

Overarching Theme

ESA

1. Conditions for planet formation and emergence of life?
1.3. Life and habitability in the Solar System, explore environmental conditions that make life possible

NASA

Building New Worlds: Accretion, water, chemistry, internal differentiation of inner planets, evolution of atmospheres?
Planetary Habitats: Did Mars or Venus had environments conducive for life in the past? Evidence that life emerged?

Why did Venus and Earth evolve differently?

properties	Venus	Earth
radius [km]	6050	6378
mass [kg]	4.87×10^{24}	5.97×10^{24}
heliodistance [AU]	0.73	1
surface pressure [bar]	92	1
atmosphere comp [vol\%]	$\mathrm{CO}_{2}(96.5), \mathrm{N}_{2}(3.5)$	$\mathrm{N}_{2}(78), \mathrm{O}_{2}(21), \mathrm{Ar}(1)$
surface temp. $\left[{ }^{\circ} \mathrm{C}\right]$	462	14
axial tilt [${ }^{\circ}$]	177	23

Why did Venus and Earth evolve differently?

Why did Venus and Earth evolve differently?

Local

4.5 Ga
~100s Ma
Now

Why did Venus and Earth evolve differently?

Is the tectonic history of Venus comparable to that of Earth?

$$
\begin{aligned}
& \text { What is the level of current } \\
& \text { volcanic activity of Venus? }
\end{aligned}
$$

Is the bulk chemical composition of Venus and Earth different?

Tectonics; present knowledge

- Faults and rifts
- "Stagnant lid"-theory
- Subduction vs. obduction

Tectonics; present knowledge

- Faults and rifts
- "Stagnant lid"-theory
- Subduction vs. obduction

Tectonics; present knowledge

- Faults and rifts
- "Stagnant lid"-theory
- Subduction vs. obduction

Tectonics; present knowledge

- Faults and rifts
- "Stagnant lid"-theory
- Subduction vs. obduction

Tectonics; observations

- Subsurface structure
- Gravity field
\checkmark global Bouguer anomalies
\checkmark resolution 80 km , accuracy $\sim 5 \mathrm{mG}$
\checkmark orbital perturbations
- Magneto-telluric (MT) sounding
\checkmark lithosphere thickness
$\checkmark \mathrm{H}_{2} \mathrm{O}$ content
- Radiogenic isotopes
\checkmark noble gases (3He, 4He, 40Ar, 35Ar, 38Ar)
- Surface mapping
- Topography
\checkmark determined areas
\checkmark spatial resolution $\sim 10 \mathrm{~m}$, accuracy $\sim 1 \mathrm{~m}$

Tectonics; observations

- Subsurface structure

- Gravity field
\checkmark global Bouguer anomalies
\checkmark resolution 80 km , accuracy $\sim 5 \mathrm{mG}$
\checkmark orbital perturbations
- Magneto-telluric (MT) sounding
\checkmark lithosphere thickness
$\checkmark \mathrm{H}_{2} \mathrm{O}$ content
- Radiogenic isotopes
\checkmark noble gases (3He, 4He, 40Ar, 35Ar, 38Ar)
- Surface mapping
- Topography
\checkmark determined areas
\checkmark spatial resolution $\sim 10 \mathrm{~m}$, accuracy $\sim 1 \mathrm{~m}$

Tectonics; observations

- Subsurface structure
- Gravity field
\checkmark global Bouguer anomalies
\checkmark resolution 80km, accuracy $\sim 5 \mathrm{mG}$
\checkmark orbital perturbations
- Magneto-telluric (MT) sounding
\checkmark lithosphere thickness
$\checkmark \mathrm{H}_{2} \mathrm{O}$ content
- Radiogenic isotopes
\checkmark noble gases (3He, 4He, 40Ar, 35Ar, 38Ar)
- Surface mapping
- Topography
\checkmark determined areas
\checkmark spatial resolution $\sim 10 \mathrm{~m}$, accuracy $\sim 1 \mathrm{~m}$

Tectonics; observations

- Subsurface structure
- Gravity field
\checkmark global Bouguer anomalies
\checkmark resolution 80 km , accuracy $\sim 5 \mathrm{mG}$
\checkmark orbital perturbations
- Magneto-telluric (MT) sounding
\checkmark lithosphere thickness
$\checkmark \mathrm{H}_{2} \mathrm{O}$ content
- Radiogenic isotopes
\checkmark noble gases (3He, 4He, 40Ar, 35Ar, 38Ar)
- Surface mapping
- Topography
\checkmark determined areas
\checkmark spatial resolution $\sim 10 \mathrm{~m}$, accuracy $\sim 1 \mathrm{~m}$

Tectonics; observations

- Subsurface structure
- Gravity field
\checkmark global Bouguer anomalies
\checkmark resolution 80 km , accuracy $\sim 5 \mathrm{mG}$
\checkmark orbital perturbations
- Magneto-telluric (MT) sounding
\checkmark lithosphere thickness
$\checkmark \mathrm{H}_{2} \mathrm{O}$ content
- Radiogenic isotopes
\checkmark noble gases (3He, 4He, 40Ar, 35Ar, 38Ar)
- Surface mapping
- Topography
\checkmark determined areas
\checkmark spatial resolution $\sim 10 \mathrm{~m}$, accuracy $\sim 1 \mathrm{~m}$

Tectonics; observations

- Subsurface structure
- Gravity field
\checkmark global Bouguer anomalies
\checkmark resolution 80 km , accuracy $\sim 5 \mathrm{mG}$
\checkmark orbital perturbations
- Magneto-telluric (MT) sounding
\checkmark lithosphere thickness
$\checkmark \mathrm{H}_{2} \mathrm{O}$ content
- Radiogenic isotopes
\checkmark noble gases (3He, 4He, 40Ar, 35Ar, 38Ar)
- Surface mapping
- Topography
\checkmark determined areas
\checkmark spatial resolution $\sim 10 \mathrm{~m}$, accuracy $\sim 1 \mathrm{~m}$

Volcanism; present knowledge

- Basic cooling history of Venus and Earth
- Volcano-like features and basalts
- Age of the surface
- Variation in SO_{2} abundance
- Surface heat flux

Volcanism; present knowledge

- Basic cooling history of Venus and Earth
- Volcano-like features and basalts
- Age of the surface
- Variation in SO_{2} abundance
- Surface heat flux

Volcanism; present knowledge

- Basic cooling history of Venus and Earth
- Volcano-like features and basalts
- Age of the surface
- Variation in SO_{2} abundance
- Surface heat flux

Volcanism; present knowledge

- Basic cooling history of Venus and Earth
- Volcano-like features and basalts
- Age of the surface
- Variation in SO_{2} abundance
- Surface heat flux

Volcanism; present knowledge

- Basic cooling history of Venus and Earth
- Volcano-like features and basalts
- Age of the surface
- Variation in SO_{2} abundance
- Surface heat flux

Volcanism; present knowledge

- Basic cooling history of Venus and Earth
- Volcano-like features and basalts
- Age of the surface
- Variation in SO_{2} abundance
- Surface heat flux

Volcanism; observations

-Abundance and ratios of sulfur and water

- Global coverage
\checkmark UV 0.11-0.31 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 100
- In-situ
\checkmark twice a day, continuous, $<70 \mathrm{~km}$, accuracy 1\%
- Locate and observe activity
- Irradiance of ground
\checkmark IR: 0.7-5.0 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 200
\checkmark spatial resolution 50 km , nighttime
- Elevation changes
\checkmark spatial resolution $<40 \mathrm{~m}$,
\checkmark accuracy inflation $<1 \mathrm{~cm}$, accuracy for eruptions $<1 \mathrm{~m}$

Volcanism; observations

-Abundance and ratios of sulfur and water

- Global coverage
\checkmark UV 0.11-0.31 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 100
- In-situ
\checkmark twice a day, continuous, <70km, accuracy 1\%
- Locate and observe activity
- Irradiance of ground
\checkmark IR: 0.7-5.0 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 200
\checkmark spatial resolution 50 km , nighttime
- Elevation changes
\checkmark spatial resolution $<40 \mathrm{~m}$,
\checkmark accuracy inflation $<1 \mathrm{~cm}$, accuracy for eruptions $<1 \mathrm{~m}$

Volcanism; observations

- Abundance and ratios of sulfur and water

- Global coverage
\checkmark UV 0.11-0.31 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 100
- In-situ
\checkmark twice a day, continuous, $<70 \mathrm{~km}$, accuracy 1%

- Locate and observe activity

- Irradiance of ground
\checkmark IR: 0.7-5.0 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 200
\checkmark spatial resolution 50 km , nighttime
- Elevation changes
\checkmark spatial resolution $<40 \mathrm{~m}$,
\checkmark accuracy inflation $<1 \mathrm{~cm}$, accuracy for eruptions $<1 \mathrm{~m}$

Volcanism; observations

- Abundance and ratios of sulfur and water
- Global coverage
\checkmark UV 0.11-0.31 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 100
- In-situ
\checkmark twice a day, continuous, $<70 \mathrm{~km}$, accuracy 1%
- Locate and observe activity
- Irradiance of ground
\checkmark IR: 0.7-5.0 $\mu \mathrm{m}$, resolution 0.8 nm , resolving power 200
\checkmark spatial resolution 50 km , nighttime
- Elevation changes
\checkmark spatial resolution $<40 \mathrm{~m}$,
\checkmark accuracy inflation $<1 \mathrm{~cm}$, accuracy for eruptions $<1 \mathrm{~m}$

Composition; present knowledge

- Inference from meteorites
- Atmosphere from interior
- Noble gases (He, Ne, Ar, Xe) abundance and isotopic ratios with too large errors
- Proxy for volatiles
- Internal structure
- Iron as a proxy for refractory

Composition; present knowledge

- Inference from meteorites
- Atmosphere from interior
- Noble gases (He, Ne, Ar, Xe) abundance and isotopic ratios with too large errors
- Proxy for volatiles
- Internal structure
- Iron as a proxy for refractory

Composition; present knowledge

- Inference from meteorites

- Atmosphere from interior
- Noble gases (He, Ne, Ar, Xe) abundance and isotopic ratios with too large errors
- Proxy for volatiles
- Internal structure
- Iron as a proxy for refractory

Composition; present knowledge

- Inference from meteorites
- Atmosphere from interior
- Noble gases (He, Ne, Ar, Xe) abundance and isotopic ratios with too large errors
- Proxy for volatiles
- Internal structure
- Iron as a proxy for refractory

Composition; observations

- Noble gases
- Fractionation of isotopes of noble gasses
\checkmark origin and external changes
\checkmark accuracy of abundance and ratios $\pm 3 \%$
\checkmark minimum 1 measurement pr species
- Core size
- Orbital perturbations
\checkmark Doppler tracking
\checkmark moment of inertia
- Magnetic measurement
\checkmark eventual possibility

Composition; observations

- Noble gases

- Fractionation of isotopes of noble gasses
\checkmark origin and external changes
\checkmark accuracy of abundance and ratios $\pm 3 \%$
\checkmark minimum 1 measurement pr species
-Core size
- Orbital perturbations
\checkmark Doppler tracking
\checkmark moment of inertia
- Magnetic measurement
\checkmark eventual possibility

Composition; observations

- Noble gases
- Fractionation of isotopes of noble gasses
\checkmark origin and external changes
\checkmark accuracy of abundance and ratios $\pm 3 \%$
\checkmark minimum 1 measurement pr species
- Core size
- Orbital perturbations
\checkmark Doppler tracking
\checkmark moment of inertia
- Magnetic measurement
\checkmark eventual possibility

Observables

1) Tectonic history

- Gravity field
- Lithospheric thickness and $\mathrm{H}_{2} \mathrm{O}$ content
- Topography
- Radiogenic isotopes
2.1) Current volcanism
- Delta-topography
- Composition
- Thermal gradient
2.2) Bulk chemical composition
- Noble gas ratios
- Core size

Observables \longrightarrow Instruments

1) Tectonic history

- Gravity field
- Lithospheric thickness and $\mathrm{H}_{2} \mathrm{O}$ content
- Topography

Magnetometer + dipoles

- Radiogenic isotopes InSAR
Mass spectrometer
2.1) Current volcanism
- Delta-topography

InSAR

- Composition
- Thermal gradient

UV + Mass spectrometer
IR spectrometer
2.2) Bulk chemical composition

- Noble gas ratios

Mass spectrometer

- Core size

Gradiometer

- Geodesy for tectonics question
- measures gravity field (3-D gradient tensor) from medium to short-scales in order to reveal litospheric feature
- GOCE-type (TRL = 7)
- Science requirements:
- low orbit ($\mathrm{h}=250-300 \mathrm{~km}$)
- MBW: $5 \mathrm{MHz}-0.1 \mathrm{~Hz}$ (noise : $10 \mathrm{mE} \mathrm{Hz}^{-1 / 2}$)
- drag needs to be compensated

- attitude accuracy (0.15 rad)

Radar Altimeter

- Goal: support orbit measurements during geodesy phase
- Scientific requirements:
- Altitude Accuracy : 1 m
- Sample rate: 50 Hz
- Backscattering coefficient: 0.7 dB
- Beam width: 1.3 degrees
- Pulse repetition frequency: 1020 Hz

SAR-InSAR

- Goals: tectonics, volcanism
- Scientific requirements:
- Local coverage (10% duty cycle)
- Single antenna (repeat pass)
- S band ($\lambda \approx 12 \mathrm{~cm}$)
- Look angle: $25-45^{\circ}$
- Swath Width $\approx 40-70 \mathrm{Km}$
- Spatial Resolution $\approx 40 \mathrm{~m}$
- Vertical accuracy $\approx \mathrm{cm}$

IR/UV spectrometer

- Goals: volcanism through detection of S02 (cloud top) and freshly erupted lava flows (surface).
- Scientific requirements:
- Spectral range ($\mu \mathrm{m}$): 0.11-0.31 and 0.7-5
- Spectral resolution: 0.8 nm and $0.5-1 \mathrm{~nm}$
- Spectral resolving power $\lambda / \Delta \lambda$: ~100-200
- Field of view (rad) 64×64
- Spatial resolution: ~50 km

Gas Chromatograph
 Mass Spectrometer

- Goals: composition, volcanism to measure isotopic ratios and abundances
- Scientific requirements:
- Resolution: 0.1 AMU
- Range of measurement: 2-150 AMU
- Frequency of measurement: at least 1 measurement of every noble gass isotopic ratio
- Sensitivity: 0.1 ppb Xe, Kr
- Accuracy: Abundance and isotope ratios of $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}$, $\mathrm{Xe}, \mathrm{H}_{2} \mathrm{O}, \mathrm{SO}_{2}$ to $\pm 1 \%$

Based on: GCQMS with gas enrichement line from SAM experiment on Curiosity rover and GCMS on Huygens.

MT sounding device

- Goals: tectonics through thickness of lithosphere and $\mathrm{H}_{2} \mathrm{O}$ content
- Scientific requirements:
- Measurements must be done within ionosphere
- 1 - 100 Hz sampling
- Balloon attitude determination

Based on dipoles and space-
 qualified magnetometer

Fluxgate magnetometer

- Used in MT sounding for tectonics and to experimentally address the bulk composition question:
- Core size estimate
- Scientific requirements:

- 50 pT accuracy
- Balloon attitude determination
- > 3m from any electrical device or metal (boom mounting)

How do we improve on current data? Comparison of EvolVe and Magellan		
	Magellan	EvolVe
Gravity measurements		
Resolution:	300-700 km	80 km
High resolution topography	(SAR stereo)	(SAR stereo / InSAR)
Coverage:	20\%	10\%
Spatial resolution:	$1-2 \mathrm{~km}$	40 m TBC
Vertical precision:	50 m	<4 m
Radar imaging		
Coverage:	global (96\%)	20 \%
Spatial resolution:	100 m	10 m TBC

How do we improve on current data?

Gravity field improvement w.r.t Magellan (SNR)

spatial resolution:
Magellan: $\mathbf{7 0 0}$ km (resolution varies)

EvolVe: $\mathbf{8 0}$ km (global, homogeneous)

Improvement of long wavelengths expected (polar orbit, dynamic orbit analysis)

Mission Architecture

1. Mission Elements
2. Orbit Design
3. Mission Phases

1. Mission Elements

ORBITER

Ishtar

Near circular polar orbit at $\mathbf{2 5 0} \mathbf{~ k m}$

LAUNCHER

Ariane 5

1. Mission Elements

Gas
Chromatograph
Mass
Spectrometer

MT sounding device

> BALLOON
> Tammuz

2. Orbit Design

Mission requirement :

Polar near-circular orbit @250 km above Venus

2. Orbit Design

Launcher ($C 3=10.6 \mathrm{~km} / \mathrm{s}^{2}$)

$$
\text { - Ariane } 5 \text { (4500 kg payload mass) }
$$

Options for orbit insertion @250 km

- Chemical propulsion
- DeltaV= $3.286 \mathrm{~km} / \mathrm{s}$
- Total mass $=1472 \mathrm{~kg}$
- AeroBraking
- DeltaV= $1.510 \mathrm{~km} / \mathrm{s}$
- Total mass = 2690 kg
- AeroCapture
- DeltaV= $0.9 \mathrm{~km} / \mathrm{s}$
- Total mass = 3300 kg

2. Orbit Design

Aerobraking@130 km, 1-6 months:

1. Polar orbit insertion : 14-05-2033 apoapsis@17369 km , e=0.571
2. Preliminary SAR obs: 16.05.2033 apoapsis@6617 km , e=0.329
3. Balloon release : 23.06.2033
apoapsis@405 km , e=0.022
4. Final orbit: 24.06.2033
apoapsis@250 km , e=0.001
Force model:

- Atmospheric density model [Seiff A. et al., 1980] (test at higher altitudes)
(consistent with Magellan and Venus Express measurements)
- Venus gravity field up to degree and order 4
- Sun as third body (point mass)

2. Orbit Design

- Orbit maintenance (2.8 years science operation)
- DeltaV : $500 \mathrm{~m} / \mathrm{s}$
- Fuel : 230 kg
- ESTRACK
- 8 h/day
- 35 \% visibility / station

	DeltaV [m/s]
Orbit Insertion	1490
End of Aerobraking (Raise of Pericenter)	30
Orbit Maintenance	500
TOTAL	2200

3. Main phases of the mission

Launch Arriving Balloon Balloon at Venus release EOL

Total mission duration : 3.2 years

End of the
mission

3. Main phases of the mission

3. Main phases of the mission

3. Main phases of the mission

3. Main phases of the mission

Launch Arriving Balloon Balloon
at Venus release EOL

2.5 revolution of Venus

3. Main phases of the mission

3. Main phases of the mission

$\begin{array}{ccc}\text { Launch Arriving Balloon Balloon } & \text { End of the } \\ \text { at Venus release EOL } & \text { mission }\end{array}$

3. Main phases of the mission

Phase 3

3. Main phases of the mission

- Phase 1: Balloon
- Balloon relay
- IR/UV spectrometer
- Phase 2a : geodesy
- Gradiometer
- Altimeter
- IR/UV spectrometer
- Phase $2 b+3$: topography
- InSAR (10\% of the time)
- IR/UV spectrometer

Power (W)	with margin	Data rate (kbps)	With margin
463	555	143	151
463	555	36	37
1211	1423	341	358

Main technological challenges

Antenna pointing during geodesy phase

- Conflicting requirements

Continuous
Measurement

Data Transmission

Doppler
Tracking

- Possible solutions

$$
\begin{aligned}
& \text {. consecutive observation and pointing sequences (e.g. 3:1 cycles) } \\
& \text {. pointing over the poles (dense ground-tracks) } \\
& \text {. stabilize orbit determination via altimeter cross-over analysis and } \\
& \text { gradiometer angular rates } \\
& \text {. Phased-Array Antenna with electronic pointing (TRL=3) }
\end{aligned}
$$

Orbiter

Orbiter

Structure

- Rectangular shape, Aluminium
- Primary struts: 170 kg
- Secondary structure: 67 kg
- Mechanisms: 15 kg, 61 W
- Solar Array Drives
- HGA Drive
- Deployment Systems
- High design margins, detailed design required

Orbiter

Comms

\square
\square

- Required data rate from orbiter to Earth: 55.3 kbps (Phase 1), 1.85 Mbps (Phases 2a, 2b, 3)
- Antenna size on orbiter: $2.0 \mathrm{~m}, 30.1 \mathrm{~kg}$ (to 35 m receiver on Earth)
- Power: 230 W
- Frequency: $8.5 \mathrm{GHz}, \mathrm{X}$-band
- Maximum possible Data Rate E/N : 1.924 Mbps

One of the main design drivers

Heat sources

Sun (Solar flux ~2.6 kW/m²)
Venus (Albedo ~0.8, IR flux ~ $153 \mathrm{~W} / \mathrm{m}^{2}$)
Internal Power (Total budget - emitted power ~1150 W)

Control elements

20 layers MLI (golden Kapton)
1 „cold face" + radiator -> S_area = 4 m2

Target

Maintain S/C temperature ~297 K

Area crows section	4	m2
Qinterral	1150	w
Cextersel x Ares	224.82	W
Qradout x Ares	1376.58	W
BALANCE $=$ Cext + Qint - Orad	173	W

-> Operational requirements ok

Orbiter

OBDH

Von-Neumann
Architecture \square Harvard

Parallel Bus
Ring Bus \square

- Commercial Off The Shelf (COTS)
- Includes:
- Data Storage
- Telemetry and Tele-command processing
- 10.5 kg
- 21 W

Orbiter - Mass Budget

Ishtar Orbiter	
MASS BUDGET	Mass (Kg)
Payload	460
Structure	170
Propulsion	130
AOCS	60
Thermal control	35
Power + solar arrays	35
Comms	30
OBDH	10
Platform mass	$\mathbf{9 3 0}$
Platform system margin	20%
Total dry mass	$\mathbf{1 1 1 6}$
Propellant	2040
Propellant margin	20%
Total propellant	$\mathbf{2 4 4 8}$
TOTAL MASS	$\mathbf{3 5 6 4}$

Orbiter - Power Budget

Ishtar Orbiter	
POWER BUDGET	W
Payload	818
Structure	47
Propulsion	70
AOCS	133
Thermal control	-
Power + solar arrays	28
Comms	230
OBDH	20
Required Power	1346
System margin	10%
TOTAL POWER	1480

Orbiter Architecture

Orbiter Architecture

Balloon

Balloon trade off tree

Cormms
ks-9xnt
sAand
x-fine In

- Superpressure light gas
- Approx. 7 m diameter
- Gas generated at deployment

Balloon

Balloon

Comms

S-Band
\square
\square

- Required data rate from balloon to orbiter: 22.5 kbps
- Antenna size on balloon: $0.1 \mathrm{~m}, 0.8 \mathrm{~kg}$ (identical on orbiter)
- Power: 10 W
- Frequency: 0.45 GHz UHF
- Maximum possible Data Rate E/N : 35.6 kbps

Balloon

Other Systems

- Entry and Descent System (EDS)
- Released from orbiter during aerobraking phase
- Retro rockets
- Heat shield
- Structural
- Attitude System
- Sun Sensor
- Thermal System
- Passive
- OBDH

Balloon - Mass Budget

Tammuz Balloon	
MASS BUDGET	Mass $(\mathbf{K g})$
Payload	28
Structure	20
Thermal control	1
Power + solar arrays	24.5
Comms	0.8
OBDH	4
Entry probe	127
Gas storage	50
Balloon	21
Gas	16
Balloon mass	$\mathbf{2 9 2 . 3}$
Platform system margin	20%
Total dry mass	$\mathbf{3 5 0 . 7 6}$
TOTAL MASS	$\mathbf{3 5 1}$

Balloon - Power Budget

Tammuz Balloon	
POWER BUDGET	(W)
Payload	46
Structure	0
Thermal control	-
Power + solar arrays	5
Comms	10
OBDH	5
Balloon power requirements	$\mathbf{6 6}$
Platform system margin	10%
TOTAL POWER	$\mathbf{7 3}$

Enabling technologies

- Balloon system
- Entry probe
- Drag reduction aerodynamic design
\rightarrow Increased development time

Mission Development Plan

Risk Analysis

Severity						
5	B, M	N	A			
4		E, I	G	H		
3	K	C	F	L		
2	J	D		O		
1						
		1		2	3	4

- Main Risks:
- A: Drag in Orbit too high for Measurement
- Mitigate: design margins
- H: Insufficient Orbit Determination
- Mitigate: development time

Downscaling

- Minimum Working Example: Gradiometer w/ Altimetry

All values in [kg]	SMAD Remote Sensing	SMAD Average All
Payload	143	143
Dry Mass	388	529
Total Launch Mass	1253	$\mathbf{1 7 1 0}$
Soyuz to Venus	1650	1650
Ariane V to Venus	4500	4500

Recommendations (1)

- Refine subsystems
- More powerful injection engine
- Investigate Ka-band design change
- Detailed structural design
- Detailed balloon design
- Refine operational concept, duty cycles
- Additional downsizing options

Recommendations (2)

- Potential for Co-operations
- Different launcher (e.g. Delta)
- Instrument development (national space agencies)
- Ground station network, tracking (e.g., NASA DSN)
- Synergy with future missions
- Separate development of balloon (e.g. CNES)
- Outreach
- Education program for students
- Flyers, exhibitions

Conclusion

- Science Theme: Difference Venus - Earth
- Primary Objective: Investigate Tectonics
- Secondary objectives: Volcanism, composition
- Payloads: Gradiometer, InSAR, Altimeter, IR/UV Spectrometer, Mass Spectrometer, MT Sounding
- Orbiter, Balloon
- Total Launch Mass: 3915 kg (Dry Mass: 1467 kg)
- Ariane V Launch
- Mission Duration: 3.2 yrs

EvolVe For Kids

Observables

1) Tectonics

- Gravity field
- Topography
- Crustal/lithospheric structure
- $\mathrm{H}_{2} \mathrm{O}$ content

2) Volcanism

- Delta-topo
- Composition
- Thermal gradient

3) Accretion

- Core size
- Composition, noble gas quantities

Observables - Tectonics (1) Requirements

- Gravity field
- Minimal drag/drag compensation
- Very accurate attitude determination
- Resolution of 80 km
- Topography
- Deduce subsurface structures from combination of gravity field and topography
- Lithospheric structure
- Constrain thickness of lithosphere to within 10 s of km

Observables - Tectonics (1)
 Methods

- Gravity field:
- ???
- Topography:
- SAR-InSAR from orbiter
- Lithospheric structure:
- In situ MT sounding using natural EM signals

MT Sounding: Theory

- Magneto-telluric sounding
- Past implementations:

$$
\begin{aligned}
& D(k m) \\
= & 0.36 \sqrt{\rho / f}
\end{aligned}
$$

- Used extensively in ground, marine and aerial subsurface explorations on Earth
- Method has been implemented on magnetic surveying of the moon to gain information on core size
- Same method used measurement inversion to find possible subsurface oceans on Europa and Callisto
- On Venus:
- Ideal at height of 55 km
- Use Schumann resonances from lightning as natural sounding signal

Observables - Volcanism (2) Requirements

- Variability in isotopic composition of noble gases from He to Xe :
- Mass resolution: 0.1 AMU
- Range of measurement: 1-150 AMU
- Frequency of measurement: at least 1 measurement of every noble gas isotopic ratio
- Sensitivity: 0.1 ppb
- Accuracy: Abundance and isotope ratios of $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ to $\pm 3 \%$.
- Change in topography:
- Vertical resolution 5 mm , horizontal resolution 1 km
- Global variability of volcanic gas SO_{2}
- Sensitivity 50 ppbv at the top of clouds
- 1 month duration and global coverage
- Measurement at least twice a day during probe life-time
- Range of measurement 1-150 AMU
- 0.1\% precision
- Thermal flux:
- Detect relative thermal flux $0.1 \mathrm{~W} / \mathrm{m}^{2}$
- Spatial resolution: <50 km/px
- Targeted area of observation size: 1000 km
- Observation of a targeted area should be repeated in 2-6 days.

Observables - Volcanism (2) Methods

- Variability in isotopic composition of noble gases:
- Gas chromatograph mass spectrometer for in situ measurements of the atmosphere
- Change in topography:
- SAR-InSAR for variability over time
- Detect recently deposited volcanic lava flows
- Requires re-measurement of area of interest over time
- Global variability of volcanic gas SO_{2}
- Gas chromatograph mass spectrometer for long duration measurement in situ variations in isotopic composition of volcanic gases: ${ }^{34} \mathrm{~S} /{ }^{32} \mathrm{~S}$ and ${ }^{33} \mathrm{~S} /{ }^{32} \mathrm{~S} \mathrm{H}^{2} \mathrm{O} / \mathrm{HDO}$
- Thermal flux:
- IR/UV spectrometer to measure thermal flux of surface

Observables - Accretion (3) Requirements

- Core size:
- Gradiometer ?
- Composition

Observables - Accretion (3) Methods

- Core size
- In situ MT sounding in combination with orbitermeasured magnetic field values
- Composition
- Gas chromatograph mass spectrometer to measure surface composition

Thermal calculations

Input Parameters		
Epsilon (radiator emittance)	0.78	sivered teflon
Alfa (radiator absorptance)	0.05	silvered teflon
Radiator Temperature	297	K
Distance to Sun	0.72	$A \cup$
Albedo	0.8	
IR flux	153	W/m2
Fuun	0	
Falbedo	0.25	
Finfrared	0.25	
Total Electric Power budget	1500	W
Antenna Emitted power	350	W
Area cross section	4	m2
Qinternal	1150	W
Qexternal x Area	224.82	W
Qradout \times Area	1376.58	W
BALANCE - Qext + Qint - Qrad	-1.76	W

What do we know: noble gases

Noble gas isotope ratio	Previons matasuremeat	mates
${ }^{3} \mathrm{He}{ }^{4} \mathrm{He}$	**	${ }^{3}$ He predicied at low ppb level methome or H_{2} could gne $\mathrm{H}_{2}{ }^{+}$ intetforecese wh HD
${ }^{3} \mathrm{Ne}{ }^{1 / \mathrm{Ne}}$	11.8 ± 07	Potental interferenes from "Ar" at 20 De anit $\mathrm{CO}_{2}{ }^{-1}$ at 22 De
${ }^{31} \mathrm{Ne}{ }^{\text {M }} \mathrm{Ne}$	-	
"At ${ }^{\text {/ }} \mathrm{Ar}$	5.56 ± 0.62	PV Probe Dunalac amly is
	5.08 ± 0.05	Vemen 11/12 MES
${ }^{4} \mathrm{ALP}^{34} \mathrm{Ar}$	1.03 ± 0.04	PV Probe Donuthe minkis
	1.19 ± 0.07	Venera 11/2Ms
Ki botopes	-	
Xe notopers	-	

Target
accuracy
<5-10\%

What do we know: noble gases

Xe isotopes, ${ }^{36} \mathrm{Ar} /{ }^{38} \mathrm{Ar}$

- Cometary origin of volatiles
- Atmospheric blowoff
- Comparision between number of large impactors on Venus and Earth

[^0]
Is tectonic history of Venus comparable to Earth's?

. Why it is important and how it relates to the theme?

```
Plate tectonics could be essential for life
```

- Support generation of magnetic fields by effectively cooling the deep interior that serves as shield for radiation and solar wind erosion
- Recycling carbon is needed to stabilize temperature (on Earth)

It is likely to have water if there is plate tectonics

- Near surface rock must be weakened, lowers melting point [Planetary Interior Evolution and Life, EGU2012, T. Spohn 2012]

Is tectonic history of Venus comparable to Earth's?

What do we know about the issue raised by the question?

1 .Topographic evidence that point to tectonics and surface movement at Venus (Radar images and Altimetry from Magellan)
2. Magellan topography \& gravity seems to confirm "stagnant lid" theory that is different to Earths plate tectonics. [Solomatov and Moresi, 1996]

Is tectonic history of Venus comparable to Earth's?

What do we know about the issue raised by the question?

Is tectonic history of Venus comparable to Earth's?

What do we know about the issue raised by the question?

Thursdyy, suly 24, 2014 Constant kid / Alvssb surplatel tectonics

Is tectonic history of Venus comparable to Earth's?

How good do we know the gravity field ?
Models based on Magellan and PVO Doppler data:

Konopliv (1996): $\mathrm{n}=120 \mathrm{p}$

Konopliv (1998): $\mathrm{n}=180 \mathrm{u}$

Barriot (1998):

$$
n=180
$$

Equator: nmax= 180
Poles: nmax $=40$

Mostly error supersedes signal approx. at $\mathrm{n}=60$ ($\sim 320 \mathrm{~km}$)
\rightarrow Cannot r \&apkeat crrnestehofeatures at few 10s of kilometerss

Is tectonic history of Venus comparable to Earth's?

How good do we know the gravity field ?
Magellan results: poor knowledge

[^1]
Is tectonic history of Venus comparable to Earth's?

What do we expect to measure on Venus and what will that mean?

- measure mainly deformation distributions across tens to a few hundred kilometers at possible plate boundaries, along rift systems of some thousand kilometer lengths
- Venus tectonics could be significantly different to Earth's, which shows rather narrow plate boundaries (few 10 km 's).
- expect to retrieve small crustal thickness at rifts, that point to upwelling mantle material. This would tell us that Venus has or recently had tectonic activity.

Is tectonic history of Venus comparable to Earth's?
 How do we measure?

Rummel, 2014

Gradiometer

Gravity field : EvolVe orbit height vs. resolution

Is tectonic history of Venus comparable to Earth's?

What instruments - GRAVITY

Option 1: Gravity Gradiometer (GOCE type) (Orbiter, TRL=9)
Option 2: Cold Atom Gradiometer (Orbiter, TRL=3)

Is tectonic history of Venus comparable to Earth's?

Cold Atom Gradiometer

Idea : Cold Atom interferometers instead of accelerometers

Concept: - movement of a cloud of atoms $\left(10^{6}\right)$ is observed

- Interferometry: Raman laser, vacuum chamber
- Cooling of cloud via laser \rightarrow recoil velocity

Advantages: - white noise over the entire spectrum ($3 \mathrm{mE} \mathrm{Hz}^{-1 / 2}$)
\rightarrow supercedes both: SST-hl and gradiometry accuracy

Is tectonic history of Venus comparable to Earth's?

What instruments - GRAVITY long wavelengths
Option 1: X/Ka-Band Radar Antenna
STATION-TO-SPACECRAFT-TO-STATION Doppler Tracking
Frequency: 8.43 / ~32 GHz
Accuracies: $\mathbf{2 0 - 3 0} \mathrm{cm}$ range
$3 e-4 \mathrm{~cm} / \mathrm{s}$ range rate (1000-10000s integ. Time)
[from BepiColombo, based on 1.5m HGA]

Is tectonic history of Venus comparable to Earth's?

What instruments - CRUSTAL/LITHOSPHERIC THICKNESS

Option 1: aerial EM sounding (Ballon, TRL=5)

- Use a balloon at 55 km
- On a "dry" Venus should give information on resistivity of the ground at 50km and deeper (taken from models of Grimm 2011)
- On a "wet" Venus would have information on structures at < 20km depths
- Greater distances covered (> 104 km) allow for greater reduction of ionospheric effects on the modelled subsurface

Is the tectonic history of Venus comparable to Earth's?

- Method: aerial EM sounding
- Give information on thickness of crust and lithosphere as well as thermal gradient
- EM sounding has been used extensively in ground exploration on Earth, has been done using satellite-based magnetic measurements of Europa and Callisto (Khurana 1998)
- Use naturally-occurring magnetic perturbations (solar wind-ionosphere interactions: $<1 \mathrm{~Hz}$, Schumann resonances from lightning: > 10 Hz)

Is the tectonic history of Venus comparable to Earth's?

- Method: aerial EM sounding
- Use a balloon at 55 km
- On a "dry" Venus should give information on resistivity of the ground at 50km and deeper (taken from models of Grimm 2011)
- On a "wet" Venus would have information on structures at < 20km depths
- Greater distances covered (> $10^{4} \mathrm{~km}$) allow for greater reduction of ionospheric effects on the modelled subsurface structures

WHY: Volcanic activity is a surface indicator of interior activity

What do we know?

- V\&E Similar size (basic cooling history)
- But Callisto and Ganymed are simillar size and different properties.
- Geochemical composition (radioisotopes) (Surkov 1997)
- Age of basalts?
- Young surface age <800 Ma (Romeo and Turcotte 2009)
- High rates of errosion?

Figure 3 | More than thirty years of SO_{2} measurements at Venus's cloud top. Black stands for previously puoblished measurements ${ }^{26}$. Red stands to the 8 -month maving average of the retrievals also shown in Fig. 1 Solid red error bars represent lo randoon uncertainty, and dotted red error bars represent measurement dispersionin each temporal bin.

- Morphological volcanoes present
- Morphology is deceptive
- Variation in SO_{2} abundance (Esposito, 1984, Marcq et al. 2013)
- Can also be caused by long term variation in the circulation mesosphere (Clancy and Muhleman 1991). mission

Venus atmospheric models from Pioneer
(Atmospheres of Earth, Mars and Venus as defined by entry probe experiments, Seiff, 1991)
:asibility of the gravity mapping phase of t mission

Venus atmospheric densities from the VEX drag experiments (VExADE)

Figure 25: Attitude and average thrust during the low orbit operations campaign (image credit: ESA)

Gas Chromatograph Mass Spectrometer

Power: 41W
Weight: ~17.5 kg
Data rate: 900 bits/s

Based on: GCQMS with gas enrichement line from SAM experiment on Curiosity rover.

(no option for solid sample processing) and GCMS on Huygens

What do we know about Ne isotopes on Venus Earth and Mars?

- Noble gas ratios in the upper mantle are similar to those in the modern atmosphere (Ozima and Igarashi 2000): they experienced the same fractionation before Earth was formed (Rollinson 2007:
- There is a profound difference in concentration of noble gases measured by Venera 11-12 and Pioneer Venus e.g., 84 Kr from Venera is 0.4 ppm and 0.025 ppm based on Pioneer Venus (Atreya et al. 1989).
- $20 \mathrm{Ne} / 22 \mathrm{Ne}$
- 14.3 ± 4.1 (from Pioneer Venus Hoffman et al. 1980)
- $-11.8+0.7$ (later compilation by Donahue 1986)
- Large error:
- (Potential interference from 40Ar++at 20 Da and $\mathrm{CO} 2++$ at 22 Da)

What do we expect on Venus and what would it mean?

- Neon isotopes:
- If the ($22 \mathrm{Ne} / 20 \mathrm{Ne}, 21 \mathrm{Ne} / 20 \mathrm{Ne}$) ratios for Venus and Earth fall on the mass fractionation line predicted by escape processes, it would imply the two planets began as neon twins, sharing the same source of noble gases (and perhaps other volatiles).
- If the observed ratios don't both fall on the fractionation/escape line, then the two planets likely accreted their neons from disparate sources, thus indicating that a variety of formation processes and realms in the parent nebulae helped to create the inner planets.

Current knowledge

The "state of the art" in topographic information and gravity maps is data from the MAGELLAN mission

Magellan results
Global SAR coverage: $100-200 \mathrm{~m}$
Global altimetry: $\quad 10-20 \mathrm{~km}$ horizontal resolution (100 m vertical)

Gravity maps:
$300-700 \mathrm{~km}$

- Single Antenna
- Antenna Size: $2.4 \mathrm{~m} \times 0.6 \mathrm{~m}$
- Altitude: 250 Km
- Swath Width $\approx 40-70 \mathrm{Km}$
- Spatial Resolution <10 m
- Vertical accuracy $\approx \mathrm{cm}$
- Radar Altimeter data rate 2.74 GB /Cycle
- InSAR data rate $6.8 \mathrm{~Gb} /$ day

Radar Altimeter- InSAR INSAR

Goals: Topography, Volcanism detection
Idea: Combine Radar Altimeter and InSAR
Measurements
Radar Altimeter works in a continuous mode
InSAR provide a local coverage (10\% surface)
S band ($\lambda \approx 12 \mathrm{~cm}$)
Weight: 120 Kg
Power Consumption 800W

Phased-Array Antenna

- Electrically steered beam (multiple elements transmit with shifted phase -> constructive/destructive interference)
- 1st 1D high-gain phased array antenna for deep space used in MESSENGER.
- EvolVe requires a 2D antenna -> Difficult to analyze and calibrate.
- New developments are being evaluated
- Virtual 2D antennas (multiple 1D arrays simultaneously operated)

Orbit design

Optimistic launch window

07/12/2032
Alternative
launch window

Orbit design

Density ($\mathrm{kg} / \mathrm{m} 3$) as a function of altitude (km) in Venus atmosphere. Left : the Seiff model, based on the VIRA reference model between 0-100km and extends it up to 200 km of altitude. Right: atmospheric density profiles for several planets with indication of aero-braking altitude.

Orbit design

Aero-braking altitude ($\approx 10^{-7} \mathrm{~kg} / \mathrm{m}^{3}$ density)

- Seiff model : 130 km
- Exp. density model : 320 km

Orbit design

Air-drag acceleration on the satellite/spacecraft

$$
\begin{array}{ll}
\mathrm{a}=-0.5 \rho\left(\mathrm{C}^{*} \mathrm{~A} / \mathrm{m}\right) \mathrm{V}^{2} & -\rho: \text { atmospheric density } \\
-\mathrm{C}: \text { drag coefficient } \approx 2.2
\end{array}
$$

- A : spacecraft cross-sectional area
$\Delta \mathrm{v}$ per revolution by air-drag - m : spacecraft mass
- V: spacecraft velocity

$$
\Delta \mathrm{v}_{\mathrm{rev}}=-\pi \rho\left(\mathrm{C}^{*} \mathrm{~A} / \mathrm{m}\right) \mathrm{a}^{*} \mathrm{~V}
$$

- a:acceleration

Orbit maintenance
DeltaV : $0.1769 \mathrm{~km} / \mathrm{s}$
Fuel: $210 \mathrm{~kg} / \mathrm{year}$

Orbit design

AOS (acquisition of signal) time
(New Norcia DSA to EvolVe, 1 Venus day)

Mean 75 mins
MAX 800 mins

Occultations by : Venus, Sun, Earth rotation

Communications

Thermal calculations

Input Parameters		
Epsilon (radiator emittance)	0.78	sivered teflon
Alfa (radiator absorptance)	0.05	silvered teflon
Radiator Temperature	297	K
Distance to Sun	0.72	$A \cup$
Albedo	0.8	
IR flux	153	W/m2
Fuun	0	
Falbedo	0.25	
Finfrared	0.25	
Total Electric Power budget	1500	W
Antenna Emitted power	350	W
Area cross section	4	m2
Qinternal	1150	W
Qexternal x Area	224.82	W
Qradout \times Area	1376.58	W
BALANCE - Qext + Qint - Qrad	-1.76	W

Cold face Orientation

- Always outwards the Sun
- Two singularities per year -> spacecraft turns around ist Z-axis

3

Configuration during a venus year

Venus atmosphere conditions

Venus Environmental conditions					
Balloon altitude	53	55	63	Tolerance	Units
Temperature (K)	323.2	302.3	254.5	plus/minus 4	K
Temperature (${ }^{\circ} \mathrm{C}$)	50.05	29.15	-18.65	plus/minus 4	${ }^{\circ} \mathrm{C}$
Atmosphere pressure	0.7109	0.5314	0.1659	$\begin{gathered} \text { plus/minus } \\ 15 \% \end{gathered}$	bar
Zonal speed wind (mean)	60	60	91	plus/minus 40	m / s
Balloon planetary rotation rate	7.4	7.4	4.89	n/a	days
Solar drownwelling flux (0.4-1 micron)	638			n/a	W/m2
Solar drownwelling flux (0.4-1.8 micron)	730			n/a	W/m2
Total upwelling flux	25			n/a	W/m2
Cloud layer	Lower-middle cloud			n/a	n/a
Cloud composition	75\% H2SO4 +25\% H2O			n/a	n / a
EM radiation	300			n/a	$\mathrm{microV} / \mathrm{m} / \mathrm{sqrt}(\mathrm{Hz})$

Overview Risk Analysis

Drag in orbit too high for measurements	A
LV failure	B
LV injection error	C
Solar Panel damage	E
Trajectory failure	F
HGA pointing error	G
Loss of Balloon (Reentry, Venus environment)	H
Insufficient Orbit Determination	I
Balloon Deployment Failure	J
Ariane V decommissioned	K
Solar Array pointing error	L
Solar Particle Event	M
Failure to deploy appendices	N
Pointing accuracy insufficient for gradiometer	O
Reduced data transmission rate	

Cost Analysis

TYPICAL BREAKDOWN OF THE OVERALL COST		
Launcher	~15\%	Ariane 5 : ~ $165 \mathrm{M} €$, Soyuz from Kourou : ~ $75 \mathrm{M} €$, VEGA $\sim 55 \mathrm{M} €$
Ground segment \&		increases with spacecraft distance from the Earth and the
Operations (MOC\&SOC)	10-15\%	mission duration
Management \& Facilities	~10\%	
	60 to to 65%	
Spacecraft Development		what is left !
Contingency	20-25\%	(sum (2-4)*M (increase marging with risk)

Downsizing - Medium A

- Gradiometer w/ Altimetry, Balloon

All values in [kg]	SMAD Remote Sensing	SMAD Average All
Payload	386	386
Dry Mass	1047	1429
Total Launch Mass	3382	4616
Soyuz to Venus	1650	1650
Ariane V to Venus	4500	4500

Downsizing - Medium B

- Gradiometer w/ Altimetry and SAR

All values in [kg]	SMAD Remote Sensing	SMAD Average All
Payload	263	263
Dry Mass	713	974
Total Launch Mass	2304	3145
Soyuz to Venus	1650	1650
Ariane V to Venus	4500	4500

[^0]: Resolution: 0.1 AMU
 Frequency of measurement: at least 1 measurement of every noble gas isotopic ratio
 Range of measurement: 1-150 AMU
 Sensitivity: 0.1 ppb Xe, Kr
 Accuracy: Abundance and isotope ratios of $\mathrm{He}, \mathrm{Ne}, \mathrm{Ar}, \mathrm{Kr}, \mathrm{Xe}$ to $\pm 3 \%$.
 Temporal resolution: onece

[^1]:

