Summer School Alpbach 2015

Quantum Physics and Fundamental Physics in Space July 14-23, Alpbach/Tyrol - Austria

TEAM BLUE

Jonatan ADOLFSSON, Laura ANTONI-MICOLLIER, Nikolaus Walter BUCHHEIM, Paolo CAPPUCCIO, Silvio DE CARVALHO, Vittorio DE FALCO, Nina FLEISCHMANN, Nicolas GAMPIERAKIS, Samuel GONGORA GARCIA, Matthieu LAPORTE, Neda MESHKSAR, Mihaela NASTASE, Timo NIKKANEN, Sam PALLISTER, Luisa SANTO Tutors: Günter Kargl, Oliver Jennrich

FFG

Thursday 23th July 2015

Mission statement

First experimental study of quantum decoherence induced by spacetime curvature

Scientific objectives

SO1: Investigate the influence of gravitational time dilation on a single photon interference experiment.

SO2: Compare single photon interference with interference of classical light.

Scientific background

Motivation

1. Curiosity The best current theories cannot be the whole story. We lack deeper understanding about the nature of the universe (*Dark Matter/Energy?*).

2. Cosmology QM and GR not enough to give good explanation of the first few moments of the universe (*Big Bang*), and objects where small scales and large masses are important (*Black Holes*).

3. Technology

After the invention of lasers, transistors and use of nuclear energy, further research in quantum mechanics could give rise to yet unknown applications.

Scientific approach

Combine the fundamental effects of **GR** and **QM** in a single experiment.

GENERAL RELATIVITY

QUANTUM MECHANICS

Massive objects curve space and time

Single particles show interference behavior

Single photon interference in presence of curved space-time

TEAM BLUE

Involved effects

Predicted physical effect

Magdalena Zych et al. GENERAL RELATIVISTIC EFFECTS IN QUANTUM INTERFERENCE OF PHOTONS 2012

Observe gravity induced **decoherence** (*break-down of the Schrödinger wave function*) of a single photon superposition state with increasing distance from Earth.

Experimental heritage

Gravitational red-shift in nuclear resonance

R. V. Pound and G. A. Rebka, Jr. (Phys. Rev. Lett. **3**, 439 October 1959)

Observation of Gravitationally Induced Quantum Interference

R. Colella and A. W. Overhauser, S. A. Werner (Phys. Rev. Lett. **34**, 23 April 1975)

Experimental Satellite Quantum Communications

Giuseppe Vallone, Davide Bacco, Daniele Dequal, Simone Gaiarin, Vincenza Luceri, Giuseppe Bianco, and Paolo Vtlloresi (Phys. Rev. Lett. **115**, 040502, **20 July 2015**)

First experiment that will include both effects.

Alpbach Summer School 2015

TEAM BLUE

Scientific objectives

Scientific objectives

SO1: Investigate the influence of gravitational time dilation on a single photon interference experiment.

SO2: Compare single photon interference with interference of classical light.

What do we need to measure

The gravity induced **phase shift** and the **drop in fringe contrast** of single photon interference.

Fringe contrast:

$$V(h) = V_0 e^{-\frac{\log 2}{2} \left(\frac{\Delta \tau}{t}\right)^2}$$

Scientific requirement

SR1: Measure the loss in coherence as a function of satellite altitude with a statistical significance of ≥5.

SR2: Measure the phase shift as a function of satellite altitude with a statistical significance of ≥5.

Traceability matrix

Scientific Theme	Scientific Objective	Scientific Requirements	Mission requirements	Instrument Requirements	System Requirement s
Fundamental physics: Examination of the effect of general relativity on a single quantum state to test for connections between these two fields.	<i>SO1</i> : Investigate the influence of gravitational time dilation on a single photon interference experiment.	SR1: Measure the loss in coherence as a function of satellite altitude with a statistical significance of \geq 5.	MR1: Need gravitational potential differences in a range between 700-32,000 km	<i>IR1:</i> Single photon source: 1550 nm, pulse width 1 ps, repetition rate 1 GHz, temperature stability ±0.5 °C	SysR1: Primary power supply: ≥ 350 W on average
					SysR2: Electrical storage capacity: ≥ 600 Wh
	<i>SO2:</i> Compare single photon interference with interference of classical light.	SR2: Measure the phase shift as a function of satellite altitude with a statistical significance of \geq 5.	MR2: Measurements shall be carried out during local night time at ground segment	<i>IR2:</i> Reference laser: 1300 nm, output power 500 mW, frequency stabilized $\leq 10^{-11}$	SysR3: COMMS system: downlink capacity 50 kbit/s
		SR4: The photon flux at apogee shall be \geq 100 photons/s	MR3: Need two ground stations to observe	<i>IR3:</i> Single photon detectors (8x): efficiency > 25% (ground), repetition rate 25 MHz	<i>SysR4:</i> Onboard memory: 20 MB
		SR3: The total number of counts shall be $\ge 7 \cdot 10^7$		<i>IR4:</i> Pointing accuracy: 6 μrad during 150 s, stability <1 μrad during 0.3 ms, slew rate 10 mrad/s	SysR5: Thermal stability <0.5°C
				<i>IR5:</i> Fibres: optical path difference ≤ 1 µm, dispersion 5 fs/nm/km	<i>SysR6:</i> lonizing radiation <600rad TID
				<i>IR6:</i> Ground receiving telescope: FOV 10 µrad,	

Why go to space?

EARTH

Interferometer between Mount Everest and the Mariana Trench:

 $\Delta T = 0.7 \text{ fs}$

out of measurement precision with current technology

h = 19.8 km

Alpbach Summer School 2015

TEAM BLUE

SPACE

At an altitude of h = 32000 km:

 $\Delta T = 150 \text{ fs}$

Experimental realization Satellite detector clicks Delay 200 100 300 Ground phase modulation, BS Delav SPS

D.Rideout et al. - Fundamental quantum optics experiments conceivable with satellites, ArXiv 1206.4949v2

- 1) Realize a single photon interferometer between Earth and a satellite on a highly elliptical orbit.
- 2) Observe drop in fringe contrast with two ground stations at the apogee and the perigee of the orbit.

Measurement strategy

- 1. Measure the drop in interference fringe contrast
- 2. Exponential dependence on gravitational time delay and photon coherence time

Fringe contrast:

$$V(h) = V_0 e^{-\frac{\log 2}{2} \left(\frac{\Delta \tau}{t}\right)^2}$$

- Δτ : gravitational time delay
 - t : photon coherence time

- use ultra-short single photon laser pulses
- optimize satellite orbit for altitude difference
- use laser downlink configuration to maximize photon flux
- mitigate error sources and large coherence times by statistics

Requirements reasoning

Requirement: detect drop in fringe contrast with 5σ significance.

- 1) Polar orbit with apogee of 32000km
- 2) One year of mission time
- 3) Single photon source with pulse width of 1ps
- 4) Tolerate pulse dispersion to $\leq 4ps$

predicted drop in fringe contrast: 0.06%

Statistics needed:

$$\frac{S}{N} = \sqrt{n} \cdot \frac{S}{\sigma_{noise}}$$

single photon detection rate ≥100/s

Experimental setup

TEAM BLUE

Technological challenges: fiber length stabilization and noise cancelation

required stability of optical path length: $\pm 1\mu m \rightarrow \frac{\Delta L}{L} = 10^{-10}$ over mission duration

Proposed setup: mixer RF PBS AOM piezo fiber PBS EOM stretcher req. reference: $df/f = 10^{-11}$ PBS 60 km delay fiber, freq. stabilised single mode, PM reference laser dispersion compensated cw 1300 nm

Technological challenges: pulse dispersion in dielectric media

Alpbach Summer School 2015

TEAM BLUE

Instrument requirements

Source of single photons

- Picosecond Laser pulses:
 - Based on well-established non-linear mode locking mechanism
- Requirements:
 - Wavelength: $\lambda = 1550 \text{ nm}$
 - Pulse width: 1ps
 - Repetition rate: 1GHz
 - Mean photon number per pulse: $\mu = 0.1$
 - Probability of multiphoton emission ~ 5%
 - Single photon rate: ~100 MHz

Alpbach Summer School 2015

Reference Laser

- Guided through same path as single photons
- Application:
 - Comparison of classical interference to single photon interference
 - Analysis of polarization changes in down link
 - Delay measurement between satellite and ground station
 - Interferometric stabilisation of optical fibres

• Requirements:

- Continuous wave
- Power: ~ 500 mW
- Wavelength: $\lambda \sim 1300 \text{ nm}$
- Relative frequency stability: 10⁻¹¹
 - *Trade off*: as close as possible to quantum channel, but clearly outside bandwidth of single photons

Instrument Link Budget

Noise (Downlink)

- 1550 nm bandpass filter
- Time gate
 - Reduces sampling by 50%
- Low optical depth
- High angle of signal incidence
- Highly precise TP system
- Doppler shift between 1.1 and 6.2 Ghz

Er-Long, M. et al (2005). Background noise of satellite-toground quantum key distribution. New Journal of Physics.

Challenge: optical path length and Doppler phase shift

Solutions:

- Measure Doppler shift via reference laser
- Calculate Δd to μm precision (requires precise measurements in v and d)
- Make posterior compensations to measured phase shift

Causes:

- Difference in optical path of superposition states due to moving satellite
- Doppler shift in frequency when $\theta \neq 0$
- Effects: phase shifts in our measurements, much greater effects than time dilation (1 fs = $0.3 \mu m$)

Optical Payload Communication

Location	Requirements	Solution	Remarks
	Lifetime of two years	3 lasers on satellite for redundancy	
Apogee	Ground receiver FOV of 10 µrad	+ Beam FOV 6 µrad	Atmospheric Compensation
	SNR > 5 100 detected photons/s	Time gate filter (1 ns) and 100 ms sync, Bandwidth filter of 100 nm	4000 counts/s worst case 50% mission lifetime
	Transmission loss < -40 dB	3 m diameter telescope 0.6 m diameter laser sources	Requires building groundstations, SCIATRAN or sim. data
	Compensate for 63.0 GHz redshift	Real-time software package at ground	
Perigee	Ground receiver FOV of 10µrad		
	SNR > 5 100 detected photons/s	Time gate filter (1 ns) and 100 ms sync	90,000 counts/s worst case
	Transmission Loss < -10dB	3 m diameter telescope 0.6 m diameter laser sources	
	Compensate for 1.1 GHz redshift	Real-time software package at ground	
Alpbacl	n Summer School 2015	TEAM BLUE	29

Telescopes

- Onboard transmitting telescope:
 - 60 cm aperture to meet link budget requirements
 - 1 *m* long
- Onboard tracking telescope:
 - 13.5 cm aperture to meet transmission requirements

• Groundstation receiver telescope:

- 3 *m* aperture to meet link budget requirements
- Shall have 10 µrad FOV to account for atmospheric aberrations
- Shall achieve an angular velocity of 10 mrad/s to track the satellite

ADCS requirements

Location	Requirements	Solution	Remarks
Perigee	2 μrad pointing accuracy	Reaction wheels	
	10 mrad/s		
	65.1 μrad point ahead angle		
Apogee	0.05 μrad pointing accuracy	Reaction wheels	Design Driver Comparable to Hubble
	0.1 mrad/s		
	8.9 μrad point ahead angle		
Orbit	1 cm distance accuracy	PRS based laser ranging	GNSS principle

Instrument model development and test plan

Model	Purpose		
Instrument breadboard models	 Validate technologies for instrument elements in lab environment: Fibre stabilization Dispersion compensation Single photon source 		
Electrical and optical interface model	Validate electrical and optical interfaces		
Structural and Thermal Model	 Validate instrument structure for launch and space environment: Validate instrument thermal control interfaces and stability for space environment 		
Engineering Model	Validate instrument interfaces and operation with the spacecraft platform		
Proto-Flight Model	Validate for flight with qualification level testsUsed also for actual mission		

Mission requirements

Orbit

Requirements

GS in shadow

Maximized difference in gravitational potential

Pointing away from sun during measurement

Parameters

Polar Orbit: P:700km A:32000km

AoP:270°

Environment

One year total radiation dose: 1.47×10^{6} rad

Experiment connection

Launcher – VEGA

•

۲
Propulsion

400N Apogee Motor

lsp=321s

Apogee change $\Delta v=323$ m/s

Controlled deorbit manoeuvre $\Delta v=61$ m/s

Orbital Control System

12 x 10N thruster

Station keeping Δv : 40m/s

Orbital Manoeuvre

Satellite bus

Specifications

Core Bus Features
Bus Dry Mass:
Max. Launch Mass:
Payload Mass Capability:
Orbit:
Typical Mission Lifetime:
Delivery:

Launch Vehicle

Compatibility:

800-1,500 kg 3,325 kg 500 kg Geosynchronous >15 years 24 months (typical) after receipt of order

Ariane, Soyuz, Land Launch, Proton, H2A, Falcon-9, Sea Launch Structure

Bus Dimensions (HxWxL): Construction:

Construction.

Power Subsystem

Payload Power:

Bus Voltage: Solar Arrays: Batteries:

Attitude Control Subsystem

Stability Mode: Propulsion Subsystem Transfer Orbit System: On Orbit: 1.75 m x 1.7 m x 1.8 m Composite/Al

Up to 5,550 W orbit average @ 15 years 24-36 VDC (nominal) Multi-junction GaAs cells Li-lon

3-axis; zero momentum Liquid bi-propellant Monopropellant (hydrazine)

Command & Data Handling Subsystem

- Burner	
Interface	Architecture:

Flight Processor

MIL-STD-1750A MIL-STD 1553B, CCSDS

Spacecraft architecture

Satellite assembly

Communication subsystem

- 430 MHz (UHF) half-duplex
- Downlink
 - 16 W RF power
 - Bitrate 50 kbit/s: 25 kbit/s data + 25 kbit/s error correction
 - Half wave dipole antenna
 - Link closes with 1.0 dB margin
- Uplink
 - 10 W RF power
 - Bitrate 5 kbit/s: 2.5 kbit/s data + 2.5 kbit/s error correction
 - 3 m diameter parabolic antenna
 - Link closes with 5.6 dB margin

Mass Budget

Subsystem	Mass [kg]	Margin [%]	Mass with margin [kg]
Instrument	89,6	20	107,52
Communication system (RF)	10	10	11
On-board Command and Data Handling System	1,5	10	1,65
Electrical Power System	32,79	10	36,07
Structure	28	20	33,6
Attitude Determination and Control System	11,7	10	12,87
Thermal Control System	14	10	15,4
Radiation shielding	50	10	55
Total dry mass	237,59		273,11
20 % Total margin	47,52		54,62
Total dry mass with margin	285,11		327,74
Propulsion system:	78,10	20	93,72
Total	363,21		421,46
Alpbach Summer School 201	.5 TEAN	BLUE	43

Power Budget

Subsystem	Peak power [W]	Average power [W]	Margin [%]	Average power with margin [W]
Instrument	137,3	102,3	20	122,76
Attitude Determination and Control System	382	150	5	157,5
Electrical Power System	30	30	5	31,5
Thermal Control System			5	0
On-board Command and Data Handling System	7,3	4	10	4,4
Communication system	27	25	10	27,5
Total	583,6	311,3		343,66
System margin (20 %)	116,72	62,26		
Total with margin	700,32	373,56		

Power consumption averaged over a typical orbit taking subsystem duty cycles into account: **299 W**

TEAM BLUE

Electrical Power System

- Solar panel
 - Area: 1 m²
 - Efficiency 28 % (triple junction cells)
 - BOL power: 383 W, EOL power: 380 W (power consumption averaged over a typical orbit: 299 W)
- Batteries
 - Technology: Li-Ion
 - Usable capacity: 1500 Wh

On-Board Command and Data Handling System

GEN 6 LEON 3FT Single Board Computer from Cobham Semiconductor Solutions

- Radiation tolerance: TID > 100 krad(Si)
- Max. Power consumption 7.3 W
- Memory
 - 64 MB of EDAC SRAM Memory
 - 32 MB of EDAC Non-Volatile MRAM
- Utilised also for the instrument controller

Thermal Control System

Orbital thermal environment:

- 1. Solar radiation
- 2. Earth albedo
- 3. Earth radiation
- 4. Satellite heat emission

Worst hot case scenario

Solar Radiation, $J_S = 1374 \text{ W/m}^2$ Albedo radiation, $J_a = 320,54 \text{ W/m}^2$ Planetary radiation, $J_p = 212,22 \text{ W/m}^2$ Internal dissipation, Q = 300 W/m²

Thermal Analysis

Maximum power dissipation	300	W	
Minimum power dissipation	100	W	
Maximum Temperature	24,41	°C	
Minimum Temperature	-35	°C	
Upper temperature limit	35	°C	
Lower temperature limit	5	°C	

Thermal Control System Configuration

- 1. MultiLayer Insulation (MLI): 10 double-sided aluminized layers, separated by Dacron net spacers, with an outer layer of Kapton
- 2. External surface paint: *silver*
- 3. Radiator (Teflon): *active surface of 1,92* m²
- 4. Heat pipes
- 5. Special requirement for optical bench and optical fibre container: *MLI*

Radiation Shielding Design

Ionising radiation increases attenuation in optical fiber:

0.5 dB/km for TID of 9000 rad

Uffelen, M. et al. *Feasibility Study for Distributed Dose Monitoring in Ionizing Radiation Environments with Standard and Custom-made Optical Fibers*, SP IE Photonics for Space Environments VIII, Proceedings of SPIE, Vol. 4823 (2002)

The radiation dose for 1 year with a shielding of 1 cm of Aluminum is: 593 rad

Therefore for a 60 km fibre the resulting loss is:

$$0.5 \times 60 \times \frac{593}{9000} = -1.98 \, dB$$

Radiation Shielding Design

2mm shielding for optical bench and laser.

1 cm Al layer protects detectors from radiation.

1mm shielding for onboard computer - can resist up to 100 krad, enough for our mission.

Programme management

Mission architecture

Project timeline

Risk analysis

Risks	Severity	Likeliness	Risk level	Mitigation
Development risks				
Delay of availability of optical fibres in specification range	Extreme	Likely	Very high	Extended technology development and test program, technology has to be ready before Phase B.
Delay of availability of the frequency stabilisation	Very high	Moderate	Medium	Extended technology development and test program, technology has to be ready before Phase B.
Operational risks				
Blackening of fibres due to radiation damage	Very high	Moderate	Medium	Radiation shielding, short mission duration
Single laser failure	Medium	Unlikely	Low	Redundancy concept, short mission time
One reaction wheel fails	Negligible	Moderate	Very low	Redundancy: continue operation with 3 reaction wheels.
Alpbach Summer School 2015		TEAM BLUE		55

Finances – M Class Mission

Item	Cost (M€)
Project Team (PT)	30
Spacecraft (S/C)	150
Mission Operation Cost (MOC)	40
Science Operation Cost (SOC)	40
Payload (P/L)	200
Launcher	45
Contingency	28
Technology development	50
TOTAL COST	583

Item	Budget (M€)
ESA	333
Member states	250

Descoping option

90° inclination: 708 connections with a total of 1816 h

35Deginclination-To-Kourou - Times (UTCG)

35Deginclination-To-Maspalomas - Times (UTCG)

2015

Outreach and public benefit

Outreach

Educational browser games (e.g. Quantum optic experiments) accessible via QR codes hidden in mission related publications

Public data archive, real time measurement visualization

Public benefit

Optical fiber technology – dispersion less communication networks, high speed system control for large science facilities (e.g. linear accelerators)

Janos will advance the foundations for satellite based quantum communication

Conclusion

• Janos will be the first mission to test the interaction between quantum mechanics and Einstein's theory of general relativity in a **controlled experiment**.

- Experiment realization is within reach of current laser and detector technology.
- Technology development is relevant for quantum science and the high tech industry.

Thank you for your attention

Backup slides

Orbits 1-Sunlight

Satellite-COWSAT90-2: Percent Sunlight - 22 Jul 2015 00:36:28

TEAM BLUE

Orbits 2 – Altitude change

Alt (km)

TEAM BLUE

Orbital Coverage

Propulsion

- MMH: 11.22kg
- N2O4: 18.52kg
- Pressurize gas: Helium
- Tank mass: 4.72kg (Titanium)

Satellite assembly

Optical assembly

Laser

Thruster propulsion

Reaction wheels

Control system

Power system

Temperature variation during an eclipse

Alpbach Summer School 2015

TEAM BLUE

Potential outcomes

Fringe contrast	Phase Match	Consequences
Newtonian model	yes	high confidence - single quanta couple differently to general relativity than classical matter
Einsteinian model	yes	High confidence - single quanta couple to gravity identically to classical light
Newtonian model	yes, and frame dragging	drop in visibility too hard to resolve
Newtonian model	no	systematic error present
Einsteinian model	no	systematic error present
Einsteinian model	yes, and frame dragging	single photons are also susceptible to frame dragging effects as well as GR

Alpbach Summer School 2015 Alpbach Summer School 2015 TEAM BLUE Team Blue Thursday 23th July 2015

Relative error of Visibility

Alpbach Summer School 2015 Alpbach Summer School 2015 TEAM BLUE Team Blue

Thursday 23th July 2015