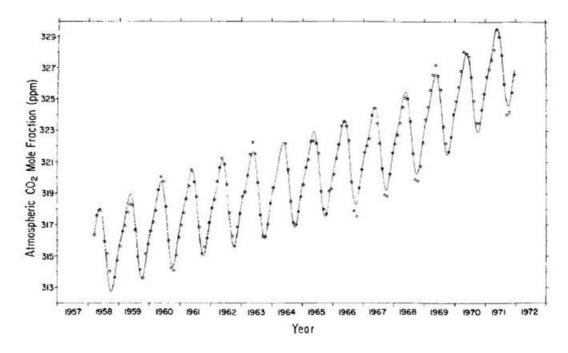


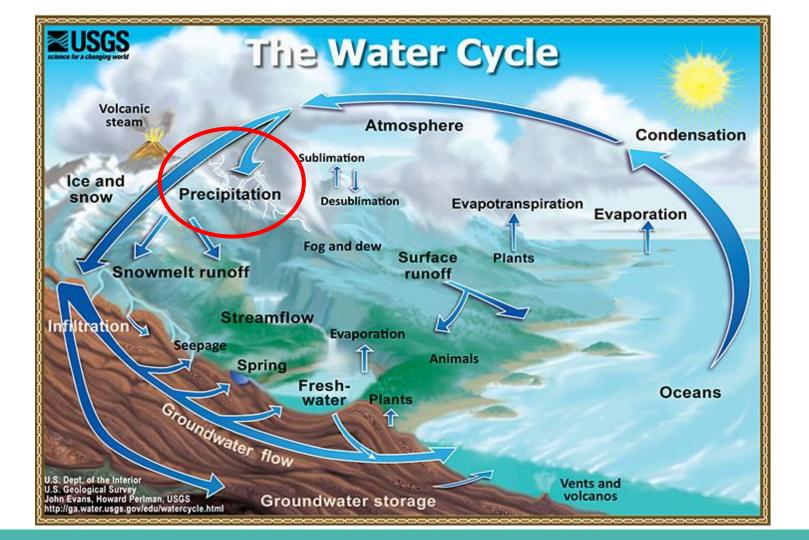
earth

Summer School Alpbach 2016 Satellite Observations of the Global Water Cycle

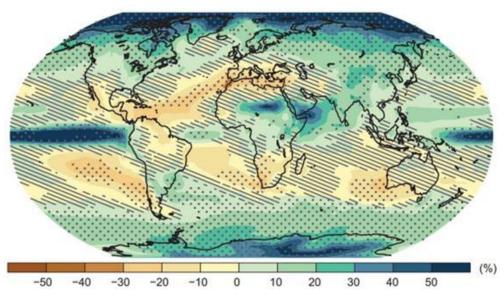
Team Blue

ΜW


I.Science


Background

The Blue Marble - First full view of the Earth, taken by crew of Apollo 17, Dec 1972



"Cubic trend function" of atmospheric CO_2 from Mauna Loa Observatory, Keeling et al. (1972)

Motivation

- Present observations and simulations estimate weather in <u>high-latitudes</u> will show the <u>strongest response</u> to climate change.
- Precipitation (snow, ice and rain) in <u>high-latitudes</u> will <u>intensify</u> in the future.
- <u>Space observation</u> is vital to produce globally consistent data including areas unreachable by in-situ measurements.

Average change in precipitation as % 2081-2100. IPCC (2013) Note that the High latitudes show an increase of 30-50% average precipitation in 2081-2100.

Science Objective

Measure the <u>precipitation</u> in <u>high latitudes</u> at a scale compatible with mesoscale meteorological models.

Provide global information of <u>snowfall</u> to complement other missions.

Identifying

- I. Solid and liquid water particles
- II. Stratiform and convective precipitation
- III. 3-D Structure of precipitation systems

Mission Application (1)

Verification and Improvement climate/weather models by:

- Gaining detailed <u>understanding</u> of <u>weather processes</u> (polar lows, convection, organised cold air outbreaks etc.)
- <u>Spatial resolution</u> compatible with mesoscale meteorological systems
- Improve precision of global measurement of snow
- Extend <u>precipitation observations</u> from previous missions up to high latitudes (TRMM,GPM)
- Complement precipitation observations in lower latitudes

Mission Applications (2)

<u>Polar Prediction Project</u> (initiative of WMO within the WCRP) outlines the requirement for verification and parameterisation of climate/weather models of key polar processes, this includes <u>precipitation</u> as well as <u>clouds</u>.

Socioeconomic

Improvement of <u>weather models</u> \rightarrow more accurate and reliable <u>weather</u> <u>prediction</u>:

- High latitude inhabitants
- Planning of <u>shipping routes</u>

Scientific/Observation Requirements

SCIENTIFIC REQUIREMENT	Threshold	Goal
SR 1: Precipitation range Precipitation rate accuracy ≤ 2 mm/h Precipitation rate accuracy > 2 mm/h	0.5 to 20 mm/h 0.5 mm/h 20 %	0.2 to 35 mm/h 0.2 mm/h 10 %
SR 2: Horizontal resolution	4 km	2 km
SR 3: Swath width	150 km	300 km
SR 4: Vertical resolution	1 km	200 m
SR 5: Vertical scanning extent	Approx. 18 km	
SR 6: Coverage of areas with latitude higher than 50°	Min. 90%	
SR 7: Total mission duration	5 years	

Scientific/Observation Requirements

SCIENTIFIC REQUIREMENT	Threshold	Goal
SR 1: Precipitation range Precipitation rate accuracy ≤ 2 mm/h Precipitation rate accuracy > 2 mm/h	0.5 to 20 mm/h 0.5 mm/h 20 %	0.2 to 35 mm/h 0.2 mm/h 10 %
SR 2: Horizontal resolution	4 km	2 km
SR 3: Swath width	150 km	300 km
SR 4: Vertical resolution	1 km 200	
SR 5: Vertical scanning extent	Approx. 18 km	
SR 6: Coverage of areas with latitude higher than 50°	Min. 90%	
SR 7: Total mission duration	5 years	

SR1: Identification of <u>solid and liquid</u> water particles, with enough precision to determine their <u>detailed distribution</u> in Polar regions.

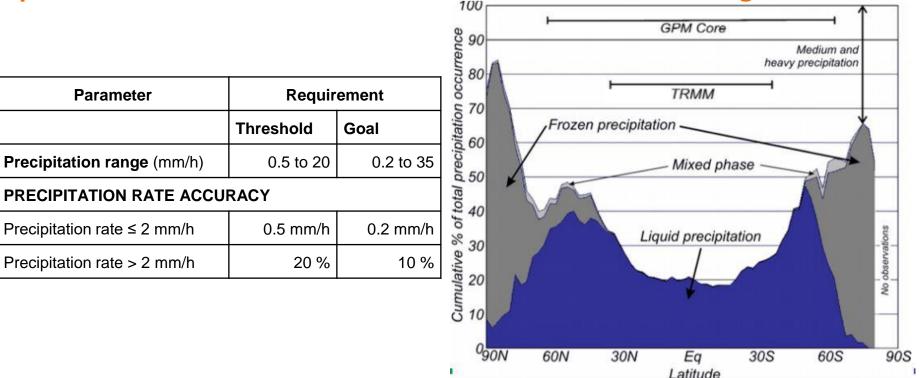


Figure 3 - Mean zonal occurrence of oceanic light precipitation as a percentage of total rainfall occurrence, EGPM (2004) 12

Scientific/Observation Requirements

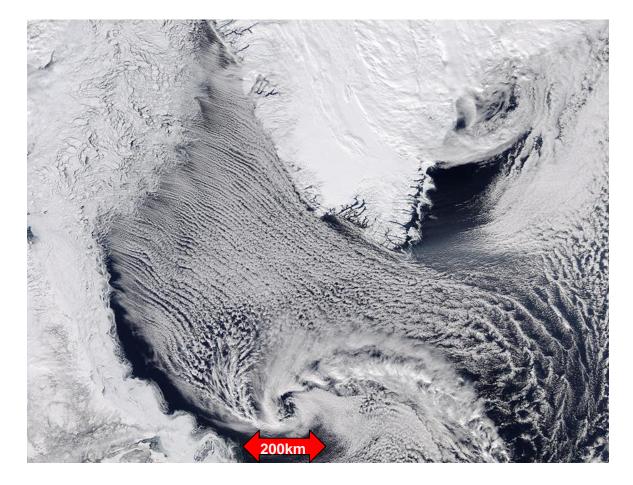
SCIENTIFIC REQUIREMENT	Threshold	Goal
SR 1: Precipitation range Precipitation rate accuracy ≤ 2 mm/h Precipitation rate accuracy > 2 mm/h	0.5 to 20 mm/h 0.5 mm/h 20 %	0.2 to 35 mm/h 0.2 mm/h 10 %
SR 2: Horizontal resolution	4 km	2 km
SR 3: Swath width	150 km	300 km
SR 4: Vertical resolution	1 km	200 m
SR 5: Vertical scanning extent	Approx. 18 km	
SR 6: Coverage of areas with latitude higher than 50°	Min. 90%	
SR 7: Total mission duration	5 years	

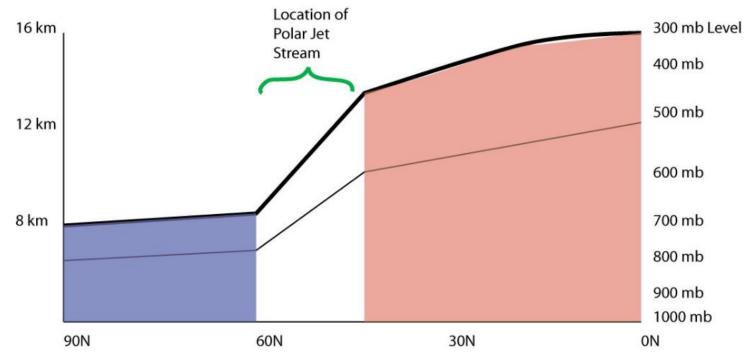
SR 2:

<u>Horizontal Resolution</u> of 4 km (Threshold)/ 2 km (Goal) with a maximum deviance of 1 Km (<u>System</u> <u>driver</u>)

SR 3:

<u>Swath width</u> 150 Km (Threshold)/ 300 Km (Goal)




Image of a polar low of the South coast of Greenland

Scientific/Observation Requirements

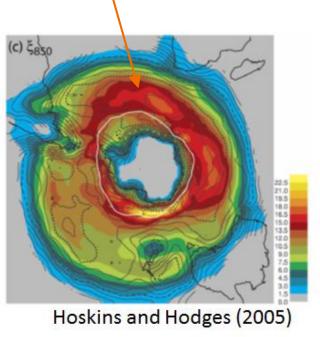
SCIENTIFIC REQUIREMENT	Threshold	Goal
SR 1: Precipitation range Precipitation rate accuracy ≤ 2 mm/h Precipitation rate accuracy > 2 mm/h	0.5 to 20 mm/h 0.5 mm/h 20 %	0.2 to 35 mm/h 0.2 mm/h 10 %
SR 2: Horizontal resolution	4 km	2 km
SR 3: Swath width	150 km	300 km
SR 4: Vertical resolution	1 km 200	
SR 5: Vertical scanning extent	Approx. 18 km	
SR 6: Coverage of areas with latitude higher than 50°	Min. 90%	
SR 7: Total mission duration	5 years	

SR 4: <u>Vertical Resolution</u> of 1 km (Threshold)/ 200 m (Goal)

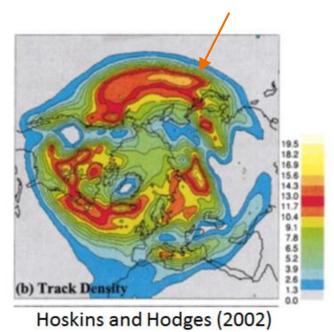
SR 5: <u>Vertical scanning extent</u> of 18 Km

Mean vertical extent of the Troposphere in the northern hemisphere in the time of winter solstice. Note the change in Tropospheric height requiring a large vertical scan range.

Scientific/Observation Requirements


SCIENTIFIC REQUIREMENT	Threshold	Goal
SR 1: Precipitation range Precipitation rate accuracy ≤ 2 mm/h Precipitation rate accuracy > 2 mm/h	0.5 to 20 mm/h 0.5 mm/h 20 %	0.2 to 35 mm/h 0.2 mm/h 10 %
SR 2: Horizontal resolution	4 km	2 km
SR 3: Swath width	150 km	300 km
SR 4: Vertical resolution	1 km	200 m
SR 5: Vertical scanning extent	Approx. 18 km	
SR 6: Coverage of areas with latitude higher than 50°	Min. 90%	
SR 7: Total mission duration	5 years	

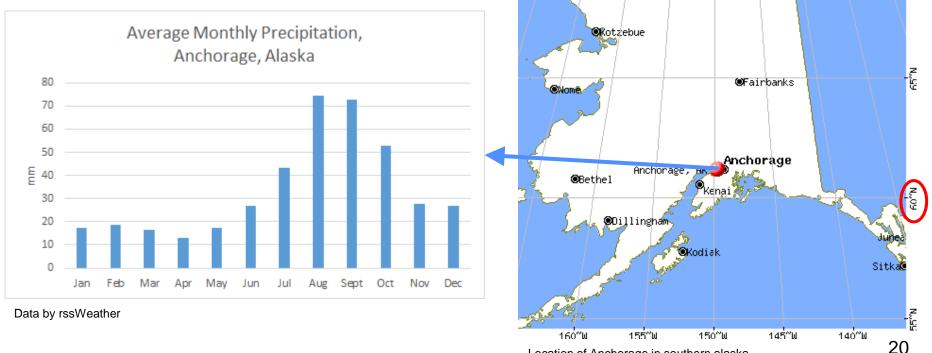
SR 6: <u>Coverage of 90%</u> of the area of a <u>latitude higher than 50°</u> (System driver)


Cyclones spiral towards Antarctica In both hemisphere the cyclone track density weakens near the poles

Complicated structure, with distinct regions of activity

Southern Hemisphere Winter (JJA)

Northern Hemisphere Winter (DJF)

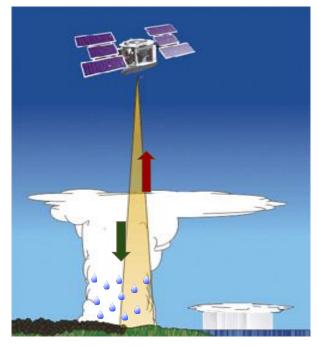

Large scale cyclones' climatology: tracking using reanalysis data

Scientific/Observation Requirements

SCIENTIFIC REQUIREMENT	Threshold	Goal
SR 1: Precipitation range Precipitation rate accuracy ≤ 2 mm/h Precipitation rate accuracy > 2 mm/h	0.5 to 20 mm/h 0.5 mm/h 20 %	0.2 to 35 mm/h 0.2 mm/h 10 %
SR 2: Horizontal resolution	4 km	2 km
SR 3: Swath width	150 km	300 km
SR 4: Vertical resolution	1 km 200 i	
SR 5: Vertical scanning extent	Approx. 18 km	
SR 6: Coverage of areas with latitude higher than 50°	Min. 90%	
SR 7: Total mission duration	5 years	

SR 7: Mission duration of min. 5 years

- Need of interannual comparison caused by the high dependency of weather processes on seasonal variations


Location of Anchorage in southern alaska

II. Measurement & Payload

Objective: Measure Precipitation Medium: Radar Principle: Send an ele

Credits: CEOS/ESA

Principle: Send an electromagnetic wave (pulse) toward a target (raindrops or snowflakes) and measure the backscattered wave power.

- Distance to the target deduced from the time of arrival of the backscattered wave.
- Received power depending on backscattering volume Vc, distance R, and

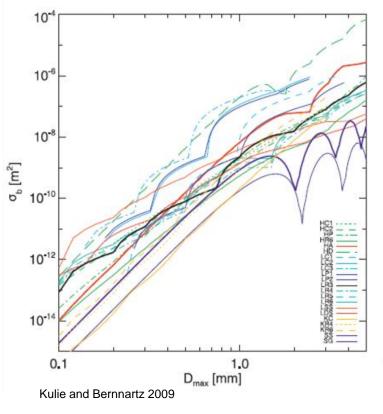
volumic reflectivity Z

$$\overline{P}_r = \frac{P_t G_t G_r \lambda^2 V_c \overline{\eta}}{64\pi^3 R^4}$$

$$\overline{\eta} = \frac{\pi^5 |K|^2}{\lambda^4} Z$$

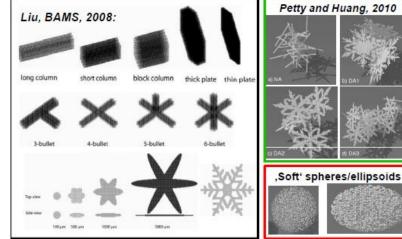
Measurement Principle: Rain Reflectivity

For spherical raindrops reflectivity depends on the distribution of the drops diameter in the backscattering volume: $Z = \int D^6 N_{\nu} (D) dD$

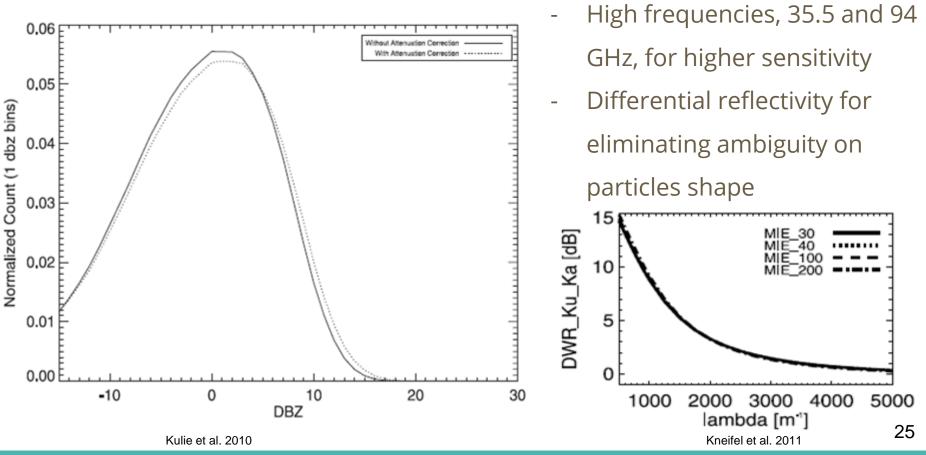

Reflectivity is generally expressed in dBZ:

$$dBZ \propto 10 \log \frac{Z}{Z_0}$$

 $Z_{\rm 0}$ is the reflectivity of one spherical drop of 1 mm diameter in 1 m3 of air

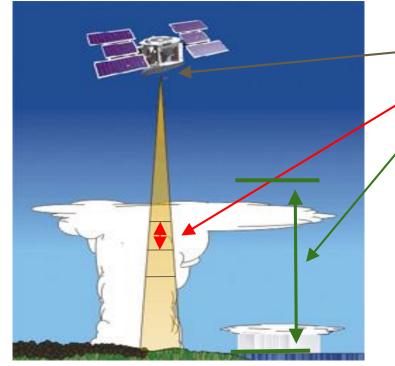

Assuming a given parametric distribution, or from empirical calibration, a relation between rain rate and reflectivity: $Z = aR^b$

Measurement Principle: Snow Reflectivity



For snow, a more complex problem:

- Snow generally have a lower reflectivity than rain
- Different flake shape = different reflectivity

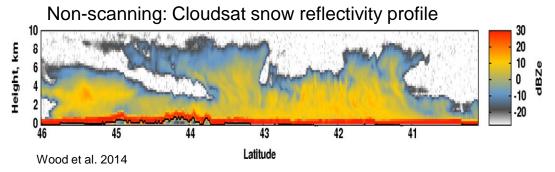


Solution: Dual-Frequency Ka/W Radar

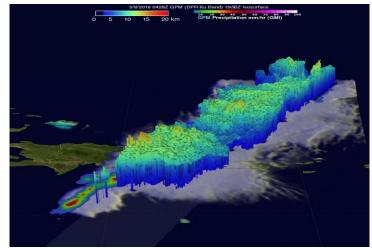
Requirements: Measurement to Instrument

Credits: CEOS/ESA

- Horizontal resolution \rightarrow Antenna size
- Vertical resolution \rightarrow Pulse width
- Vertical extent \rightarrow Pulse Repetition Freq.
- Min. measurable reflectivity
 - \rightarrow Transmitted peak power


Requirements: Measurement to Instrument

For **3D** reflectivity profiles: a **scanning** radar


- -Vertical profile of volume reflectivity
- -Vertical profile of precipitating liquid water

and ice content

-Surface precipitation rate

Scanning: GPM rain reflectivity profile

Credits: NASA/JAXA/SSAI, Hal Pierce

Measurement Requirements

Measurements requirements	Driving requirements
MR1: Dual-frequency active radar instruments shall be used to retrieve precipitation in accordance with the scientific requirements.	SR1, SR2, SR3, SR4
MR2: A minimum reflectivity of 10 dBZ for the Ka-band radar and -10 dBZ for the W-band radar shall be detected by the radar instruments.	SR1
MR3: A pulse duration of 3.3 microseconds shall be achieved by the radar instruments.	SR4
MR4: A Pulse Repetition Frequency (PRF) of 4300 Hz shall be provided by the instruments.	SR5
MR5: A scanning half angle of 18° shall be achieved by the radar instruments.	SR3, OR1

Requirements: Measurement to Instrument

Instruments characteristics:

- 3.3 μ s pulse \rightarrow 500 m vertical res. 4300 Hz PFR \rightarrow >20 km vertical extent
- \pm 18° cross-track scanning \rightarrow 300 km swath width

KaRad (35.5 Ghz):

- Phased array antenna 0.9m x 0.9 m, Gain: 49.6 dBi
- 600 W Peak Transmitted Power \rightarrow 8.6W mean TP
 - \rightarrow 4 km horizontal res. at ground
 - \rightarrow 10 dBZ sensitivity for a SNR=3

WRad (94 Ghz):

- Phased array antenna 0.75 x 0.75 m, Gain: 55 dBi
- 1200 W Peak Transmitted Power \rightarrow 17.2W mean TP
- \rightarrow 2 km horizontal res. at ground
- \rightarrow -10 dBZ sensitivity for a SNR=3

5 dBZ of sensitivity can be gained by noise reduction (averaging)

Instrument Specifications (Options 1 & 2)

Ka/W Dual Band Radar

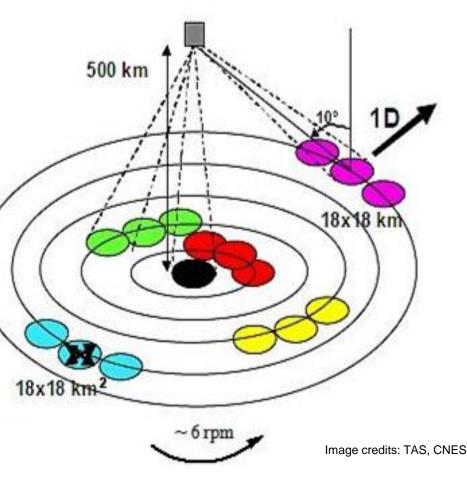
Conical Scanning at 18 degrees incident angle

Main reflector diameter: 1.8m Frequencies: 36 Ghz / 84 Ghz Power Consumption : 520 W Mass (TBC): 400 kg Dimensions: 2 m x 2 m x 3 m (TBC)

Rotating dual reflector system with stationary feed horn(s)

Required rotation speed to achieve the horizontal resolution is too high (~100 RPM) for reflector mass

ightarrow Stability and lifetime problem

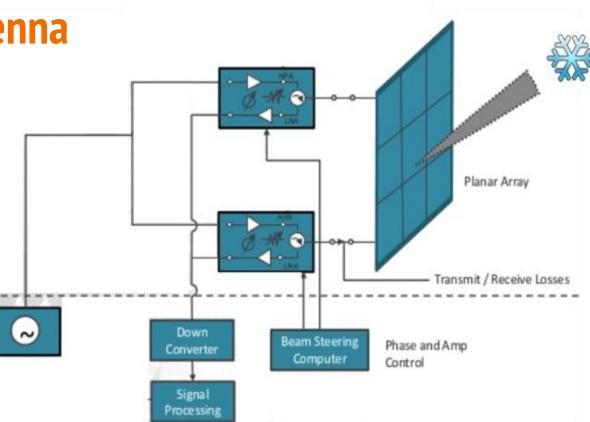


Instrument Specifications (Options 1 & 2)

Stationary reflector with rotating feed horn(s)

Slower rotation speed for lower mass

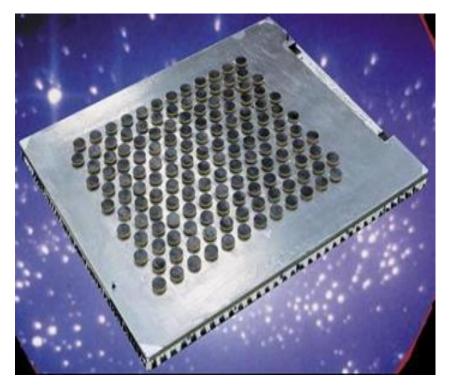
Quad polarization (V & H) Rotary joint is challenging Limited antenna diameter (~1.4m) Need ~6 beams per frequency in order to obtain adjacent tracks on ground


Instrument Options

	Option 1	Option 2	Option 3
Band	Ka/W	Ka/W	Ka/W
Scan	Rotating reflector conical scan at 18°	Stationary reflector with rotating feed horns at 18°	Phased-array cross-scanning
Polarimetric (V&H)	Yes	Complicated	No
Antenna size	D = 1.9 m	D = 1.4 m (d)	0.9 x 0.9 m / 0.75 x 0.75 m
Mechanical & electrical limit	Rotating reflector ~100 rpm	Multiple parallel RF channels (rotary <mark>joint issue</mark>)	Adaptation development needed for space-borne W- band phased array antennas
		0	

Phased Array Antenna

An **array of antennas** whose effective radiation pattern can be altered by phasing the signal of the individual elements.


The **radiation pattern** can be reinforced in a given **direction** and electronically steered \rightarrow eliminates the need for moving parts

Phased Array Antenna

The proposed instrument is a **uniform planar array** containing 20x20 elements in the W band and 15x15 elements in the Ka band.

Reliability: If one antenna fails, the rest continue to function \rightarrow collective pattern is slightly modified (graceful degradation)

Instrument Requirements

Instruments requirements	Driving requirements
IR1: A maximum payload mass of 700 kg (including margins) shall not be exceeded.	MR1
IR2: The radar instruments shall be able to operate with a 1.4% duty cycle.	MR2, MR3, MR4
IR3: The radar instruments shall present a noise figure of 1.5.	MR2
IR4: The power required by the payload instruments shall not exceed 700 W (including margins).	MR1, MR2
 IR5: The antennas shall exhibit the following dimensions: 0.9m x 0.9m x 0.7m for the Ka-band radar 0.75m x 0.75m x 0.7m for the W-band radar 	MR2
 IR6: The following peak transmitted powers shall be provided by the radar instruments: 600 W for the Ka-band radar 1200 W for the W-band radar 	SR1

III. Mission Profile

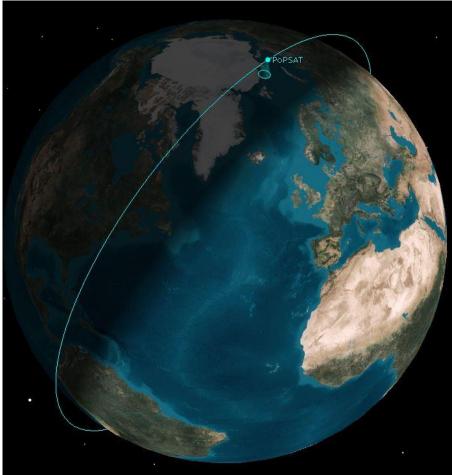
Orbit Requirements

Instruments requirements	Driving requirements
OR1: The selected orbit shall be able to provide the required coverage.	SR6
OR2: The selected orbit shall be able to provide the required power for the whole mission duration.	IR4

Target Orbit - Final Choice

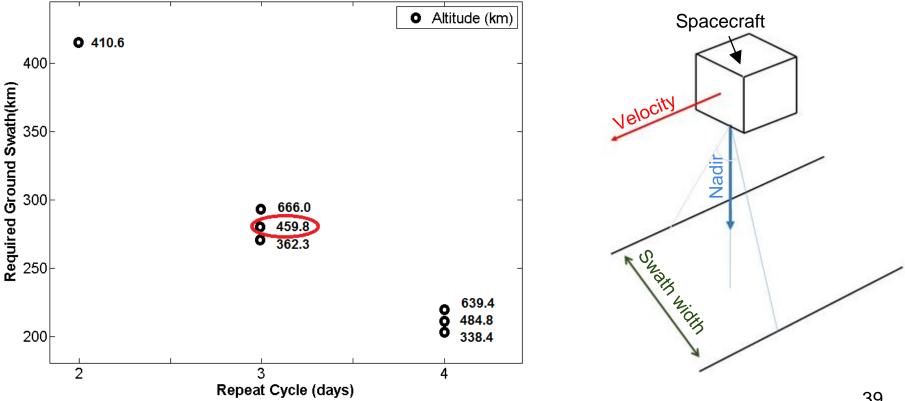
Sun Synchronous Orbit

LTDN 6:00 DawnDusk (Incli. 97.25°)


Altitude: 460 km

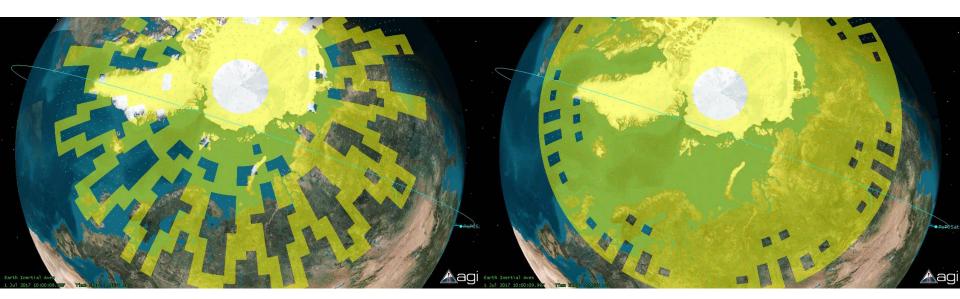
Eclipse from May - Aug

Mean eclipse: 19.6 min


Max. eclipse: 23.8 min

Period: 93.7 min (15.3 Orbits per day)

Target Orbit - Trade-Off


Coverage above 50 degrees latitude with a sun-synchornous orbit

24h observation time: **51**% coverage >50°N

72h observation time: 92% coverage >50°N

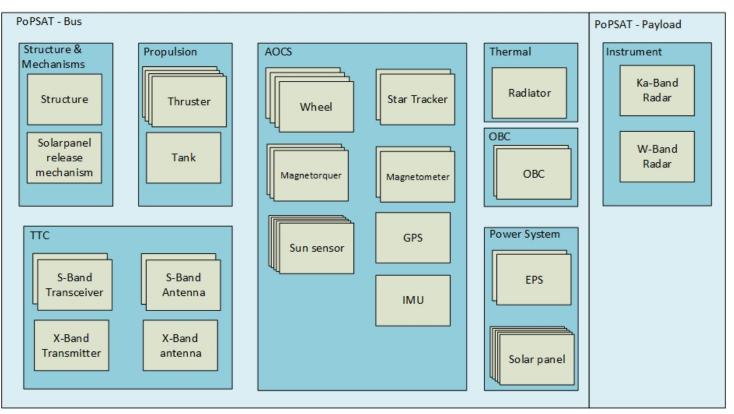
Radiation Environment

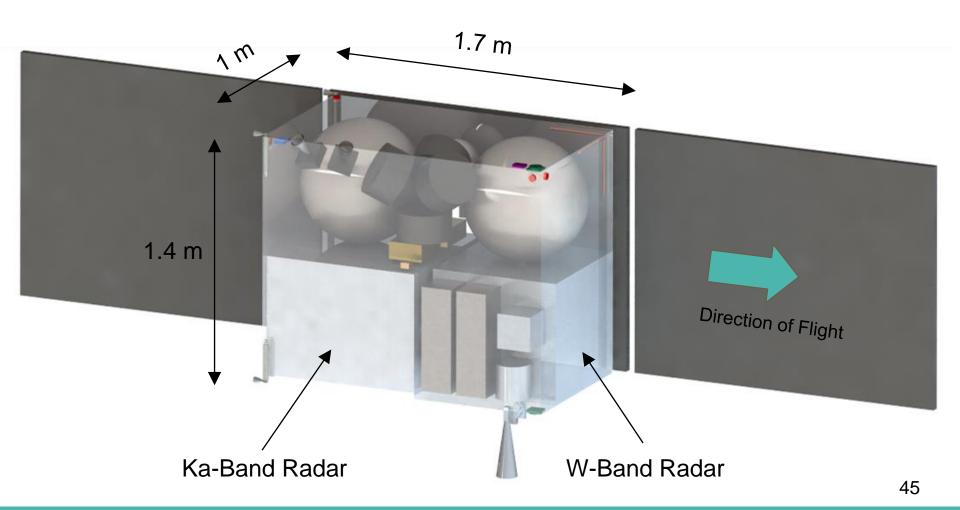
Al absorber thickness				
Shielding [mm]	Area density [g/cm²]	Total [krad]	Margin	Total with margin [krad]
1	0.27	24.8	100 %	49.6
2	0.54	7.07	100 %	14.14

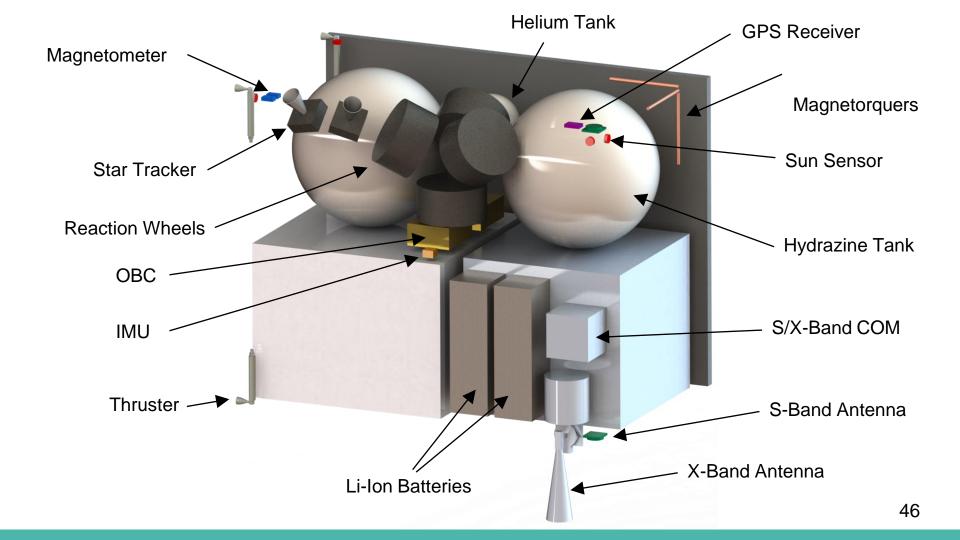
Total Ionizing Dose for 5 year 460km SSO

Non critical altitude for radiation hardened components

Critical subsystems (e.g. star tracker) are available in cold redundancy


IV. Spacecraft




Configuration Requirements

Configuration requirements	Driving requirements	
CR1: The payload instruments have to point towards Earth.	SR1, SR2, SR3, SR4, SR5	
CR2: Ensure free field of view for the payload instruments.	SR1, SR2, SR3, SR4, SR5	
CR3: Ensure access to deep space for sensors.	BR6, BR7, BR8	
CR4: The Earth-pointing side of the satellite shall provide allocation for the S-band and X-band antennas.	BR3	
CR5: The satellite volume in undeployed configuration shall fit the Soyuz fairing envelope.	IR1, IR5	

Satellite Model

Envelope & Launcher

□ Total Satellite Mass: 2.4 t

□ SSO (460 km) performance of *Soyuz*: **4.6 t**

⇒ Dual Launch: PoPSAT fits both in the *top* and *bottom* compartment plus a 2.2 t secondary payload

⇒ Cut-down of launch cost from 75 M€ to 40 M€

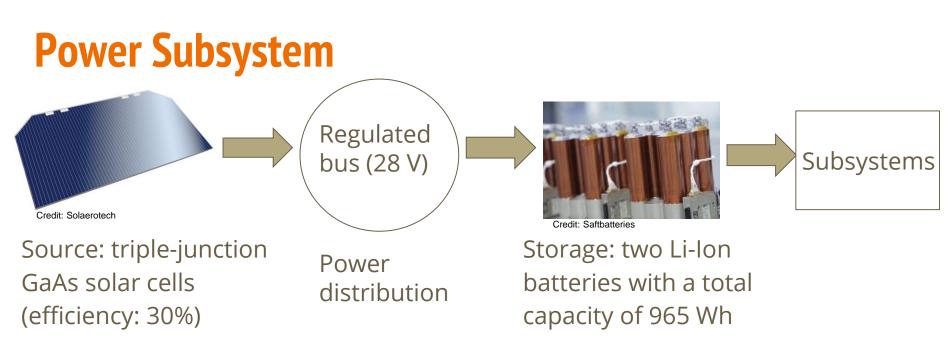
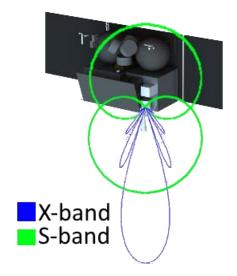


Figure - PoPSAT in Soyuz Envelope

Power Subsystem Requirements

Subsystem requirements	Driving requirements	
BR1: Primary power shall be able to supply 1200 W on average during whole mission.	MR1, MR2	

Solar array size: 8.3 $m^2 \implies$ Power production capability:


- Begin-of-Life: 272 W/m²
- End-of-Life: 224 W/m²

Telecommunication System Requirements

Subsystem requirements	Driving requirements
BR3: The communication subsystem shall be able to achieve a data rate of 100 Mb/s.	SR2, SR3, SR4
BR4: The subsystem shall be able to store at least 30 GB data.	SR2

Communication

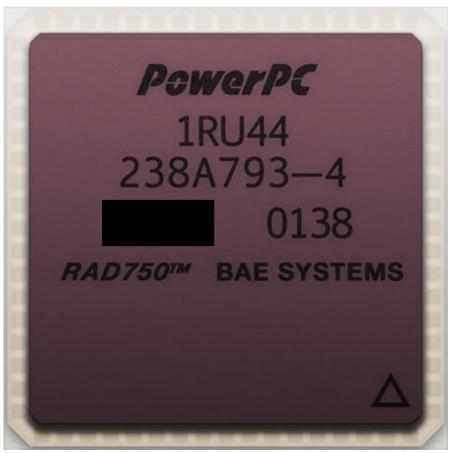
- Two patch antennas for TT&C for communication in any direction
- High gain horn antenna with pointing mechanism for X-band

PoPSAT radiation pattern, 2016

System Budget - Link

	S-band up 4 kb/s	S-band down 8 kb/s	X-band down 100 Mb/s	Unit
EIRP	69	0	21	dBW
Transmission loss	-169	-169	-180	dB
G/T	-38	21	36	dB/K
Eb/No	43	30	26	dB
Required Eb/N0	3	3	10	dB
Margin	40	27	17	dB

Ground Station Segment


- Kiruna estrack ground station
 - 7-8 passes per day
- S-band for TT &C
 - 4 kb/s up, 8kb/s down
- X-band for instrument data
 - 3 GB downloaded once per day at 100 Mb/s

On-Board Computer

The spacecraft OBC performs the calculations for attitude control, payload control function and can receive commands.

Temp range: -55° to 70° Rad hard: 100 krads Power: 10 W Mass: 1.6 kg Price: €180,000

AOCS & Propulsion System Requirements

Subsystem requirements	Driving requirements
BR6: During science operation, the S/C shall have an absolute pointing accuracy of better than 400 arcsec for at least 94.5% of the operational time.	SR1, SR2, MR5
BR7: During science operation, the S/C shall have a pointing knowledge of better than 60 arcsec for at least 95.4% of the operational time.	SR1, SR2, MR5
BR8: During science operation, the S/C shall have a pointing stability of better than 3.50 deg/s.	SR1, SR2, MR5
BR9: Propulsion subsystem shall provide the required thrust for all the propulsive maneuvers to be performed by the S/C.	SR1, SR2, MR5

AOCS & Propulsion System

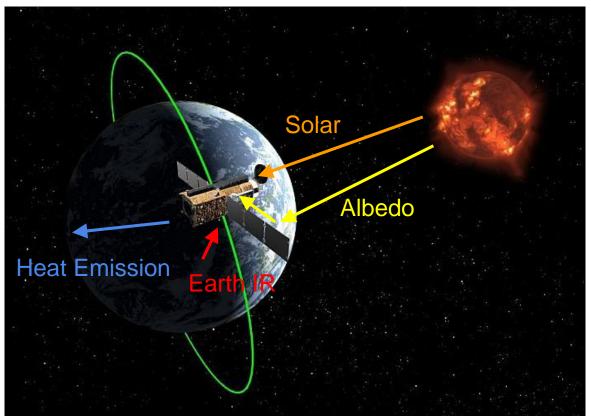

- 3 axis stabilisation + Nadir pointing
- Attitude determination:

Sensors	Units	Resolution
Sun sensor	5	0.3 deg
Star Tracker	2	30 arcsec
Magnetometer (3 axis)	2	0.5 deg
IMU	1	1 deg/h (TBD)
GPS (position)	1	Position: 10 m Velocity: 0.1 m/s

- Attitude control:

Components	Units	Characteristics
Reaction Wheels	4	Max torque: 215 Nm Max momentum: 15 Nms
Magnetorquer	3	Dipole moment: 6 Am2
Thrusters	4	20 N

- Propulsion diagram:



Thermal Control System Requirements

Subsystem requirements	Driving requirements
BR5: The thermal control system shall control that all subsystems operate within their required temperature ranges and shall be designed to ensure a temperature of approx. 25°C throughout the whole mission lifetime.	MR1

Thermal Control System

- Thermal model based on sun synchronous orbit of 3 axis stabilized S/C
- MLI on the surface facing the sun
- Aluminized Kapton + teflon radiator on the side facing deep space

Thermal Control System

Worst case hot/cold	Hot Case	Cold Case
Power dissipated	600 W	300 W
Solar radiation	1420 W/m ²	0 W/m ²
Temperature with passive TC	49° C	14° C
Temperature with radiator and heater	~25° C	~25° C

- A teflon radiator facing deep space of <u>1.3 m²</u>
- During eclipse, heaters are needed to provide temperature stability.
- Operational and survival temperature range for the payload has yet TBD. 59

Satellite Operating Modes

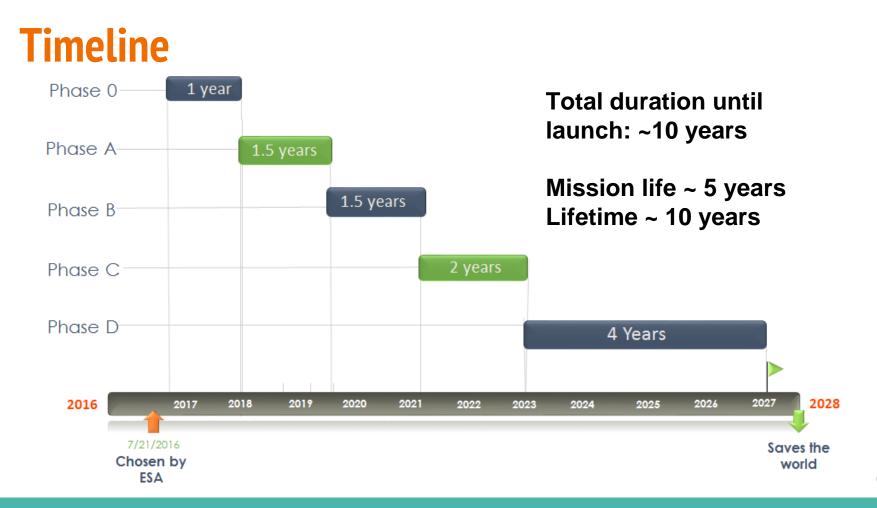
	AOCS	AOCS safe	СОММ	Data download	Thermal	ОВС	PL
LEOP	X	\checkmark	\checkmark	X	\checkmark	\checkmark	X
Nominal	\checkmark			\checkmark	\checkmark		
Safe	X			×			×
Station Keeping	\checkmark	\checkmark	 	×	~	\checkmark	×
End of life	×			X	X	\checkmark	×

Always possible to send TC to the satellite

System Budget - ΔV

- For a lifetime of 5 yr (Solar flux 150):

Manoeuvre	Delta v (m/s)	Unit level margin %	Total (m/s)
Launcher dispersion	35	5%	37
Stationkeeping	168	10%	185
Re- or Deorbit	0	10%	0
Safe Mode Reserve	34	5%	35
Collision avoidance	10	5%	11
Total	247		267


- No active orbit removal - natural deorbiting within 4 years

System Budget - Mass

		Mass w/o			Percentage of
<u>PoPSAT</u>	Component	margins [kg]	Applied Margin [%]	Mass with Margin [kg]	Dry Mass [%]
Subsystems	AOCS	42	10	46	3
	TTC, Antennas	11	10	12	1
	OBC	86	10	94	7
	Power, Battery, Harness	227	10	250	17
	Structure & Mechanisms	348	10	383	26
	Propulsion	36	10	39	3
	Thermal	34	10	38	3
Payload		520	50	780	40
Propellant		219	10	241	
Launcher	Launch Vehicle Adapter	110	5	116	
	Dry Mass / kg	1303			
	System Level Margin	20 %		20 %	
	Total Mass / kg			1999	
	Total Mass with SLM / kg			2398	

System Budget - Power

		Power w/o margin		
<u>PoPSAT</u>	Component	[W]	Unit level margin [%]	Power [W]
Subsystems	AOCS	100	5%	105
	TTC, Antennas	45	10%	50
	OBC	48	5%	50
	Power Battery Harness	74	5%	78
	Structure & mechanisms	9	10%	10
	Thermal	49	5%	52
	Propulsion	72	10%	80
Payload		550	10%	605
		974		1057
	System level margin		10%	
Total		1071		1163

Risk index	Magnitude & Acceptability
> 20	Maximum => unacceptable
15-20	High => unacceptable
10-15	Medium => acceptable
5-10	low => acceptable
< 5	minimum => acceptable

Critical Risks

Development risks				
Event	Consequence	Probability	Severity	Overall Risk
Development of the W-Band phase array antenna	need more effort in the development phase	3	2	6
Improvement of Ka-Band radar instrument to a higher performance	need more effort in the development phase	2	2	4

Costs

PoPSAT	Item	M€	% of total
1	Project Team	35	6.3
2	Industrial Cost	178	31.7
3	Mission Operations	40	7.1
4	Science Operations	25	4.5
5	Payload	175	31.2
6	Launcher (Soyuz) shared	40	7.1
7	Contingency	68	12.1
	Total	561	

Estimation for a mission lifetime of 5 years

Feasibility & Technology Readiness Feasibility:

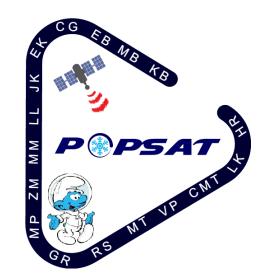
Heritage on Ka-band (phased array) and non scanning W-band radar technology is available from the GPM and Cloudsat missions.

Technology Readiness scale:

- Use of space qualified hardware or parts with a high TR Level
- Ku and W radars are used for precipitation and cloud research
- Development of phased array for W-band is needed

Scientific readiness:

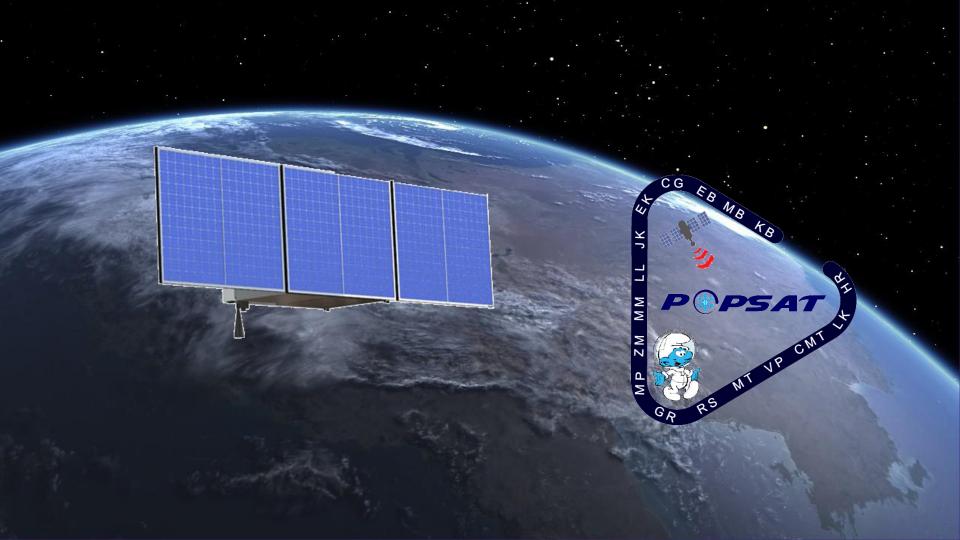
Scientific readiness level and data retrieval readiness level is high because of the heritage from GPM and Cloudsat and from airborne experiments.


Conclusion

PoPSAT is a satellite operating in a low earth orbit with an innovative dual-band radar in order to measure precipitation.

It will:

- Be the first mission to observe high resolution 3-D structure of precipitation systems in high latitudes.
- Provide the first precise measurements on snowfall from space
- Provide data for advancing and validating the parameterisation of precipitation processes in meteorological and climate modelling.
- Collect complementary data to operational meteorological satellites.


THANK YOU !

Acknowledgements

Helmut Rott	Matthias Drusch
Luzius Kronig	Antonio Ciccollela
	Erik de Witte
Marcus Hallmann	Michaela Gitsch
Tommaso Parrinello	Peter Falkner
Carsten Scharlemann	Anton Ivanov
Arnaud Czaja	Miguel Aguirre

Extra Slides

Descoping - Option 1 (Mission Cost %86)

	Ka-Band Current	Ka-Band Descoped	W-Band Current	W-Band Descoped
Swath Width	300 km	150 km	300 km	150 km
Range resolution	500 m	1000 m	500 m	1000 m
Horizontal res.	4 km	4 km	2 km	4 km
Peak T. Power	600 W	500 W	1200 W	1000 W
Antenna size	90 x 90 x 70 cm	70 x 70 x 70 cm	75 x 75 x 70 cm	41 x 41 x 70 cm
Number of ant. elements	225	196	400	196
Mass (estimated)	280 kg	240 kg	240 kg	200 kg
Instrument Pw. Con.	300 W	280 W	250 W	240 W
Instrument Cost	100 %	80 %	100 %	70 % 74

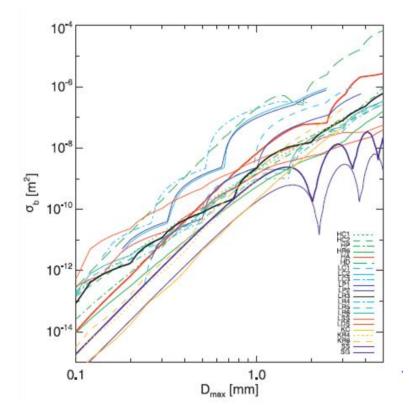
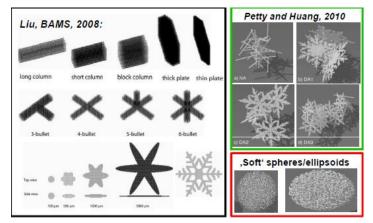
Descoping - Option 2 (Mission Cost %71)

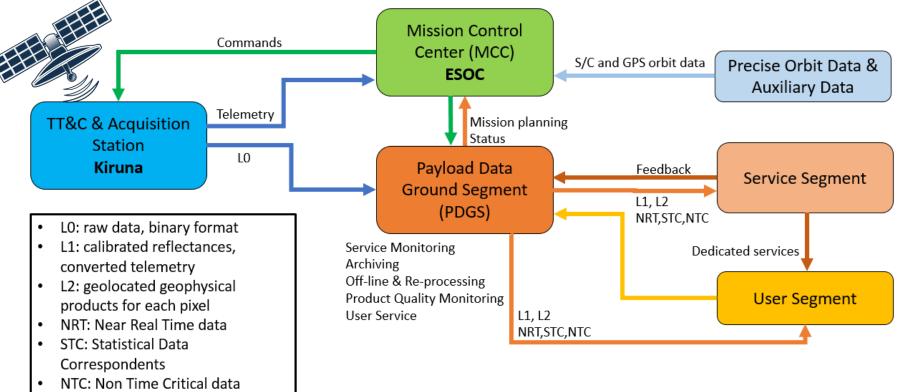
	Ka-Band Current	Ka-Band Descoped	W-Band Current	W-Band Descoped
Swath Width (km)	300	N/A	300	150
Range resolution (m)	500	1000	500	1000
Horizontal res. (km)	4	4	2	4
Peak T. Power (W)	600	160	1200	1000
Antenna size (cm)	90 x 90 x 70	100 (diameter)	75 x 75 x 70	41 x 41 x 70
Number of ant. elements	225	N/A	400	196
Mass (estimated) (kg)	280	200	240	200
Instrument Pw. Con. (W)	300	250	250	240
Cost (estimated) (%)	100	40	100	70

Disturbance torques	
Gravity Gradient = Tg	9,99E-05
Solar radiation = Tsp	7,38E-10
Magnetic field = Tm	5,02E-05
Aerodynamic = Ta	1,34E-04

Kinetic momentum accumulation	
Hg	5,68E-01
Hsp	6,68E-07
Hm	1,21E-01
На	7,62E-01

Backscattering model


TABLE 1. Derived Z_e -S relationships for various shapes and frequencies used in this study. Published Z_e -S relationships for other recent studies of dry snowfall are also shown. Variable Z_e has units of millimeters to the sixth power divided by meters cubed, while S is assumed to be in units of millimeters per hour.

Ice habit (or reference)	Ze (94 GHz)	Z _e (35 GHz)	Z _e (13.6 GHz)
LR3	13.16S ^{1.40}	24.04S ^{1.51}	34.63S ^{1.56}
HA	56.43S ^{1.52}	313.29S ^{1.85}	163.51S ^{1.98}
SS	$2.19S^{1.20}$	19.66S ^{1.74}	36.10S ^{1.97}
Liu (2008a)	11.50S ^{1.25}		
Matrosov (2007a)	$10.00S^{0.80}$	56.00S ^{1.20}	
Noh et al. (2006)	_	88.97S ^{1.04}	250.00S ^{1.08}

(Kulie et Bernnartz, 2009)

Mission Data Flow

