ESA Summer School Alpbach 2013

Photospheric And Chromospheric and Coronal Magnetic field ANalyser

 Green Team: Jorge Amaya, Viktor Andersson, Andrea Diercke, Christian Höller, Sergiu Iliev, Lilla Juhasz, René Kiefer, Riccardo Lasagni, Solène Lejosne, Mohammad Madi, Sophie Musset, Mirko Rummelhagen, Markus Scheucher, Arianna Sorba and Stefan Thonhofer

Green Team – Thursday 25 July 2013

Our mission will study properties of CMEs and flares by observing different layers of the solar atmosphere, as well as the interplanetary space, with emphasis on the generation and further development of CMEs.

Many unanswered questions about CMEs/flares

- How are flares and CMEs initiated?
- What is driving CMEs up to their observed speeds?
- How can we measure the vertical component of B?

→ The key to these questions is the changing magnetic field throughout the solar atmospheric layers

[Su et al., 2013 (Nature Physics)]

- Knowing the physical properties of magnetic energy build up and release allow us to forecast when flares and CMEs are initiated, and how strong they become
- Currently no (permanent) measurements of coronal magnetic fields are available
- To understand why flares and CMEs occur, we need information about the entire process of magnetic energy build up from photosphere to corona

Primary objective:

To understand and predict the initiation and development of potentially hazardous CMEs and flares.

Secondary objective:

To determine the speed and direction of CMEs in order to forecast in *near real-time* solar wind conditions near the Earth.

Measures of a Successful Mission

- 1) Improve existing models of CME propagation by providing previously unknown data about the **initiation** of CMEs.
- 2) Determining the likelihood of flare and CME incidences with high statistical significance within 2-3 days [Reinard et al., 2010].
- Correlate observed events at the solar surface with their effects on the near-Earth solar wind (for secondary objective).

Key Achievements (needed to achieve our goals)

- 1) Measurement of coronal magnetic field vectors.
- 2) Successful **combination of** photospheric, chromospheric transition region and coronal magnetic field measurements.

Scientific Goals and Physical Measurements

SUN / HELIOSPHERE		SUN / HELIOSPHERE MEASUREMENTS
Magnetic field in the photosphere and chromosphere		Full Stokes vector in the photosphere, chromosphere ar the lower corona from two overlapping perspectives
Magnetic field of the corona	\rightarrow	Scattered white light in the upper corona
Coronal structures		EUV light in the upper corona
Initiation, speed and direction of CMEs near the Sun		Scattered light of CMEs between the corona and the Ear
Speed and direction of CMEs up to Earth		
SOLAR WIND near the Earth		SOLAR WIND near the Earth MEASUREMENTS
In-situ magnetic field near the Earth		IMF components near the Earth
Solar wind particles at low energies	\longrightarrow	Solar wind electron and proton density, velocity distribu and energies
High energy particle properties at 1 AU	\longrightarrow	High energy particles density and energies

Physical Measurements and Requirements

SUN / HELIOSPHERE MEASUREMENTS		Exposure times	FoV	Reason
Full Stokes vector in the photosphere, chromosphere and the lower corona from two overlapping perspective		1 – 20 s	Full disc up to 2 Rs	To detail the flare initiation, choice of spectral lines
Scattered white light in the upper corona	\longrightarrow	5 s - 2 min	2 Rs - 30 Rs	Signal to noise ratio vs accuracy
EUV light in the upper corona	\longrightarrow	5 - 20 s	Full disc up to 1.6 Rs from solar center	Low density
Scattered light of CMEs between the corona and the Earth		50 s	30 Rs - 260 Rs	Low density

SOLAR WIND near the Earth	Sampling times	Measurement ranges	Resolution	Reason
IMF components near the Earth	100 vectors / s	+/- 1000 nT	0.1 nT	Quiet IMF ~10 nT; CMEs ~100 nT
Solar wind electron and proton density, velocity distribution and energies	3 - 30 s	1 eV - 100 keV	ΔE/E ~0.2	3D velocity distribution functions, electrons, protons and heavy ions
High energy particles density and energies	1 min	1 keV - 100 MeV	ΔE/E ~0.2	Flares and CMEs particles

Today's Instruments

Extrapolation of the chromospheric and coronal field from photospheric measurements

One example: AR 11158, February 2011

25/07/2013

9

From the extrapolation: computation of the energy which can be released during a flare/CME event

25/07/2013

25/07/2013

-72h -48h -24h 0h 24h 48h 3 - (a) signed current Unsigned flux (×10¹³ A) (×10²² Mx) ×10²⁰ Mx h¹ Unsigned flux Flux change Flux change fate Computation by extrapolating the energy which can be 6匚(b) Unsigned current released during a flare/CME event 2.6 Free energy 2 = (c) NLFFF PF 1.9 ⊏(d) .28 2.6Free energy .24 .ĕ<mark>≓</mark>(e) 0h 2h 6h 8h 4h **E**NLFFF 1.28 E_{NLFFF}/E 1.24 0h 2h 6h 8h 1.2 X-class flare Free energy density ×10⁴ erg cm⁻³) 20 ⊐(f) GOES flux (W m⁻²) Altitude (Mm) T = 0h Energy loss = $(0.34 \pm 0.04) \times 10^{32}$ erg 10 But energy in accelerated electrons $= (0.5 \pm 0.2) \times 10^{32} \text{ erg!}$ 104 10 10 (without taking into account kinetic 10 02/12 02/13 02/14 02/15 02/16 02/17 energy of CME!) Date 25/07/2013

Our Measurements

Vector magnetic field measurements in different layers of the solar atmosphere

Coronal measurements: Hanle and Zeeman effect, off-limb

СоМР

Photospheric and chromospheric measurements: Zeeman effect, disc centre

SOHO/MDI

TRACE, 08/09/2005, 11:42

 \rightarrow Need for two satellites at 90°

Our Measurements

Measurements of direction, speed and shape of CMEs

STEREO and SOHO coronagraphs: combination of two points of view

STEREO/COR2 AHEAD, 05/03/2013

SOHO/LASCO/C3, 05/03/2013

Need two satellites for a stereoscopic view

<u>Forecast</u> of speed and direction from the <u>beginning</u> of the mission Great support to the ESA SSA program

Why two satellites with different lines of sight?

- To measure **one** event throughout the entire solar atmosphere:
 - Photosphere, chromosphere from Earth line-of-sight
 - Corona from wide angle
- To measure the direction of the CMEs need two different views for triangulation.
- To observe CMEs propagating towards Earth.

Instruments

EUV Imager Magnetic Imager Inner coronagraph Outer coronagraph In-situ instruments

SCE

SC80 EUV Imager Magnetic Imager Inner coronagraph Outer coronagraph

25/Heliopsheric Imager

Instrument Overview for Spacecraft SCE

Instrument	Extracted Parameters	Field of View
IR/UV Polarimeter & Coronagraph C1	Magnetic field of lower corona	1.1 – 2 Rs
Multichannel Magnetic Imager (MMI)	Magnetic field of photosphere and chromosphere	1.07 Rs
Coronagraph C2	Observation of CMEs near sun	2 – 30 Rs
EUV Imager	Coronal Structures	1.6 Rs
Fluxgate Magnetometer (FGM)	IMF components near the Earth	N/A
Low Energy Solar Wind Sensors (LEWIS)	Solar wind electron and proton properties	360°, 65° Azimuth and 45° Elevation
High Energy Particle Sensor (HEPS)	High energy particles density, velocity distribution and energies	30°, 22°, 40°, 50°, 60x70°

IR/UV Polarimeter & Coronagraph C1

Measurements	Access to weak and strong fields in the corona (off- limb), Measurement of the full Stokes vector	Pixel size [arcsec]	5
		Mass [kg]	50
		Size [cm]	200 x 60 x 25
Spectral Range	UV: ΗΙ Lyα line at 121.6 nm IR lines: FeXIII 1074.7 & 1079.8 nm , He I 1083.0 nm Visible Light: 560 nm	Power [W]	80
		Data Volume per Day	SCE: 4.7 GByte SC80: 238 MByte
FOV [Rs]	1.1 – 2.0	Operation Temperature	Detector: 223
Detector Size [pixel]	1024 x 1024	[K]	IR-Polarimeter: 303

Coronagraph C2		
Measurements	Observation of CMEs near sun	
Spectral Range	400-850nm	
FOV [Rs]	2 - 30	
Image Size	1024 x 1024	
Pixel Size [arcsec]	56	
Mass [kg]	15	
Size [cm]	140 x 40 x 32	
Power [W]	5	
Data Volume per Day	3.84 MByte	
Operation Temperature [K]	193	
Heritage	SOHO LASCO C3	

EUV Imager		
Measurements	Coronal Structures	
Spectral Range	17.4 nm	
FOV [Rs]	1.6	
Image Size	1024 x 1024	
Pixel Size [arcsec]	3.2	
Mass [kg]	11	
Size [cm]	56 x 15 x 12.5	
Power [W]	5	
Data Volume per Day	21.6 MByte	
Operation Temperature [K]	233 - 333	
Heritage	PROBA-2 SWAP	

	Low Energy Solar Wind Sensors (LEWIS)		
High energy particles Satellite environment Larmor radius ~5,5m	Sub-Instruments	EAS, PAS, HIS	
	Measurements	Solar wind electron and proton properties	
	FOV	EAS: 360° PAS: 65° Azimuth, 45°Elevation HIS: 96° A, 34° E	
	Mass [kg]	18.65	
	Size [cm]	EAS: 11.6 x dia 13.6 PAS: 30 x 20 x 20	
	Power [W]	15.6	
	Data Volume per Day	32.7 MByte	
	Heritage	Ulysses, ACE, STEREO, Solar Orbiter	
	High energy particles Satellite environment Larmor radius ~5,5m	Low Energy Solar W Sub-Instruments Measurements FOV FOV Mass [kg] Satellite environment Larmor radius ~5,5m Power [W] Data Volume per Day Heritage	

MAG, EAS, EPT outside the Larmor radius

Fluxgate Magnetometer		
Measurements	IMF components near the Earth	
Mass [kg]	1.94	
Size [cm]	Fluxgate-sensor: 9.75 x 4.9 x 6.7 Electronics: 15.9 x 16.2 x 9.8	
Power [W]	4.39	
Data Volume per Day	147.7 MByte	
Heritage	VEX, THEMIS, Rosette Lander, Double Star, Solar Orbiter	

25/07, Energy Rate of HEPS [http://www.ieap.uni-kiel.de/et/solar-orbiter]

High Energy Particle Sensors (HEPS)		
Sub- Instruments	EPT, SIS, LET, HET, STEIN, CDPU/LVPS	
Measurements	High energy particles density, velocity distribution and energies	
FOV	EPT: 30°, SIS: 22°, LET: 40°, HET: 50°, STEIN: 60° x 70°	
Mass [kg]	15.68	
Size [cm]	EPT: 11 x 7 x 12 SIS: 35 x 13 x 11 LET: 22 x 15 x 11 HET: 13.6 x 17 x 16.2 STEIN: 10 x 13 x 13 CDPU/LVPS: 15x15 x10	
Power [W]	29.95	
Data Volume per Day	10.5 MByte (79.8 MByte in burst mode)	
Heritage	STEREO, SOHO, ACE, Solar Orbiter	

Instrument	Extracted Parameters	Field of View [Rs]
IR/UV Polarimeter & Coronagraph C1	Magnetic field of lower corona	1.1 – 2
Magnetic Imager	Magnetic field of photosphere and chromosphere	1.07
Coronagraph C2	Observation of CMEs near sun	2 – 30
EUV Imager	Coronal Structures	1.6
Heliospheric Imager (HI)	Properties of the propagation of CMEs through interplanetary space	30 – 216

Combined FoV of SC80

25/07/2013

Heliospheric Imager		
Measurements	Properties of the propergation of CMEs through interplanetary space	
Spectral Range	400nm – 1000nm	
FOV [Rs]	30 - 216	
Image Size	2048 x 2048	
Pixel Size [arcsec]	148	
Mass [kg]	15	
Size [cm]	65 x 33 x 20	
Power [W]	10	
Data Volume per Day	0.42 MByte	
Operation Temperature	193K	
Heritage	STEREO SECCHI HI	

Magnetic Imager						
Measurements	Magnetic field of photosphere and chromosphere					
Spectral Range	Fe 617,3nm					
FOV [Rs]	1.07					
Image Size	4096 x 4096					
Pixel Size [arcsec]	0.5					
Mass [kg]	73					
Size [cm]	120 x 85 x 30					
Power [W]	95					
Data Volume per Day	645 MByte					
Operation Temperature	CCD: 233K Tunable Optics: 300K					
Heritage	SDO HMI					

Technology Readiness Levels (TRL)

Wide Angle Satellite Orbit Trade Matrix

Parameter	L5	90°	80°	Importance	L5	90°	80°
Field of view	1	5	4	4	4	20	16
Communication	5	2	4	3	15	6	12
Propellant - cost	4	3	3	1	4	3	3
Environment	2	4	4	1	2	4	4
Transit time	4	3	3	1	4	3	3
					29	36	38

Wide Angle Satellite Orbit Trade Matrix

Parameter	L5	90°	80°	Importance	L5	90°	80°
Field of view	1	5	4	4	4	20	16
Communication	5	2	4	3	15	6	12
Propellant - cost	4	3	3	1	4	3	3
Environment	2	4	4	1	2	4	4
Transit time	4	3	3	1	4	3	3
					29	36	38

\rightarrow 80° satellite chosen: SC80

Earth Line-of-Sight Satellite Orbit Trade Matrix

Parameter	L1	SSO	Elliptic	Importance	L1	SSO	Elliptic
Time of							
observation	10	7.5	5	10	100	75	50
Communication	5	10	8	7	35	70	56
Propellant - cost	5	9	7	4	20	36	28
Environment	9	5	2	5	45	25	10
Pointing Stability	10	8	4	7	70	56	28
IMF, MM	10	0	3	2	20	0	6
ENA	0	1	5	4	0	4	20
Plasmasphere	0	0	7	4	0	0	28
Aurorae	0	3.5	7	4	0	14	28
Exosphere	0	0	5	4	0	0	20
					290	280	274

25/07/2013

Earth Line-of-Sight Satellite Orbit Trade Matrix

Parameter	L1	SSO	Elliptic	Importance	L1	SSO	Elliptic
Time of observation	10	7.5	5	10	100	75	50
Communication	5	10	8	7	35	70	56
Propellant - cost	5	9	7	4	20	36	28
Environment	9	5	2	5	45	25	10
Pointing Stability	10	8	4	7	70	56	28
IMF, MM	10	0	3	2	20	0	6
ENA	0	1	5	4	0	4	20
Plasmasphere	0	0	7	4	0	0	28
Aurorae	0	3.5	7	4	0	14	28
Exosphere	0	0	5	4	0	0	20
1 estellite chas					290	280	274
I Salenne chosen: SCE							

33

Type of orbit: Halo around Lissajous orbit (at L1)

Orbital Parameters

Oscillation period (xy): 177 566 days

Oscillation period (z): 184.0 days

Mean earth-sat distance: 1.5×106 km (L1)

Amplitude of oscillations in E-S distance Ax: 260 000 km

Amplitude of oscillations Az: 400 000 km

Amplitude of oscillations Ay: 828 680 km

Minimum elongation: 14.9°

Estimated transfer time (SOHO): 3.5 months

Delta V budget					
Compensation for perigee velocity variation	12				
Removal of launcher dispersion	50				
Orbit maintenance per year	10 *				

Type of orbit: Elliptical at 1AU trailing the Earth from a tilted angle of 80°

Elliptical transfer orbit	Delta V budget
Perihelion: 1AU	Injection into transfer orbit: 1.02 km/s
Aphelion: 1.15 AU	(Soyuz)
Semi-major axis: 1.073 AU	Injection into final orbit: 1.02 km/s
Eccentricity: 0.0678	Orbit Maintenance: None
Orbital period 13.3 months	
Transfer total time: 26.7 months (2 elliptical	
lapses)	

Final elliptical Orbit

Maximum oscillation around the 80° tilt: within +/- 3°

SC80 Orbit

When to launch?

- Want to measure over the peak period in solar activity
- Initially plan to be operational over 6 years with possibility of extension to one whole solar cycle
 - \rightarrow Arrive ~ 3 years before solar maximum

Satellite	SCE
Launcher	Soyuz
Launch site	Kourou, French
	Guiana
Launcher	Injection into an Earth
objective	escape orbit with
	c ³ =0.08 km ² /s ²
Transfer	Lissajous orbit
orbit	towards Earth's L1
Delivered	2150 kg
payload	
Launch date	7 July 2032
Arrival date	22 Oct 2032

Satellite	SC80
Launcher	Soyuz
Launch site	Kourou, French
	Guiana
Launcher	Injection into an
objective	Earth escape orbit
	with
	c ³ =1.15 km ² /s ²
Transfer orbit	Elliptical orbit
	outside of the Earth
	orbit
Delivered	2100 kg
payload	
Launch date	14 Dec 2031
Operation start	22 Jan 2033
Arrival date	1 March 2034

Launch and Transfer Timeline

14 DEC 2031 - SC80 is launched via Soyuz

7 JULY 2032 - SCE is launched via Soyuz

22 JULY 2032 - SC80 begins commissioning

22 OCT 2032

- SCE arrives at L1 and begins commissioning

22 JAN 2033

- SCE becomes operational
- SC80 arrives at 40°, and becomes operational

1 MARCH 2034

-SC80 arrives at 80° final position

Our technological decisions are based on these requirements:

- High volume of data from SC80
- In-situ probing of the plasma environment in a clean electromagnetic environment
- Communication with both spacecraft for 24/7
- 6 year mission with a possible 6 year extension
- Costs of operations of a Space Weather forecasting system

Quiet Solar Wind Environment at 1 AU

Parameter	Value
Electron number density	9 cm ⁻³
Electron temperature	5 eV
IMF magnitude	7 nT
Larmor radius	5,53 m
Electric potential facing the Sun	+10 V
Electric potential in the shadow	-20 V
Solar radiative power	1400 Wm ⁻²
Total ionizing dose (SPENVIS)	30 Krad (Si)

Spacecraft Architecture Design

SCE - Spacecraft Overview

SC80 - Spacecraft Overview

Subsystems

Attitude Control System (AOCS) requirements:

- To provide a resolution of 0.5" over 4 s exposure time (MMI).
- To provide a resolution of 3" over a 20 s exposure time (IR-EUV Polarimeter).

ACTUATION DEVICES	Components	Rationale
	Reaction wheels	Pitch and yaw axis torqueing Roll passive stability during Science Mode
	Hydrazine thrusters	 Pitch, yaw, roll axis torqueing during Safe Mode Angular momentum dissipation

Components	Rationale
Sun sensors	 Initial attitude acquisition from unknown orientation Coarse attitude during pre- Science Mode
Star trackers	Fine attitude during Science Mode
Gyroscopes	Rate error calculations for data processing

SENSOR DEVICES

Attitude Control - Sensors

Star trackers:	Hast
Number:	1
Provider:	Ball Aerospace & Technologies
Accuracy:	0.1" (1σ)
Legacy:	Chandra Observatory

Sun sensors:	S3 Smart Sun Sensor
Number:	2
Provider:	SELEX Galileo
Accuracy:	<0.02 ° (2 σ)
Legacy:	Columbus module (ISS) Lisa Pathfinder

Gyroscopes:	Astrix 200
Number:	1
Provider:	Astrium
Bias Drift:	0.0005''/s
Legacy:	Pleiades satellites

[http://www.ballaerospace.com/]

[http://www.selex-es.com/]

[http://www.astrium.eads.net/]

Attitude Control- Actuators

Reaction wheels	RSI 68
Number	4
Provider	Rockwell Collins
Legacy	Venus Express, Mars Express

Thrusters	10 N bi-propellant
Number	16
Provider	Astrium
Legacy	Many missions

[http://www.rockwellcollins.com/]

51

- External perturbations (torque)
- Solar radiation and Magnetic field

Assumptions	
Magnetic Field	1-1000 nT
Dipolar Momentum of Space Craft	1 A·m²
Solar Constant	1400 W/m ²
Reflectivity	0.6
C _m -C _p displacement	0.5m
Margin	50%
Total Torque	31.7 μNm

Thrusters Torque: 7.5 Nm

Fuel Usage:
$$\frac{T_p}{T_t \cdot F} \cdot n$$

T_p: Torque of portubation T_t: Torque of Thrusters F: Fluxrate n: Seconds per year

→ Total Fuel (+100% margin): 1.12 kg/year

Attitude Control

Attitude control requirements

	SCE	SC80
Mass [kg]	1100	1700
I _x [kgm ²]	532	757
Iz [kgm ²]	900	1324
l _y [kgm²]	780	1204

$$t = \sqrt{\frac{\theta_{req}}{\alpha}} \qquad \alpha_i = \frac{T_{pert}}{I_i}$$

$$\theta_{req} = 0.5'' \rightarrow 10 \text{ s}$$

$$\theta_{req} = 3'' \rightarrow 40 \text{ s}$$

ち

Even with strong perturbations we are able to provide the required accuracy 25/07/2013

The control subsystem requirements:

The control subsystem needs to provide a reliable, fault-tolerant possibility of operating all subsystems as well as the whole spacecraft.

Control Subsystem

- On-board Communication:
 - SVM: CAN-Bus
 - PLM: SpaceWire

• SCU:

- Failure Detection and Recovery
- Command Execution
- Data Handling
- Service Module (SVM):
 - Operational Control
- Payload Module (PLM):
 - Payload Control
 - Data Processing

Communication subsystem requirement:

The communication subsystem needs to be capable of transmitting 43.2 GB (SCE)/910 MB (SC80) per day along transmission path with a distance of $1.5 \cdot 10^6$ km (SCE)/193 $\cdot 10^6$ km(SC80).

Communication Subsystem

X/X Deep Space Transponder (Thales)

Steerable X-Band HG Antenna (Thales)

	SCE	SC80
TWTA – RF Power	15 W	160 W
HGA Diameter	0.5 m	2.3 m
LGA Gain	4.5 dBi	4.5 dBi

TWT Amplifier 160W (Thales)

LGA X-Band (MCI)

Link Budget:	SCE – HGA	SCE – LGA	SC80 – HGA	SC80 – LGA
Frequency in GHz	8.5	8.5	8.5	8.5
Distance	0.01 AU	0.01 AU	1.29 AU	1.29 AU
Bit Rate in kbps	10500	50	201	0.2
Transmission Power in W	15	15	160	160
Antenna Diameter in m (Satellite)	0.5	0.5	2.3	2.3
Antenna Diameter in m (Ground Station)	15	15	15	15
Coding Gain in dB (CR = ½)	6	6	6	6
Modulation	BPSK	BPSK	BPSK	BPSK
Link Margin	4.6	3.9	3.2	3.4

Operations & Ground Segment

ESTRACK Tracking Stations – Communication

Mission Operations Centre & Science Operations Centre

Ground Stations

Thermal requirement:

The thermal subsystem shall keep the temperature of each spacecraft at 20 degrees during operations.

Cooling requirement:

Only the detectors of the imaging devices need passive cooling.

One side always sun-facing and radiators placed on sides not facing the sun!

Hot case

- Constant case during both s/c final orbits
- 1 AU from the sun
- Negligible radiation from the Earth
- Required radiator area is 1.6m²

Cold case

- SCE cold case is during its transfer to L1
- SC80 cold case is during its transfer orbit at 1.15 AU from the sun
- SC80 requires an extra 110 W heating power during this cold case

Required heating power taken from TT&C during transfer.

- The power subsystem shall supply continuous electrical power to spacecraft for peak loads during mission life
- The spacecraft shall survive 12h without external power
- The power subsystem shall support 150 % of nominal required power at end of life
- The power subsystem shall support energy for a deployment time of 2h

	Panel Area (Ssa) [m²]	Solar Flux (1 AU) [W/m ²]	Cell Efficiency (20-25%)	Coverage ratio (0.9)	Massic efficiency of solar array	Power generated	Mass of solar array [kg]
SCE	2.2	1400	0.25	0.9	30	671.5	22.4
SC80	2.7	1350	0.25	0.9	30	819.2	27.3
Safety Factor	1.5						

Power Storage

	Energy required at spacecraft level [Wh]	Massic energy [Wh/kg]	Depth of discharge [%]	Mass of the batteries [kg]
SCE rechargeable	2726.4	150	0.5	36.352
SC80 rechargeable	3096	150	0.5	41.28

\rightarrow Survival Time without external energy: 12h

	Energy required at spacecraft level [Wh]	Massic energy [Wh/kg]	Depth of discharge [%]	Mass of the batteries [kg]
SCE primary	454.4	400	1	1.136
SC80 primary	1076	400	1	2.69

\rightarrow Deployment time: 2h

$$M_b = \frac{E}{M_e \cdot D}$$

 M_b : Mass of batteries [kg] E: Energy required at spacecraft level M_e : Massic energy D: Depth of discharge

MMH+N₂O₄ bi-propellant chemical engine

We require a ΔV =1.02 km/s for SC80 orbit injection

We will use one Astrium Apogee Model S400-15 engine

400N On SC80

- Impressive heritage (40 years of use) From Galileo to Venus Express \rightarrow high TRL
- Monomethylhydrazine fuel and pure Di-Nitrogen-Tetroxide N₂O₄ oxidizer
- Supplied as a completely assembled module with supporting structure and thermal shield

Thrust (Nominal)	420 N
Thrust Range	340-440 N
Specific Impulse	318 s
Mixture ratio	1.65
Power	35 W
Coil Voltage	27 V
Single-burn life	1.1 hours
Total-burn life	8.3 hours
Total Engine Mass	3.6 Kg

© Astrium 2013

Propulsion Systems – Attitude Engines (SCE & SC80)

MMH+N₂O₄ bi-propellant chemical engines

We require a ΔV = 65m/s for orbit injection (SCE) and 10m/s/year for attitude control (SC80 and SCE)

We will use a number of Astrium Model S10-21 engines

- 3000+ units have been used in space missions to date \rightarrow high TRL
- Monomethylhydrazine fuel and pure Di-Nitrogen-Tetroxide N₂O₄ oxidizer
- designed for both long term steady state and pulse mode operation
- single seat value \rightarrow 50% reduced mass

Thrust (Nominal)	10 N
Thrust Range	6-10 N
Specific Impulse	291 s
Mixture ratio	1.65
Cycle life	1 million
Single-burn life	15 hours
Total-burn life	70 hours
Total Engine Mass	0.35 Kg

On SCE & S80

10N

Propulsion Systems- Fuel and Oxidiser Storage

SC80

350 Kg MMH

Astrium OST 01/X	
Shape: Elliptical	2x
Tank mass: 16kg	
Diameter: 600mm	
Height: 680mm	

SE

60Kg MMH

Astrium OST 31/0
Shape: Spherical
Tank mass: 6.4kg
Diameter: 586mm

2x

1x

$210 \text{Kg} \text{ N}_2\text{O}_4$

Astrium OST 01/X
Shape: Elliptical
Tank mass: 16kg
Diameter: 600mm
Height: 800mm

35Kg N₂O₄

Astrium OST 01/X Shape: Spherical Tank mass: 6.4kg Diameter: 586mm

Budgets

Element	Mass [kg]	Technology Maturity Margin	Comments
Payload (M _{PL})	206.7	20%	15% to 50% of M _{dry}
Propulsion (M _{propulsion})	14.4	5%	
Attitude Control (M _{gnc})	90.3	5%	
Communications (M _{com})	52.5	5%	
Command & Data Handling (M _{codh})	22.0	10%	
Thermal (M _{th})	41.7	10%	2% to 12% of M _{dry}
Power (M _{ep})	62.2	5%	
Structure & Mechanisms (M _{sam})	125.1	10%	8% to 12% of M _{inj} or 15% to 25% of M _{dry}
Spacecraft Subsystems (M _{ss})	400.0		Sum of subsystems mass
System margin (M _{mar})	151.7	25%	Including 5 % harness
Spacecraft Dry Mass (M _{dry})	758.4		$M_{drv} = M_{PL} + M_{SS} + M_{mar}$
Propellant (M _{prop})	86.1	5%	
Loaded Mass (M _{loaded})	844.5		$M_{loaded} = M_{dry} + M_{prop}$
Kick Stage (M _{kick})	0.0		<i>,</i>
Injected Mass (M _{inj})	844.5		$M_{inj} = M_{loaded} + M_{kick}$
Adapter (M _{adapeter})	150.0		
Launch Mass (M _{boosted})	994.5		$M_{boosted} = M_{ini} + M_{adapter}$
Launcher potential mass	2150.0		
Launch margin	1155.5		

Element	Mass [kg]	Technology Maturity Margin	Comments
Payload (M _{PL})	196.8	20%	15% to 50% of M _{drv}
Propulsion (M _{propulsion})	110.3	5%	
Attitude Control (M _{gnc})	90.3	5%	
Communications (M _{com})	88.0	10%	
Command & Data Handling (M _{codh})	33.0	10%	
Thermal (M _{th})	58.2	10%	2% to 12% of M _{dry}
Power (M _{ep})	130.5	5%	
Structure & Mechanisms (M _{sam})	174.7	10%	8% to 12% of ${ m M_{inj}}$ or 15% to 25% of ${ m M_{dry}}$
Spacecraft Subsystems (M _{ss})	650.0		Sum of subsystems mass
System margin (M _{mar})	211.7	25%	Including 5 % harness
Spacecraft Dry Mass (M _{dry})	1058.5		$M_{dry} = M_{PL} + M_{ss} + M_{mar}$
Propellant (M _{prop})	565.6	5%	
Loaded Mass (M _{loaded})	1624.1		$M_{loaded} = M_{dry} + M_{prop}$
Kick Stage (M _{kick})	0.0		
Injected Mass (M _{inj})	1624.1		$M_{inj} = M_{loaded} + M_{kick}$
Adapter (M _{adapeter})	150.0		
Launch Mass (M _{boosted})	1774.1		$M_{\text{boosted}} = M_{\text{ini}} + M_{\text{adapter}}$
Launcher potential mass	2100.0		
Launch margin	325.9		

Subsystem	Nominal [W]	% ON time	% of Total Consumption	
Payload	226	1	0.52	
Propulsion	21	0.1	0.05]
Attidude Control	42	1	0.10	
Communications	60	1	0.14	SCE
Command and Data Handling	21	1	0.05	
Thermal	21	1	0.05	
Power	63	1	0.14	
Total	436		1.00	
Subsystem	Nominal [W]	% ON time	% of Total Consumption	
Payload	101		A 4 A	
Payloau	TOT	1	0.18	
Propulsion	24	1 0.1	0.18 0.04	
Propulsion Attidude Control	24 47	1 0.1 1	0.18 0.04 0.09	
Propulsion Attidude Control Communications	24 47 350	1 0.1 1 0.8	0.18 0.04 0.09 0.64	5080
Propulsion Attidude Control Communications Command and Data Handling	24 47 350 24	1 0.1 1 0.8 1	0.18 0.04 0.09 0.64 0.04	SC80
Propulsion Attidude Control Communications Command and Data Handling Thermal	24 47 350 24 24 24	1 0.1 1 0.8 1 1	0.18 0.04 0.09 0.64 0.04 0.04	SC80
Propulsion Attidude Control Communications Command and Data Handling Thermal Power	24 47 350 24 24 24 24 71	1 0.1 1 0.8 1 1 1	0.18 0.04 0.09 0.64 0.04 0.04 0.04 0.13	SC80

Phases	Time in Starting/Ending year of Activity							
I muses	2020	2022	2024 2027	7 2031	2032	2038	2043	
Phase 0	-	Mission Design	Review					
Needs Identification			System Requir	ements Revie	₽W			
Phase A Feasibility				Critical Desi	gn Re	view		
Phase B Preliminary Design				4	Oualif	ication Rev	iew	
Phase C/D Qualification & Production		Preliminary D	esign Review			Transfor &		
Launch			Fligh	t <mark>'</mark> Acceptance		Commissi	f hning	
Campaign			Operation	al Readiness		COMMISSI	unna 1	
Phase E1 Operations/ Science Utilisation			I	aunch Readi	ness	J.	End of Phase E1	
Phase E2 Demonstration of Operational Service				Fly to	Orbit	Mission	Closeout	

Activity	Cost
Launchers	€ 120 million
SCE platform	€ 250 million
SC80 platform	€ 200 million
SCE operations	€ 40 million
SC80 operations	€ 50 million
Ground Segment	€ 100 million
ESA cost	€ 760 million
Payload instruments and scientific data processing	€ 420 million
Total cost	€ 1180 million
Agency/management (included in the above figure)	€ 130 million

- Mission Class
 One L-class mission
- Cost reduction
 High S/C similarities,
 platform heritage, shared
 launch for SCE, de-scoping

Mission extension

6 year extension with more operational Space Weather focus will cost an extra € 100 million

Risk	Likelihood	Severity	Category	Mitigation
IR Polarimeter and Coronagraph not fully developed in time for launch	Low, B	Major, 3	B3	Pre-developement of instruments
Multichannel Magnetic Imager not fully developed in time for launch	Low, B	Major, 3	В3	
Degradation of instruments due to constant solar exposure	Low, B	Major, 3	В3	Shorter planned mission time
Loss of SC80 spacecraft	Minimum, A	Critical, 4	A4	SCE becomes an updated ACE mission
Loss of attitude control during safe mode	Medium, C	Minimum, 1	C1	Special safe-mode programming
Loss of SCE spacecraft	Minimum, A	Major, 3	A3	Investigate alternative satellite measurements at L1

- An early warning system that can evaluate the likelihood of solar events would give people time to prepare!
- Some of the economical sectors that would benefit from this early warning system include:
 - the telecommunications networks
 - the Galileo/GPS positioning systems
 - the electric generation industry
- All these sectors of the economy directly affect the lives of all the people around the world.

THE

PAC2MAN

Photospheric And Chromospheric and Coronal Magnetic field ANalyser

MISSION

will be an important part of the solution

THE END

Thank you for listening!

- Arianespace, Soyuz Users Manual, Issue 2, Revision 0, March 2012
- Auchère, F. et al.; Proposal, LYOT+: Magnetography of the Solar Corona.
- European Space Agency Solar Orbiter Assessment Study Report (Yellow Book), December, 2009
- Gopalswamy, N. et al. Prominence Eruptions and Coronal Mass Ejection: A Statistical Study Using Microwave Observations, APJ, **2003**, *586*, 562-578
- Peter et al.; Solar magnetism eXplorer (SolmeX), Experimental Astronomy manuscript, August 26, 2011
- Reinard, A. A.; Henthorn, J.; Komm, R. & Hill, F.; Evidence That Temporal Changes in Solar Subsurface Helicity Precede Active Region Flaring, Astrophys. J. Lett. 2010, 710, L121-L125
- Schou, J., et. al.; Design and Ground Calibration of the Helioseismic and Magnetic Imager (HMI) Instrument on the Solar Dynamics Observatory (SDO)
 Sol. Phy, 2012, 275, 229-259
- Sun, X. et. al.; Evolution of Magnetic Field and Energy in a Major Eruptive Active Region Based on SDO/HMI Observation, Astrophys. J., **2012**, *748*, 77
- Tomczyk et al.; An instrument to Measure Coronal Emission Line Polarization, Solar Physics, Volume 247, Issue 2, pp.411-428, 2008

Instruments Overview

	SCE	SC80	Wavelength	FOV [Rs]	Detector Size in Pixel	Pixel Size [arcsec]	Mass [kg]	Size [cm]	Power [W]	Data Volume per day	Operation Temperature [K]	Heritage
IR/UV Polarimeter & C1	x	x	UV: ΗΙ Lyα line at 121.6 nm IR lines: FeXIII 1074.7 & 1079.8 nm , He I 1083.0 nm Visible Light: 560 nm	1.1 – 2	1024 x 1024	5	50	200 x 60 x 25	80	SCE: 4.7 GByte SC80: 238 Mbyte	Detector: 223 IR-Polarimeter: 303	
MMI – Multichannel Magnetic Imager (SCE)	x		Fe 630.15nm Fe 630.25nm Na 589.59nm Na 588.99nm	1.07	2x 4096 x 4096	0.5	60	150 x 70 x 30	95	37.8 Gbyte	CCD: 233 Tunable Optics: 300	
Magnetic Imager (SC80)		x	Fe 617.3nm	1.07	4096 x 4096	0.5	73	120 x 85 x 30	95	645 Mbyte	CCD: 233 Tunable Optics: 300	SDO/HMI
Coronagraph C2	x	x	400-850nm	2 – 30	1024 x 1024	56	15	140 x 40 x 32	5	3.84 Mbyte	193	SOHO LASCO C3
HI		x	400-1000nm	30 - 216	1024 x 1024	148	15	65 x 33 x 20	10	0.42 MByte	193	STEREO SECCHI HI
EUV Imager	x	x	17.4nm	< 1.6	1024 x 1024	3.2	11	56 x 15 x 12.5	5	21.6 MByte	233-333	PROBA 2/SWAP

	Subinstruments	FOV	Mass [kg]	Size [cm]	Power [W]	Data Volume per day	Operation Temperatur [K]	Heritage
Low Energy Solar Wind Sensors (LEWIS)	EAS, PAS, HIS	EAS: 360° PAS: 65°A, 45° E HIS:96° A 34° E	18.65	EAS: 11.6 x dia 13.6 PAS: 30 x 20 x 20	15.6	32.7 MByte	248 - 338	Ulysses, ACE, STEREO, Solar Orbiter
High Energy Particle Sensors (HEPS)	EPT, SIS, LET, HET, STEIN, CDPU/LVPS	EPT: 30° SIS: 22° LET: 40° HET: 50° STEIN: 60° x 70°	15.68	EPT: 11 x 7 x 12 SIS: 35 x 13 x 11 LET: 22 x 15 x 11 HET: 13.6 x 17 x 16.2 STEIN: 10 x 13 x 13 CDPU/LVPS: 15 x 15 x 10	29.95	10.5 MByte (79.8 MByte in burst mode)	233 - 333	STEREO, SOHO, ACE, Solar Orbiter
Fluxgate Magnetometer 25604/2013		N/A	1.94	Sensor: 9.75 x 4.9 x 6.7 Electronic: 15.9 x 16.2 x 9.8	4.39	147.7 MByte	233 - 333	VEX, THEMIS, Rosette Lander, Double Star, Solar Orbiter 80

Zeeman effect (photosphere)

Magnetic field \rightarrow splitting of spectral lines (3 components with different polarizations)

Zeeman effet in the FeI 6173 line in a sunspot

Longitudinal magnetic field

Spectropolarimetric measurements

Stokes parameters profiles in two 25/07/2013 spectral lines

Magnetic field vector in a sunspot

Extrapolation of the <u>coronal</u> magnetic field using photometric measurement as boundary conditions

Vector magnetic field and vector current density in the photosphere with Hinode/SOT

Observation in two close spectral lines \rightarrow Current density vector calculation !

V. Bommier

25/07/2013

- Difficult, because large linewidth due to high temperature!
- If magnetic field strong enough: spectral and polarimetric analysis of FeXIII 1074.7 and 1079.8 nm

Clockwise from top left: the intensity, velocity, degree of linear polarization, LOS magnetic field, field azimuth and line-width as observed by the CoMP instrument on 4/21/05.

Light scattering \rightarrow Linear polarization at 90° Magnetic field \rightarrow « de-polarization »

• Weak magnetic field in the coronan, off-limb:

Polarimetric measurement of the scattered light (in the Lyman alpha line)

To measure the vector magnetic field: Observation in 2 lines of different sensibility; e.g. HI Lyman alpha and He I D3

(Bommier et al. 1994)

Illustration of the modification of the polarization degree and polarization plance of a resonantly scattered coronal line by the presence of a horizontal magnetic field (adapted from Trujillo Bueno et al., 2005) 25/07/2013

Infrared Magnetic Imager

- Access to strong fields > 40 G in the corona (off-limb)
- Measurement of the full Stokes vector
- Need polarimetric accuracy of 10⁻⁴
- FOV : 1.1 1.5 solar radius
- 2 min cadence
- Time exposure : 5 sec

- 60 kg
- 50 W
- 180x50x25 cm³

Fig. 14 Schematic optical layout of the Visible light and IR Coronagraph (VIRCOR). Peter et al., 2011

UV Magnetic Imager + Visible light

- Access to weak fields in the corona (off-limb)
- Measurement of the full Stokes vector
- Need SNR 100-200
- FOV : 1.1 3.0 solar radius
- 5 min cadence
- Time exposure: 60-120 sec
- HI Lyman alpha line at 121.6 nm
- Visible Light 560 nm

- 26 kg
- 48 W
- 75x55x30 cm³

Figure 2-13. Schematic view of MAGIC

Auchère et al., LYOT proposal ⁸⁶

Proposition: 2 in 1 (Coronograph for magnetic imaging)

- Access to weak and strong fields in the corona (off-limb)
- Measurement of the full Stokes vector
- FOV : 1.1 2.0 solar radius
- 15 min cadence (UV and VL) and 60 min cadence (IR)
- Time exposure: 10-20 sec (UV), 10 sec (IR), 1 sec (VL)
- UV: HI Lyman alpha line at 121.6 nm
- IR lines: FeXIII 1074.7 and 1079.8 nm, He I 1083.0 nm
- Visible Light 560 nm
- Polarimetric accuracy (infrared): 10⁻⁴
- SNR UV: 20-100

- 50 kg
- 80 W
- Aperture 20 cm
- 200x60x25 cm³
- 5"/pix

Fifters and polarimeters	<u>Detectors</u>	• Infrared device:
 Infrared device: Liquid Crystal Variable Retarder (polarimetry and tunable wavelength selection) Narrow-band tunable filter Six-stage birefringent filter: nested thermal control loops (30°C with variation < 5mC in 24h) Lyman alpha device: Rotation 121.6 nm ½ wave plate High reflectivity Brewter's angle linear polarizer Visible light device: Tunable broad-band filter Dichroic linear polarizer 	 Infrared device: Teledyne Imaging HgCdTe 2048x2048, pixel size 15 μm Passive cooling to -50°C Lyman alpha device: APS sensor 2048x2048, pixel size 15 μm Passive cooling to -50°C Visible light device: APS sensor 2048x2048, pixel size 15 μm Passive cooling to -50°C 	 Images in 4 states of polarization, in 5 wavelengths for both lines. One set of measurements in 7 minutes, each hour. Ground-based calculation of the vector magnetic field. Lyman alpha device: Images in 3 states of polarization in one line. Each set of images in 5 minutes, every 15 minutes. Ground-based calculation of the vector magnetic field, if the geometry of the source is known. Visible light device: K corona One image every 15 minutes
 Accuracy of pointing Constrained by the occulation (1.15 solar radius /15) Accuracy = 72" Stability = need 3" over 120 s 	0 - - - - -	n board processing: Substract mean dark Normalization by mean image Remove useless pixels (see figure) and bad pixels OV really transmitted to Earth

25/07/2013

- STEIN
- SIS
- EPT
- LET
- HET

HET-High Energy Telescope

- covers the high-energy particle range
- protons: up to 100 MeV
- heavier ions: 200 MeV/nuc for O and heavier species

25/07/2013

Stein- Supra-thermal Electrons, Ions and Neutrals

- measure suprathermal particles
- ~3–100 keV
- Double-ended telescope, utilizing passively cooled silicon semiconductor detectors (SSDs)

SIS- Supra-thermal Ion Spectrograph

- measures the composition of heavy ions (He-Fe)
- ~8 keV/n–10 MeV/n
- identifies particles by time-of-flight (TOF) mass spectrometry

EPT-Energetic ParticleDetector

- measures electrons and protons as well as their anisotropies
- electrons (20 keV to 700 keV)
- protons (20 keV to 9 MeV)
- combines the dE/dx-E method with the magnet/foil technique

LET-Low Energy Telescope

- measures the species H-Ni
- ~1.5–60 MeV/n
- dE/dx-E method

Low Energy solar WInd Sensors (LEWIS)

HIS – Heavy Ion Sensor

measure five key properties for all ions:

- mass in the range 2-56 amu/q
- charge (q)
- energy in the range 0.5–100 keV/q (for azimuth)
- 0.5–16 keV/q (for elevation)
- direction of incidence (θ, ϕ)

25/07/2013

- measure electron fluxes
- ~1 eV 5 keV
- a pair of top-hat electrostatic analysers with aperture deflection plates

- protons and alpha particles
- $\leq 0.2 20 \text{ keV/q}$
- top-hat electrostatic analyser (EA)

• ±23-2040 nT

Details of Attitude Control System

Components	Туре	Mass (kg)	Dimension (m)	Power (W)	Mounting considerations
Momentum wheels	RSI 68 Angular momentum (nominal speed) : 15 N.m/sec T loss : -20 mN.m	-7.7 x4	0.3 x 0.16	Steady state -15 W, Max T (nominal speed) <90 W	Provider : Rockwell Collins
Sun sensors	S3 Accuracy: <0.02 ⁰ 2 σ Resolution: <0.005 ⁰ FOV: 128 ⁰ x128 ⁰	0.3 x2	0.1 x 0.01 x 0.04	0.7 W to 1 W	Provider: SELEX Galilleo
Star trackers	HAST: 2 Star Sensor Heads (SSH), 1 Star Sensor Electronic Unit (SSEU), Shutters and Sun-Shaders Accuracy : Boresight 0.1 arcsec 1 σ	SSH 13.5 x 2 SSEU 6.8 S & SS 4 In Total : 38.5 kg		-120 W over any 1- min interval	Provider : Ball Aerospace & Technologies Corp. We can use less size tracker and use pixel binning
Thrusters	16 x 10 N bi-propellant thruster (Hydrazine)	16 x 0.36		14 for each thruster	Provider: Astrium

Why is our mission better than previous ones?

Solar-C: We have an additional coronagraph and therefore measurement of magnetic field in corona.

STEREO: We have continuous stereoscopic look on the earthfacing coronal layers, and we always cover the space between Sun and Earth.

Solar Orbiter: We have continuous observations of photosphere/chromosphere/corona, unlike S.O. due to it's elliptical/inclined solar orbit. We also have coronal magnetic field measurements.

SolmeX: We also have the magnetic field for the photosphere, and can also observe the magnetic field of earth-facing events.

Analysed Propulsion Options

Best solutions comparison

	Chemical Rocket	VASIMR Variable Specific Impulse Magnetoplasma Rocket	FDR Fusion Drive Rocket	ELF Electrodeless Lorenz Force	HALL Effect Ion Engine
SPI Specific Impulse	321 s	4,800 s	10,000 s	6,000 s	8,000 s
TRL Technology Readiness Level	9	5 (7 in 2014 – use for ISS orbit correction)	5	4	6
Fuel Mass	800 kg	50kg Argon/Krypton	20kg Ar/Kr + 5kg Li	40kg Ar/Kr	30kg
System Mass	100 kg	100kg solar panels 200kg batteries 200kg engine (est.)	100kg solar panels 100kg batteries 300kg engine (est.)	100kg solar panels 50kg batteries 100kg engine (est.)	50kg batteries 50kg engine (est.)
Other	High mass fuel required Low single burn life	No in-situ magnetic measurements possible whist engine is on Allow big orbit changes	No in-situ magnetic measurements possible whist engine is on Allow big orbit changes	No in-situ magnetic measurements possible whist engine is on Allow big orbit changes	No in-situ magnetic measurements possible whist engine is on Allow big orbit changes

© Astrium

© Ad Astra Rockets

© Washington University

© Washington University

© Princeton University

Considering the 2030 launch date TRL 5 engines have been also analysed

25/07/2013

Flares

Flares and CMEs

- at cycle maximum, 6 CMEs/day
- at cycle minimum, 0.5 CMEs/day [Gopalswamy et al., 2003]

Spacecraft vs. Launcher Usable Volume

Generated with spenvis

HGA: $10^6 km$ 0.6° / 4.9° $10^{6} km / 1.5 \cdot$ \mathcal{O} 19 $2 \cdot 10^{6}$ km / 25.72 $\cdot 10^{3}$ km 25/07/2013

pendix-Half Power Beam Width of SCE and SC80

- Narrow Beam Antenna
- Steerable (2dB Loss)
- Pointing Demands:
 - -0.54° (SCE)
 - -0.15° (SC80)

- Losses
 - Path Loss
 - Frequency X-Band
 - Distance $1.5 \cdot 10^6 \ km$ (SCE) / 193 · $10^6 \ km$ (SC80)
 - On-board and Steering Losses
 - Received Noise
- Bit Energy to Noise Demands
 - Modulation (BPSK)
 - Bit Error Rate Demands
- Data Rate
 - Scientific and Control Data (+ Overhead)
 - Code Rate

- TransmissionPower
- Antenna Gains
 - Antenna
 Diameter
 - Frequency
- Coding Gain

Name	Country	Diameter	Band (T/R)
Malargüe	Argentina	35m	X/XKa
Cebreros	Spain	35m	X/XKa
New Norica	Australia	35m	SX/SX (Ka planned)
Kourou	French Guiana	15m	SX/SX
Kiruna	Sweden	15m	SX/SX
Perth	Australia	15m	SX/SX

- SC80:
 - DSA (Deep Space Antenna) needed (35m)
 - 3 DSAs for continuous communication (120°)
- SCE
 - 15m Antennas
 - 3 for continuous communication (120°)

Action	Impact	Comments
Removing solar wind measurements	Failure of secondary objective	Don't remove, makes good usage of extra s/c resources.
Reduce telecommunication requirements, e.g. From 24h/day to 8h/day or 8h/2days	Reduced SW operational capabilities for forecasting, mainly CME propagation. Science objectives are still achievable.	Possible, but the coronagraphs can provide excellent SW predictions from operation start and this critical information would be lost.
Cut one spacecraft	Failure of primary objective, regardless of spacecraft	Would still produce new science, but is strongly not recommended.