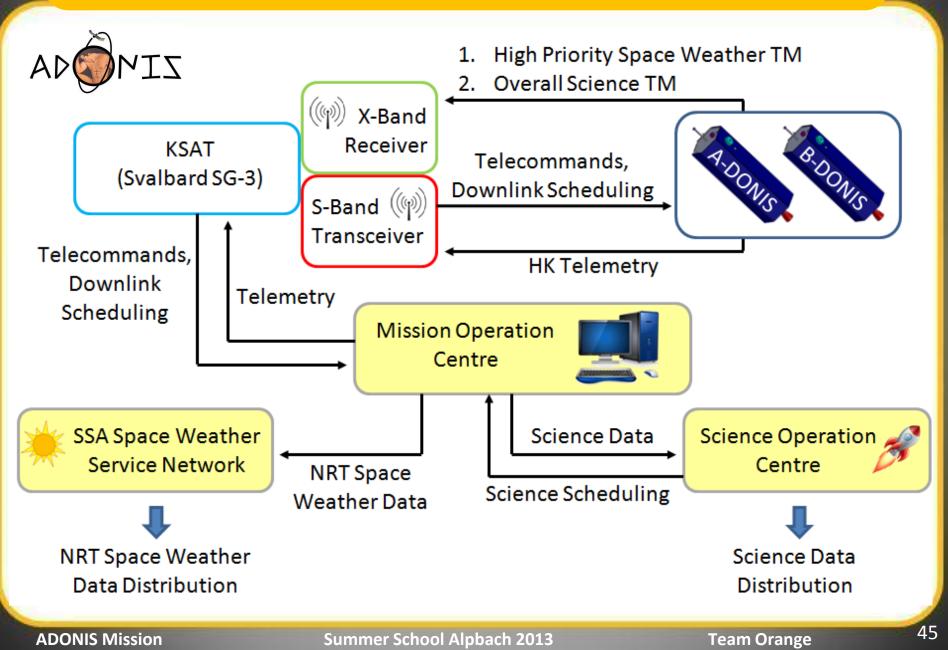
10% margin	
20% margin	

ADONIS Mission

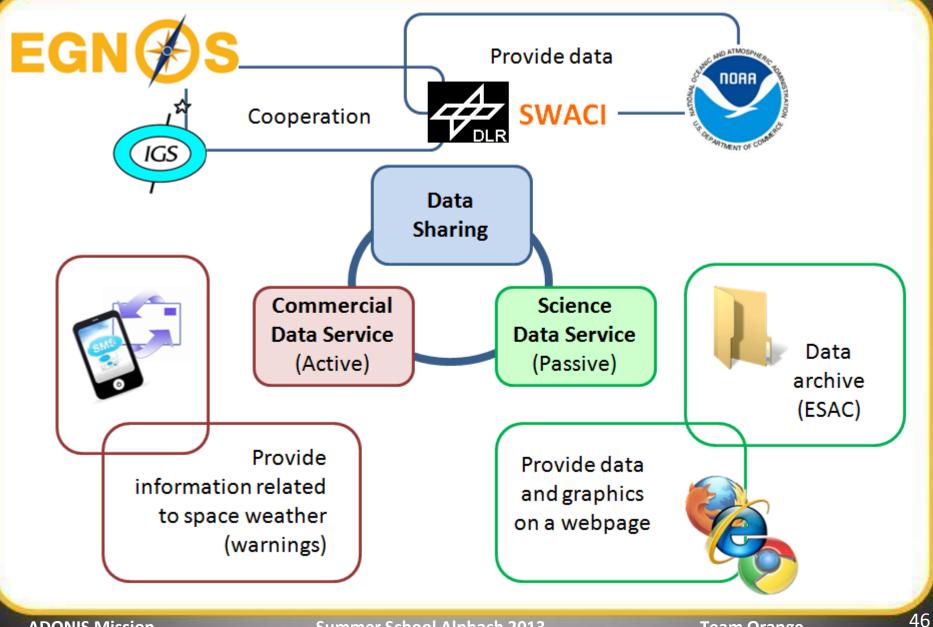
Spacecraft Power and Data Budget

Subsystem	Operation (W)	Data rate (bits/s)
Power provided by Bus	115 (180 peak)	N/A
Avionics	40 (61 peak)	N/A
Communication	15 (50 peak)	N/A
INMS	3	2048
3DPA	1	58000
m-NLP	3.5	1900
Thermistors	0.01	96
CITRIS	12.3	15000
IGOR+	22	20000
ISA	12.1	9600
FGM	0.8	400
TOTAL	110 W (166 W peak)	107 kbps

ADONIZ


Ground Segment & Operations

ADONIS Mission

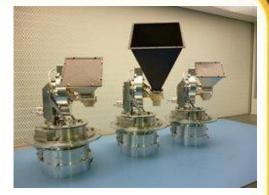

Summer School Alpbach 2013

Team Orange

Ground Segment & Operations

ADONIS Ground Services

ADONIS Mission


Summer School Alpbach 2013

Team Orange

Radio Systems Overview

Parameter	X-Band (down)	S-Band (down)	S-Band (up)
Data rate	105 Mbit/s	38.4 kbit/s	19.2 kbit/s
Frequency	8.5 GHz	2.2 GHz	2.1 GHz
Tx Power	5 W	0.5 W	~15W
Tx Antenna	10 cm horn	8 cm patch	13 m dish
Rx Antenna	13 m dish	13 m dish	8 cm patch
Rx G/T	32 dB	23 dB	-25 dB
Link Margin	6.0 dB	15.4 dB	40.6 dB

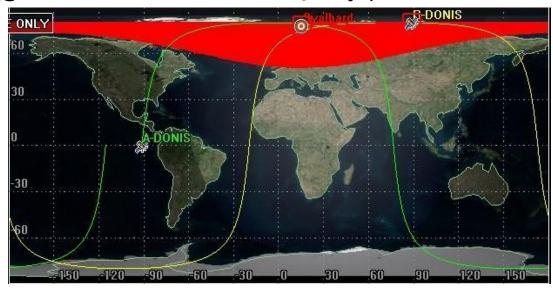
 Calculated using 2200 km slant range (Determined from STK simulation)

ADONIS Mission

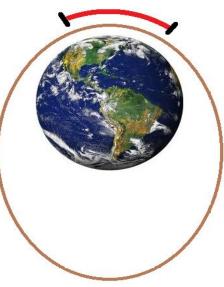
Team Orange

Ground Coverage I

10.5 min/orbit


4.0 min/orbit

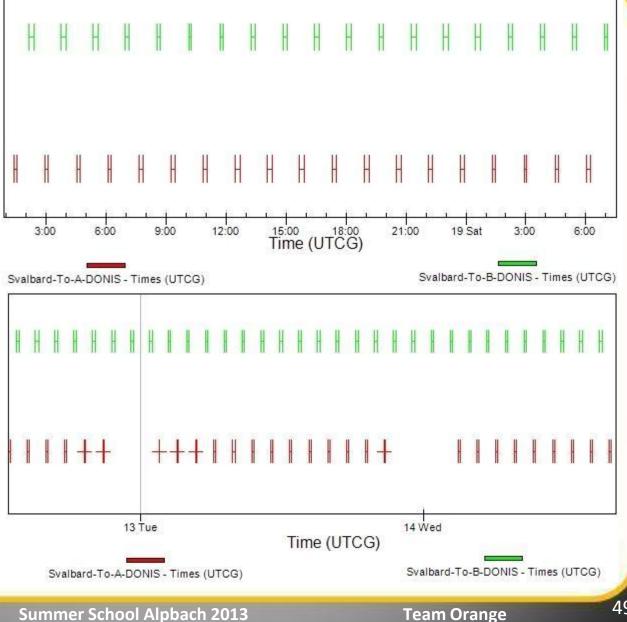
Ground Station (GS) Location: Svalbard (KSAT SG-3)


Orbits with GS coverage: 12.5 of 15.15/day (85%) Worst-case unusable consecutive passes: 4

- Average ground pass time:
- Worst-case ground pass time:

Suggested GS allocation: 4 h/day (for both satellites)

4500 km 10 min


Ground Coverage II

Best case

- ~48 min between downlinks
- >95% of orbits • (both satellites)

Worst case

- ~95 min between downlinks
- ~95% for B-DONIS
- ~85% for A-DONIS (alternating)

Science data generation

Parameter	Data generated
Science generated per orbit	720 Mbit
Science generated in 5 orbits (worst-case)	3600 Mbit
Downlink capacity per orbit	4500 Mbit
Worst case data downlink margin	720 Mbit

- Mass memory capacity: 128 Gbit
- Total generated scientific data during mission: 40 Tbit

Development, Costs & Risks

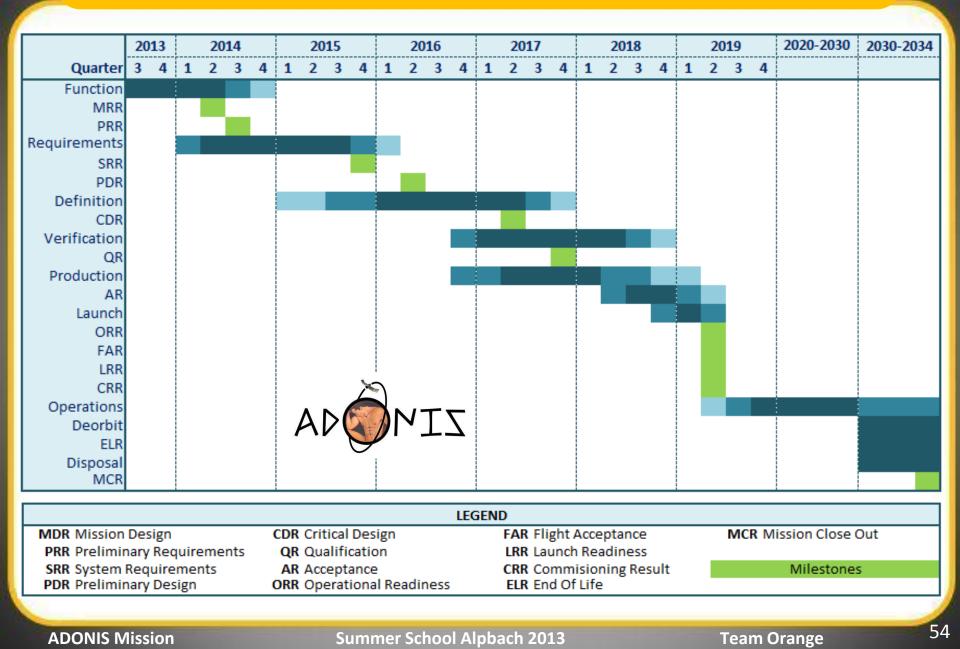
ADONIS Mission

Total Costs

Cost Item	Expected Cost (M€)
Arianespace VEGA launcher	35
2× Spacecraft Standard Platform SSTL	50
Customisation for SSTL	60
2× Propulsion Module	35
2× Total Payload	50
Ground Operations	45
Total	275

Descope Options:

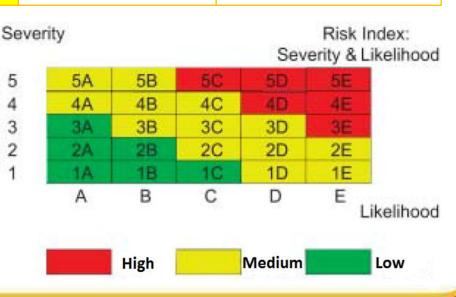
- One spacecraft, less resolution, total descope mission cost: 165 M€
- Shorter mission (5 years), total mission cost: 251 M€


Mission Operations Costs

Parameter	Yearly cost
Satellite tracking	750 k€ / year
Mission Control	2000 k€ / year
Science Operations	1000 k€ / year
NRT Operations	300 k€ / year
Total cost	4050 k€ / year

Total missions operations cost (11 years): 45 M€

Mission Timeline



Risks

Identified risk	Severity	Likelihood	Impact	Mitigation
Launcher failure	5	С	performance	accepted
Plasma analyser not space proven	2	С	performance	replace with existing simpler instrument
Space weather	3	С	performance	accepted
Bus customisation	3	С	cost	replace with different

→ No higher risk than an average Low Earth Orbit mission

P. Falkner, Alpach 2013

Team Orange

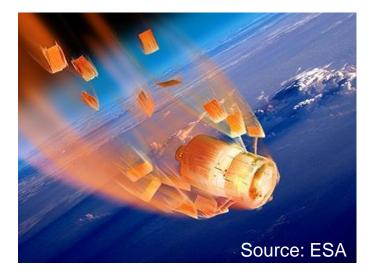
ADONIS Mission

Disposal

ADONIS Mission

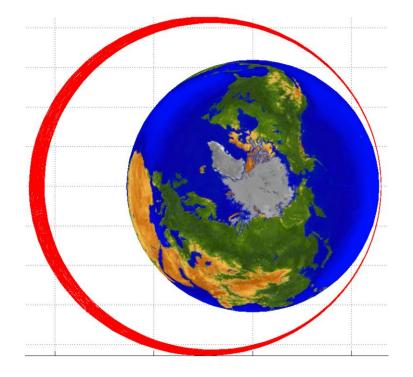
Summer School Alpbach 2013

Team Orange


Disposal

ESA requests the removal of space systems in the **LEO region** not later than **25 years after the end of the mission**.

The **orbital decay** will be part of the **scientific phase**, and will allow to:



- 1. study the drag at **300 km with different perigee velocities** (circularisation phase);
- 2. study of the drag below 300 km until re-entry of the satellites (spiralisation phase);

Disposal Strategy:

Controlled re-entry using thrusters over unpopulated areas as a part of the mission.

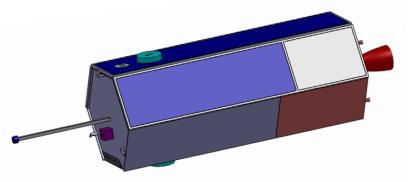
Summary

ADONIS Mission

Summer School Alpbach 2013

Team Orange

Summary – Novelties – Usages


Summary:

- In-situ measurement of drag parameters
- New altitudes, long duration
- Correlation with SWE
- Data to improve ionospheric models
- NRT data near polar regions

Benefits:

- Launch optimisation
- De-orbiting
- Fuel estimates for s/c
- Reduce environmental **pollution** (rerouting polar flights + 30% fuel)
- Optimisation of broadcast power
- **TEC map** improvement

Thank you for your attention!

