Summer School Alpbach 2016 Satellite Observations of the Global Water Cycle July 12-21, Alpbach/Tyrol - Austria

Water quality assessment of coastal areas, rivers and lakes

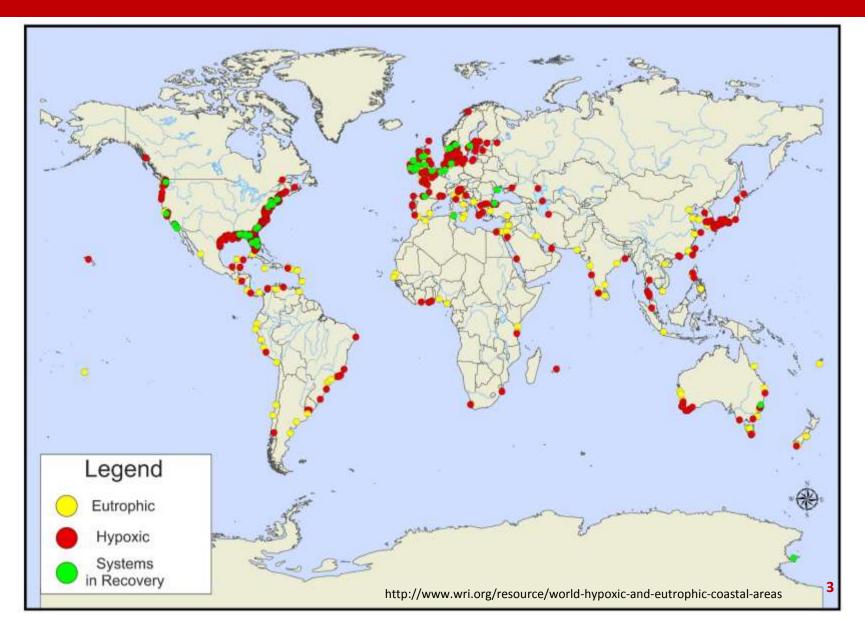
TEAM RED

Serena Annibali, Matthias Biber, Mary Borderies, Antonio Cabacos, Sabrina Esch, Loris Franchi, Magnus Johan Isaksen, Filip Jaromczyk, David Jelem, Anna Larsson, Jere Mäkinen, Nina-Elisabeth Nemec, Indrek Sünter, Daniel Vech

Team Tutors: Günter Kargl (Engineering), Matthias Drusch (Science)

Good Environmental Status of water, if:

- Eutrophication is minimised
- Alteration of hydrographical conditions does not affect the ecosystem
- Concentrations of contaminants give no effects


http://ec.europa.eu/environment/marine/good-environmental-status/index_en.htm

"A variety of acute and chronic hazards facing the world ocean will impact ocean biology and water color. These changes include sediment plumes, altered food webs, harmful algal blooms, changing acidity, and alterations of benthic habitats."

Dierssen, 2010

Eutrophic & Hypoxic Areas (In-Situ)

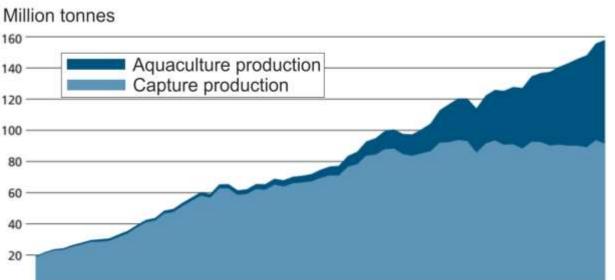
Summer School Alpbach 2016

Half the world's

populations lives

within 60 km of

the sea (UNEP¹)


Coastal and maritime tourism in Europe employs over 3.2 M people and generates a total of 183 B €

Team Red

- Fishery and 120 aquaculture 100 ensure livelihood 80 60 of 10-12 % of the 40 world's 20 population 0 (FAO²)50 55 60 65

1 United Nations Environmental Programme 2 Food and Agricultural Organisation

World capture fisheries and aquaculture production

80

85

70

75

Socio-Economic Need

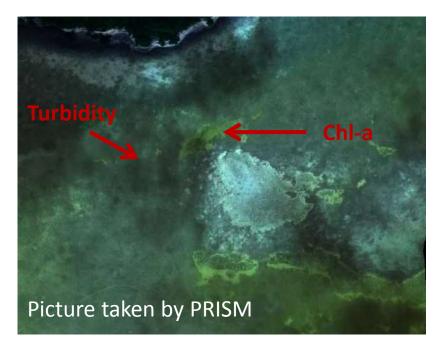
12

05

4

00

Science Objectives


Provide measurements for:

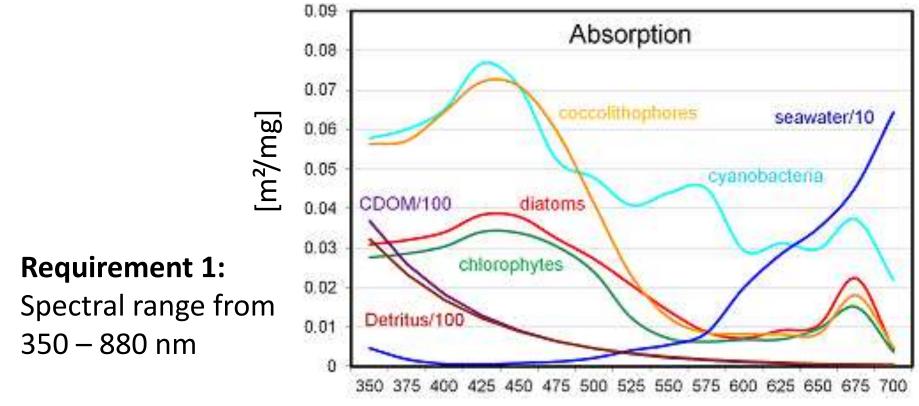
- 1. improved retrieval of **water quality indicators** from spectral radiances
- 2. a better **process-understanding** of turbulent mixing in coastal regions
- 3. analysing the **nutrient transport** (i.e. nitrate) from land into rivers, lakes and coastal waters
- 4. the development of **prototype monitoring** systems of coastal waters, rivers and lakes (i.e. algae blooms)

Observables

- 1. Turbidity [NTU]
- 2. Chlorophyll-a concentration [mg/m²]
- 3. Coloured dissolved organic matter (CDOM) [1/m]
- 4. Sea surface temperature (SST) [K]

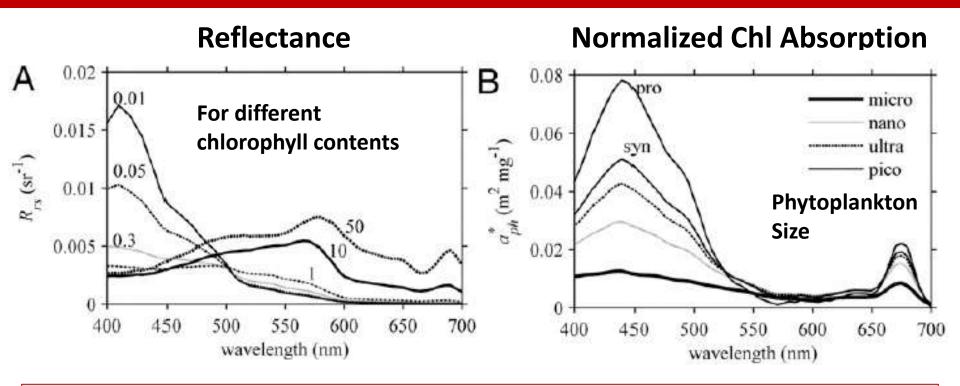
Summer School Alpbach 2016

Scientific Requirements


Observables and Accuracy Requirements (Sentinel-3)

	Unit	Range	Accuracy
Turbidity	NTU	0.001 - 0.1	5 %
Chl-a	mg/m²	0.001 -150	10-70 %
CDOM	1/m	0.01 - 2	10-70 %
SST	К	-	0.1 K

Spectral Signatures - CDOM & Chl-a



Wavelength [nm]

http://gmao.gsfc.nasa.gov/research/oceanbiology/description.php

Spectral Signatures of Chlorophyll

New observation systems / instruments are needed (Dierssen, 2010):

- Additional spectral channels for better assessment of Chl-a and phytoplankton and their various ecological and biogeochemical roles.
- **High-resolution spectral information** between 430 and 500 nm to differentiate distinct absorption features of diatoms and cyanobacteria.

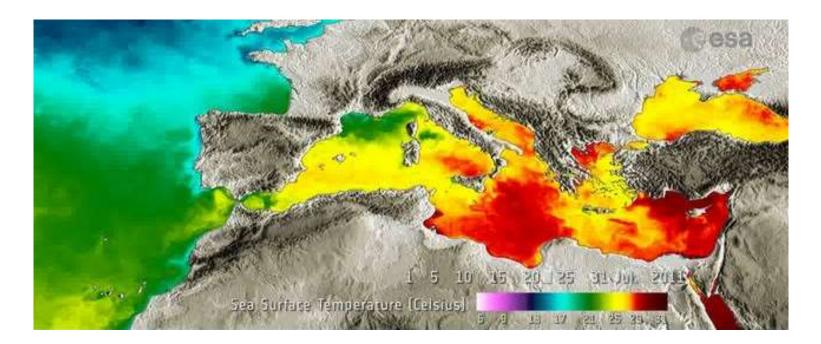
Requirement 2: Spectral Resolution

Wavelength [nm]	Bandwidth [nm]	Application
360	20	CDOM
410	3	CDOM
412	3	CDOM, Turbidity
443	3	Chlorophyll, CDOM, Turbidity
488	20	Turbidity
540	20	Turbidity
645	3	Chlorophyll
667	3	CDOM, Turbidity
670	3	Chlorophyll
676	3	Chlorophyll / Turbidity
748	20	Turbidity
868	20	Turbidity

+ 3 additional spectral bands for atmospheric correction

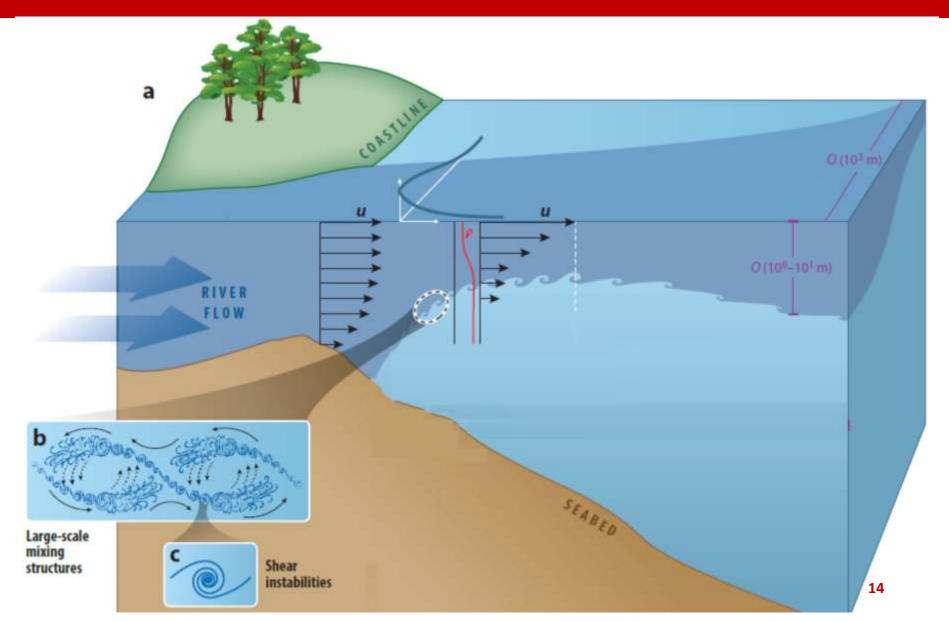
Summer School Alpbach 2016

Sea Surface Temperature (SST)



- Satellite measurements of SST and chlorophyll *a* can be used to estimate sea surface nitrate
- The procedure relies on empirical relationships between shipboard measurements of nitrate and its predictor variables, SST and chlorophyll *a* in surface waters.
- From empirical studies results that the largest source of error in the estimation of nitrate can be related to errors in satellite estimate of SST and chlorophyll *a* (Goes, 1999).

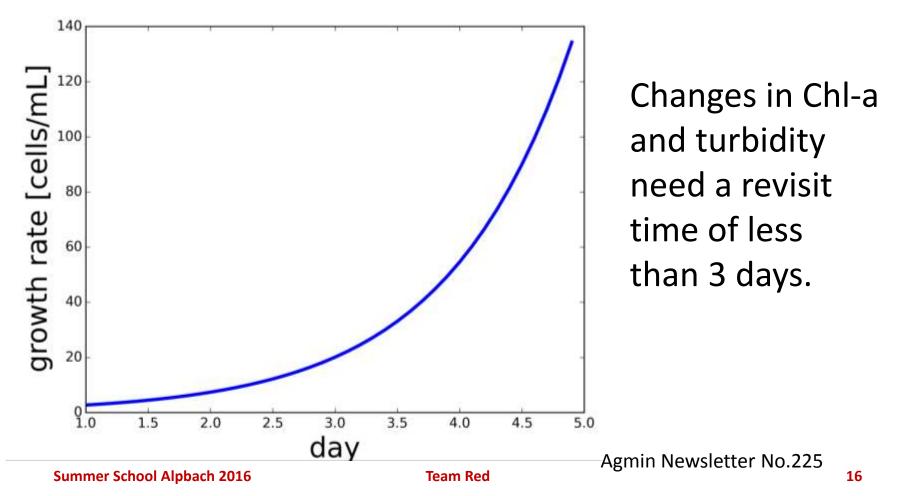
Goes, Joaquim I., et al. "A method for estimating sea surface nitrate concentrations from remotely sensed SST and chlorophyll aa case study for the north Pacific Ocean using OCTS/ADEOS data." IEEE Transactions on Geoscience and Remote Sensing 37.3 (1999): 1633-1644.



• High spatial resolution SST measured with 0.1 K of accuracy.

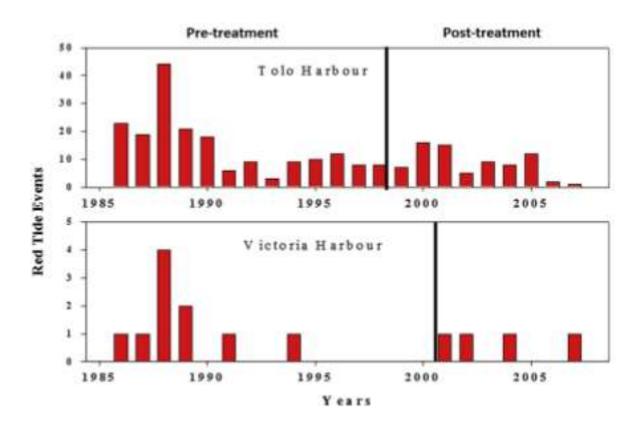
Turbulent Mixing

Requirement 4: Spatial Resolution


-120 -60 -180 60) 120 180 60 30 Spatial **Resolution:** 0 < 25 m -30 -60m 200 400 600 800 1000 Width

A simple global river bankfull width and depth database

Water Resources Research Volume 49, Issue 10, pages 7164-7168, 24 OCT 2013 DOI: 10.1002/wrcr.20440 http://onlinelibrary.wiley.com/doi/10.1002/wrcr.20440/full#wrcr20440-fig-0002


Exponential rate of algae growth

Requirement 6: Lifetime

bastent

 Observe interand intraannual variability in water quality

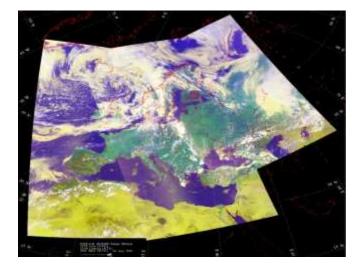
Lifetime of more than 3 years

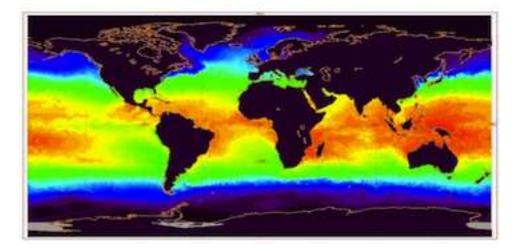
Davidson, K. et al. (2014): Anthropogenic nutrients and harmful algae in coastal waters. In: Journal of Environmental Management 146.

Key Observation Requirements

- Requirement 1: Spectral range from 350 868 nm
- Requirement 2: Sufficient number of spectral bands at high spectral resolution
- Requirement 3: SST measured with 0.1 K of accuracy
- Requirement 4: Spatial resolution of < 25 m
- Requirement 5: Temporal resolution of < 3 days
- Requirement 6: Lifetime of more than 3 years

Instrumentation


Instrument Requirements


- 1. Spectral range of 350 950 nm.
- 2. Spectral resolution of 3 20 nm (depending on the band).
- 3. Ground swath of 350 km from 500 km altitude.
- 4. Ground resolution of 20 m from nadir.
- 5. Shutter to protect the instrument from direct sunlight in tumbling, commissioning phases of the mission.
- 6. Temperature accuracy of 0.1 K.
- 7. Baffle to limit stray light.
- 8. Pointing accuracy of 0.003 deg.
- 9. Knowledge of 0.001 deg.
- 10. Nadir pointing.

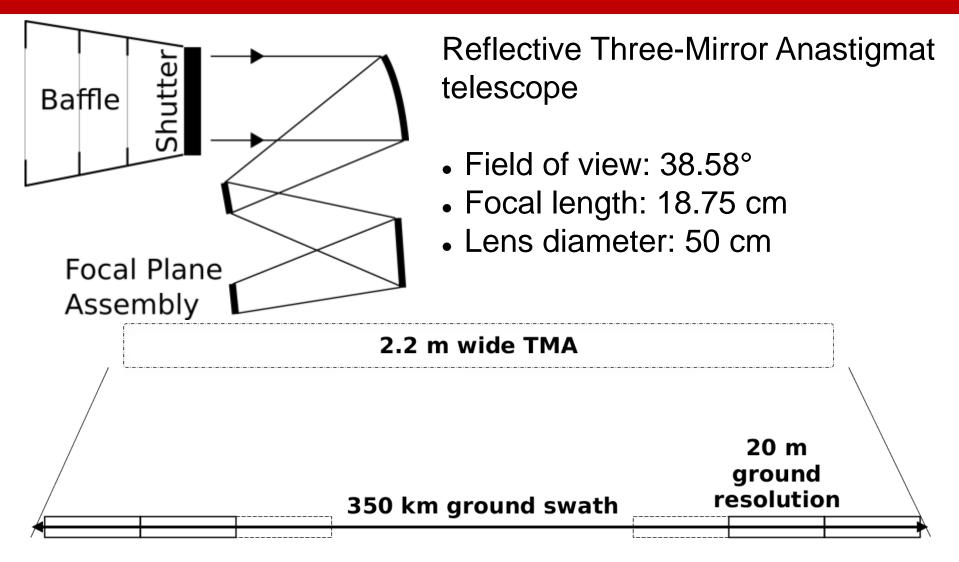
Radiometer for Accurate SST

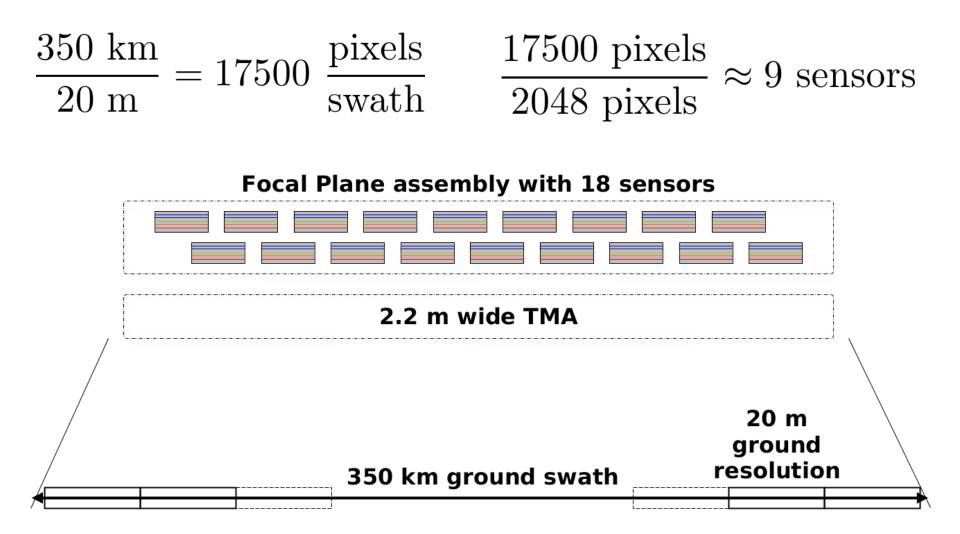
Radiometer for Accurate SST

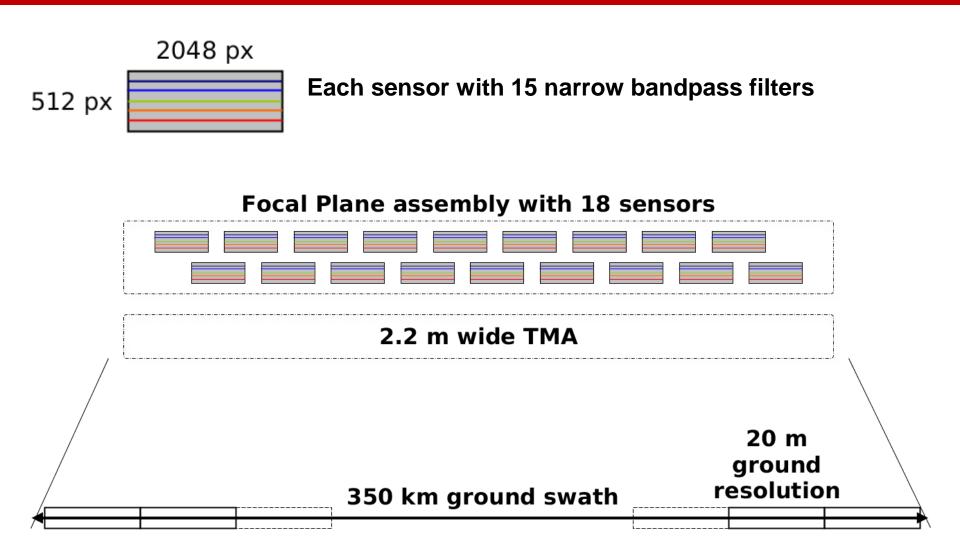


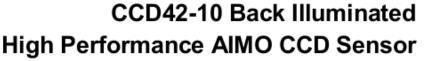
• Based on the six channel Advanced Very High Resolution Radiometer (AVHRR/3).

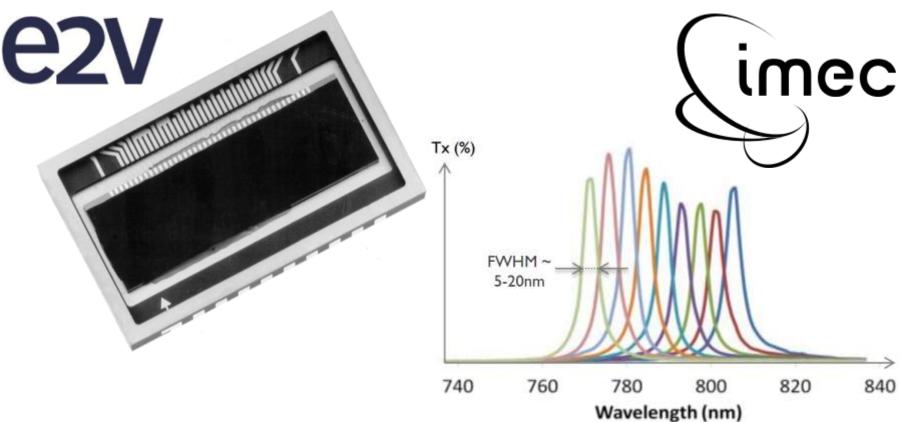
Centre Wavelength (nm)	Band width (nm)	Resolutio n (km)	S/N @ 0.5% albedo	NEΔT (Noise equivalent temperature difference)
630	100	1.1	>9:1	-
862	275	1.1	>9:1	-
1670	60	1.1	>20:1	-
3740	380	1.1	-	50 mK
11000	1000	1.1	-	50 mK
12000	1000	1.1	-	50 mK


• Thermal infrared detectors cooled by passive radiant cooler.

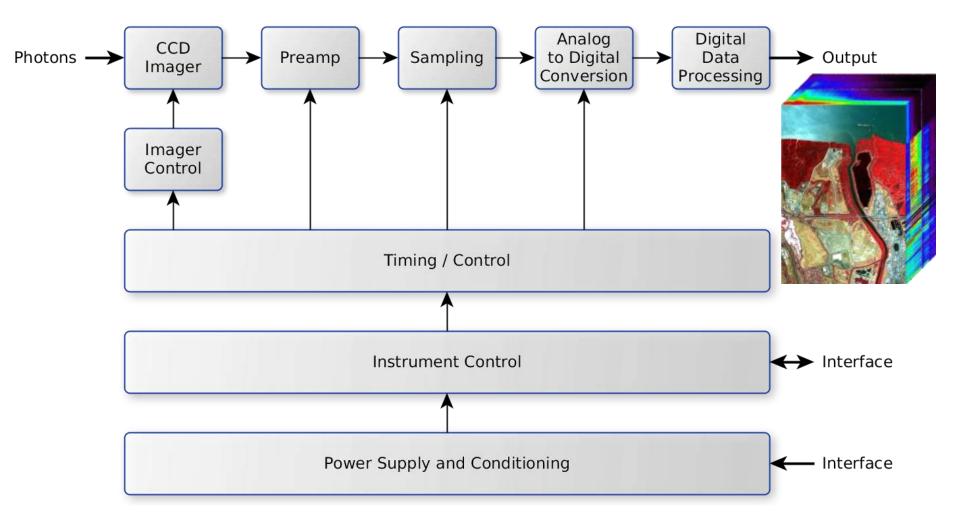



Sentinel-2 MSI





Summer School Alpbach 2016


Sensors and Filters

Instrument Specifications

Band number	Central wavelength (nm)	Bandwidth (nm)	Signal-To-Noise Ratio
1 (CDOM)	360	20	573
2 (CDOM)	410	3	400
3 (CDOM, turbidity)	412	3	316
4 (chlorophyll, CDOM)	443	3	504
5 (turbidity)	488	20	2192
6 (turbidity)	540	20	2406
7 (chlorophyll)	645	3	721
8 (CDOM, turbidity)	667	3	735
9 (chlorophyll)	670	3	738
10 (chlorophyll, turbidity)	676	3	738
11 (turbidity)	748	20	2214
12 (reference)	764	4	653
13 (reference)	767	3	490
14 (turbidity)	868	20	1933
15 (reference)	940	20	631

Summer School Alpbach 2016

Development Challenges

- Instrument design changes
 - Increase focal length to 18.75 cm.
 - Resize optics from 12 to 18 sensors on the focal-planearray.
 - Instrument length is increased from 1.47 to 2.2 m.
 - Spectral filters with ~3 nm bandwidth.
- Impact on the project
 - Cost
 - Schedule
 - Lower TRL

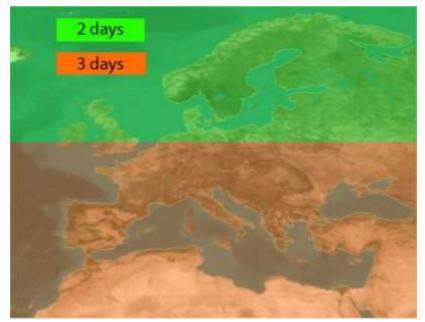
Instrument Data Rates

	Max. data rate	Max data per orbit		
Spectral imager	880 Mbps	77 GB*		
Thermal imager	1.9 Mbps	114 MB		
Total 882 Mbps 77 GB				
* Assuming the worst-case coastline of 5000 km per orbit.				

	Value	Unit	Comments
Size of a raw image	864	KB	18 sensors with 2048 x 256 pixels
Size of a reduced image	324	KB	Lossless
Maximum exposure time	2.88	ms	Estimated from ground resolution
Raw data rate	2347	Mbps	Data to be processed by the instrument data handling system
Reduced data rate	901	Mbps	
Data per pass	77	GB	Assuming worst-case coastal line of 5000 km.

Space Segment

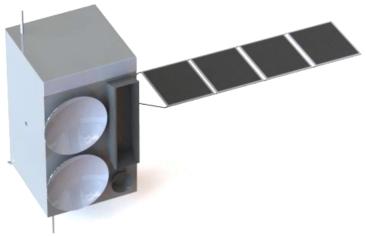
S/C Requirements


System	
Payload mass:	410 kg (total)
Payload power:	427 W
Spectral imager size:	2.2x0.93x0.62 m ³
Thermal imager size:	0.80x0.36x0.29 m ³
Payload data stream of	1 Gbit/s
Storage requirements:	4 Tbit
Operational temperature:	-40° +/-10° drift
ADCS pointing accuracy	0.002°

Orbit

Sector

- 2nd S/C as baseline
- 511 km altitude, SSO 12:00
- 95 minutes orbital period
- 140° true anomaly shift between the satellites
- Two days revisit time above 50°
- Three days revisit time below 50°
- 2nd S/C launched one year later
- Overlap of 4 years
- De-orbit time of 14 years


Revisit time at different latitudes

Spacecraft Configuration

- Airbus Astrobus L (Sentinel)
- Telescope
- 7 m² solar panels
- 8x1N hydrazine thruster
- 2 parabolic dish antennas for X-band downlink
- 2 S-band patch antennas TT&C

CoastSat

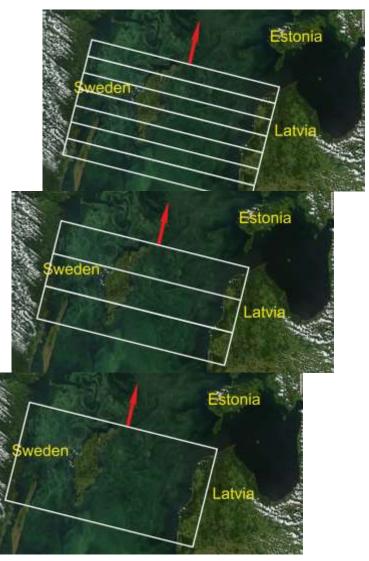
Launcher – Soyuz

- 2 satellites with 2 Soyuz launches
- Soyuz capacity to 500 km SSO > 4600 kg
- The fairing size limits us to 1 satellite/launch
- We can offer space for smaller satellites heading for SSO

Mission Overview

Phase I

- Single space segment
- Proof of concept
- Complimentary to coarse EO data


- 1 year later launch of S/C 2
- Both segments operational
- Scientific objectives fulfilled

Phase III

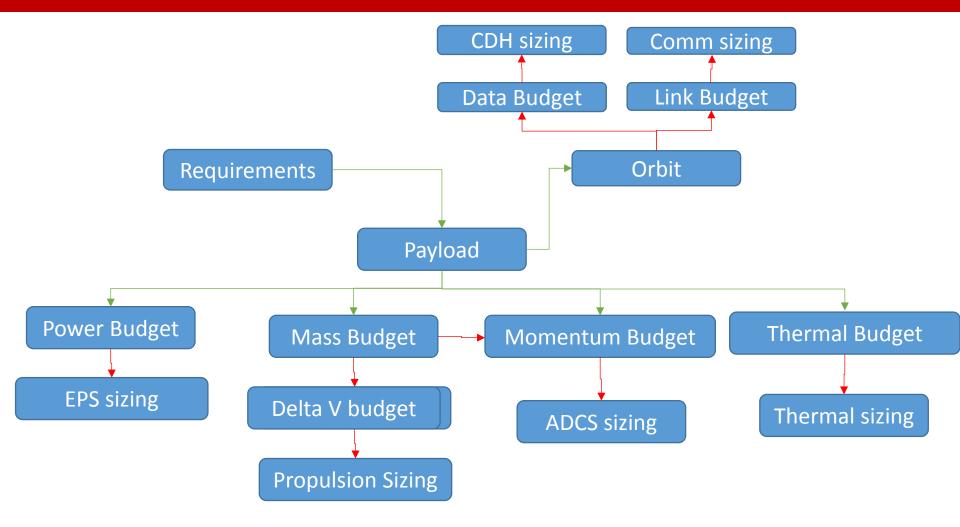
- Optional (not part of original mission)
- Expansion of the CoastSat constellation into a continuous monitoring service

Operational Mode

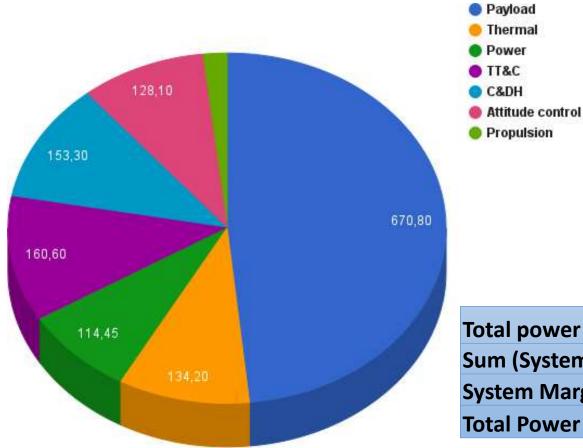
- Out of EEZ (370 km) no data collection
- From EEZ to 10 x typical river width (TRW, 150 km for Amazon) 500x500 m² spatial resolution
- From TRW to 100 m off coast $(OC) - 50x50 \text{ m}^2$ spatial resolution
- From OC to 10 km inlands 20x20 m² spatial resolution
- Reduces data collection by a factor of 10 compared to maximal spatial resolution

38

Additional Operational Modes


- Although not designed for it, CoastSat can be used for monitoring:
 - Volcano eruptions
 - Forest fires
 - Hurricanes
 - etc.
- The spatial resolution is high enough to cover roughly 5% of all the lakes/ponds in the areas of interest

Satellite Design


Methodology for System Design

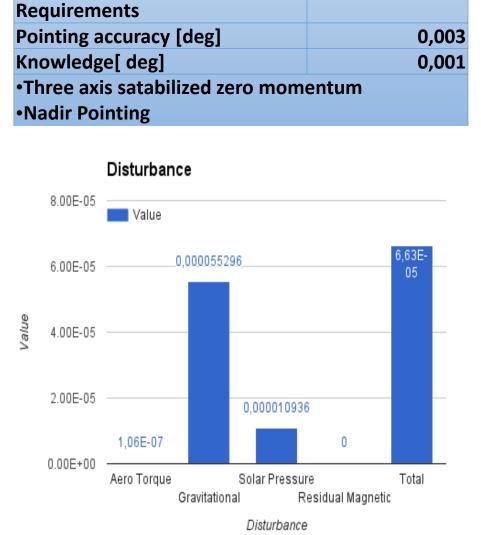
Power Budget



Total power	1215
Sum (System Power)	1228
System Margin	20%
Total Power w Margin[W]	1473

EPS Architecture

- Multijunction Ga/AS Solar Array:
 - Area = 7 m^2
 - Mass = 34 Kg
 - 1 degree of freedom gimbal to sun tracking capability:
 - Range of rotation: 360^o
 - Power consumption: 3W
 - Dimensions(mm): Ø 157 x h 160
 - Mass: 3.5 kg
- PCDU
 - Peak Power Tracking to solar Array
 - Regulated Bus
 - Mass: 22,5 kg
 - Volume: 605*300*212 (mm)
 - Power: 1.5 KW @regulated 28V



Momentum Budget

Reaction Wheel	
Torque[Nm]	0,0124
Momentum [Nms]	0,2358

Thrusters		Force[N]
Torque	3	1,27
Momentum	0	
Moment Arm	2	
Number of Thruster	8	
Pulse time	2	
Momentum for RW		
desaturation	0,06	0,3
Total Thruster	3	1,3
Magnetic Torquers		
Dipole moment (A.m2)		6
Earth Magnetic Field: worst		
case		0,000046
Torque provided (Nm)		2,76E-04

Summer School Alpbach 2016

Lifetime: 5 years

Maneuver	Delta-v [m/s] / year	Delta-v [m/s] / lifetime
Altitude maintenance	5	25
Momentum wheels unloading	3	15
ADCS	10	50
Phasing	8.5	8.5
Overall	18/26.5	98

Propulsion Architecture

8 Airbus DS 1N thruster

- Mass: 290 gr
- Specific Impulse, Nominal: 220 s

Airbus EPDM - BLADDER TANK BT 01/0 Plus feeding system

- Mass: 8.5 kg
- Tank Net Volume: 59 litres
- Max. Propellant Volume: 39 litres

Thermal Budget

System	Temperature		
Spacecraft	240	+/- 15	К
Multi spectral camera focal plane	233	+/-10	К
Thermal camera (build in cooling system)	105	+/- 0.001	К

Maximum power dissipation on spacecraft	599	599	W
Minimum power dissipation on spacecraft	200	200	W
Solar energy absorbed		8549,1	W
Albedo energy absorbed		2190,1	W
IR energy absorbed		1706,4	W

Thermal Passive Control

- Material for spacecraft's face turned towards the sun silver coated Teflon blanket with a coating of indium-tin oxide
- Material for spacecraft's face turned towards the space black-Kapton blanket

Heaters and Radiators:

Radiator area to accommodate s/c power dissipation	1,3	m^2
Minimum temperature for given radiator area	-32	deg, C
Required heater power (during eclipse)	106	W

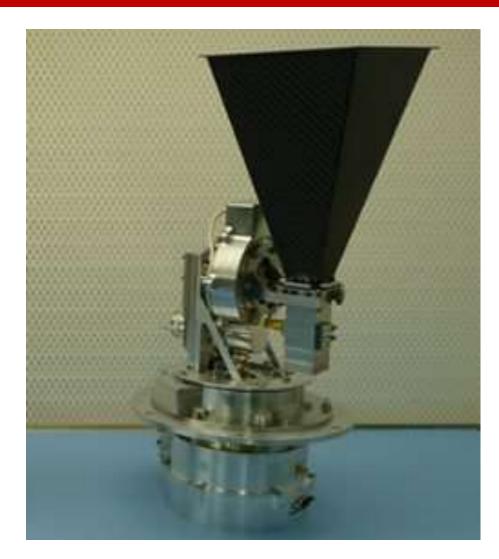
Data & Link Budget

Data generation	Typical accumulation per day	Data generation (raw data)			
Example: Baltic sea	4613 s	1 Gbit/s			
Example : Mediterranean sea	4248 s	1 Gbit/s			
High data rate requires on board data processing, geolocation based pre-selection					

Ground station	Access time per day	Data rate	Max. amount per day
Svalbard	6191 s	300 Mbit/s (X-band)	1.86 Tbit
Kiruna	5078 s	100 Mbit/s (X-band)	0.5 Tbit

Total daily transfer limited to 2.36 Tbit per day; dual channel transmission of data

50


Communication Architecture

2 SSTL X-band antenna

- Power consumption: 3.9 W
- Mass: 3.25 kg
- Azimuth range: ± 270 deg
- Elevation range: ± 80 deg
- Tracking range: \leq 20 deg/s
- Pointing accuracy: $\leq 0.25 \text{ deg}$

S/C commanding:

- SSTL X-band transmitter XTx400 for the downlink of payload telemetry
- SSTL S-band receiver for TT&C uplink
- SSTL S-band patch antenna
- S-band transmitter for downlink

CDH Architecture

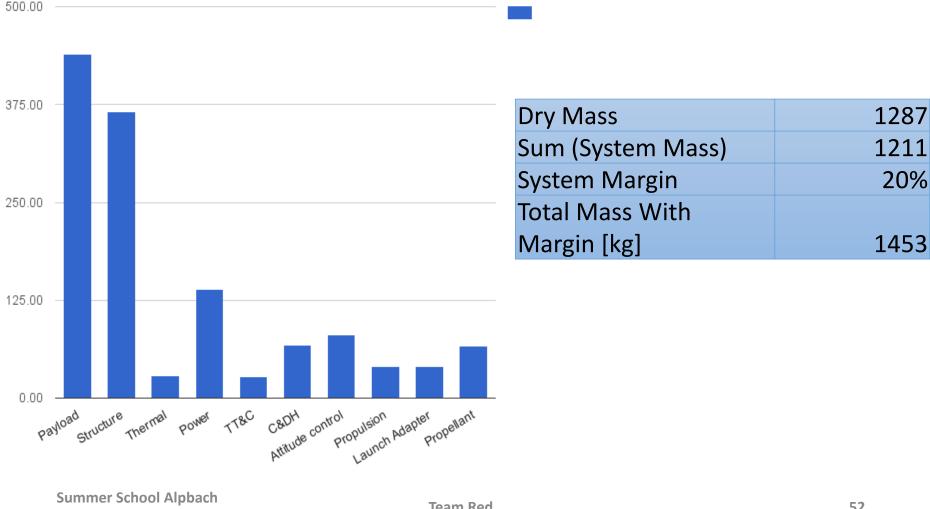
SSR - Solid State Recorders for space applications

- Mass: 8-20 kg
- Width : 250 mm
- Height: 250mm
- Lenght: 300-600 mm
- Power: 10-100 W
- Specs : Up to 3 Tbit capacity Up to 20 Gbps input data rate

Payload data handler, SparcV8

- Mass: 5,5 kg
- Volume: 272*284*112 mm3
- Power: 8W
- Operating speed: 80 MHz

Other instrumentation:


- SSTL flight computer
- SSTL HSDR for buffering image data
- SSTL MMU for telemetry storage

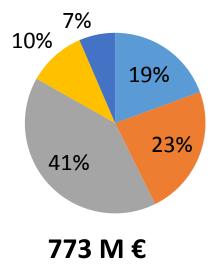
Mass Budget

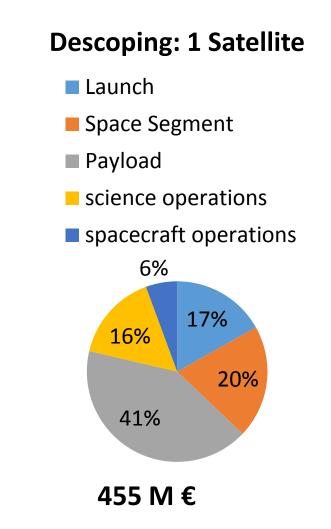
Mass Budget [Kg]

Risk Analysis

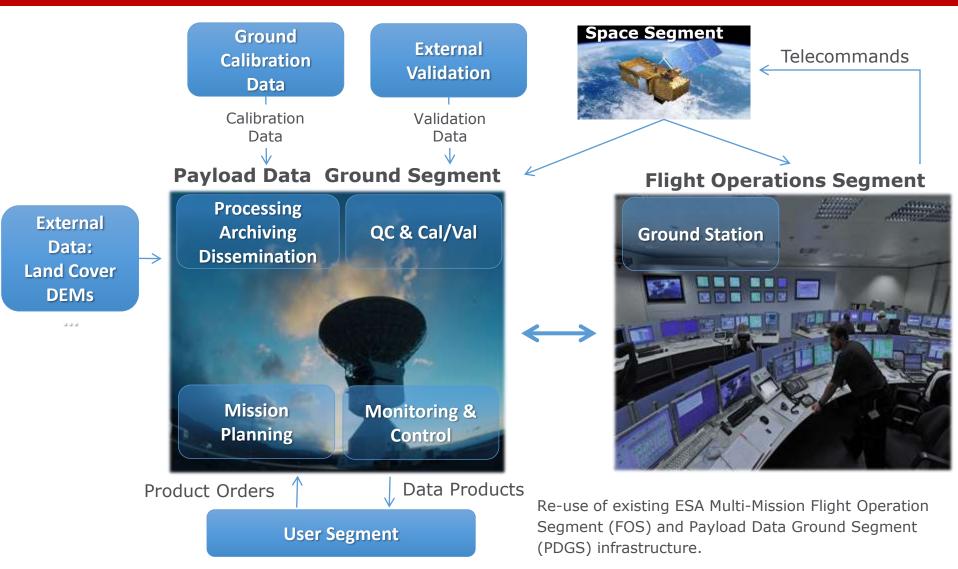
Description of risk	Likelyhood	Severity	Rating	Project impact
Launch failure	improbable	catastrophic	5	Space segment
Loss of one space segment	remote	significant	8	Revisit time
Delay in instrument development	remote	moderate	6	Cost increase Schedule delay
Orbit & ADCS cannot meet requirements	occasional	moderate	9	Lower spatial resolution

Programatics

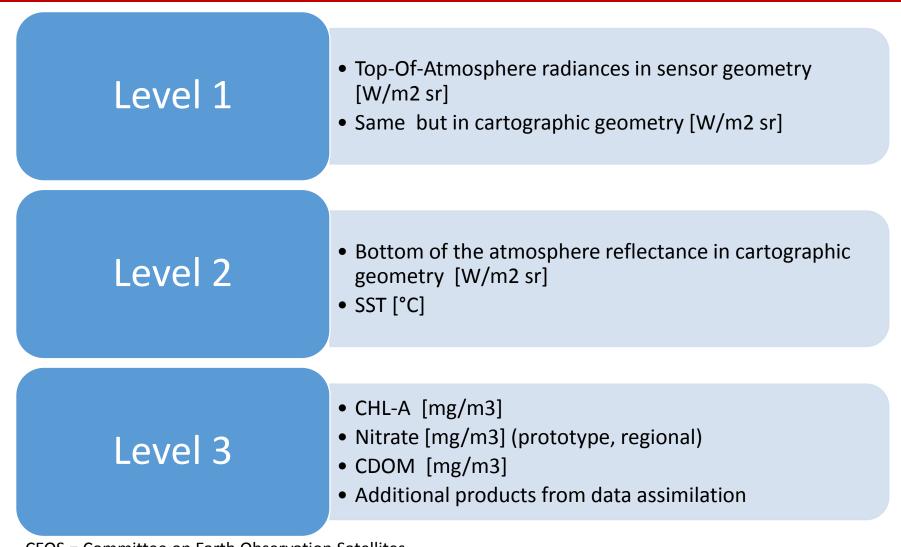



Cost Estimate

Baseline: 2 Satellites


- Launch
- Space Segment
- Payload
- science operations
- spacecraft operations

Ground Segment


Summer School Alpbach 2016

Team Red

57

Data Products Based on CEOS Conventions

CEOS = Committee on Earth Observation Satellites

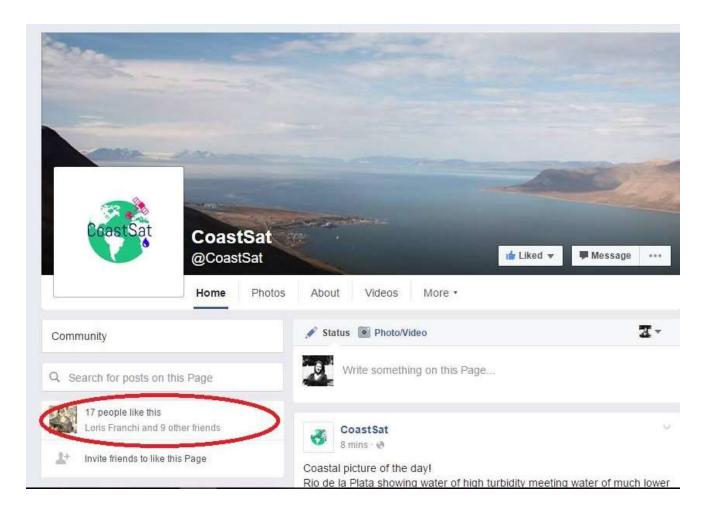
Summer School Alpbach 2016

Calibration / Validation Activities

- Provide measurement protocols for the partnerships
- Establishing a dedicated network to validate our products (Argos floats, measurement campaigns...)
- Data assimilation / Comparison against models

Public Outreach & Educational Activities

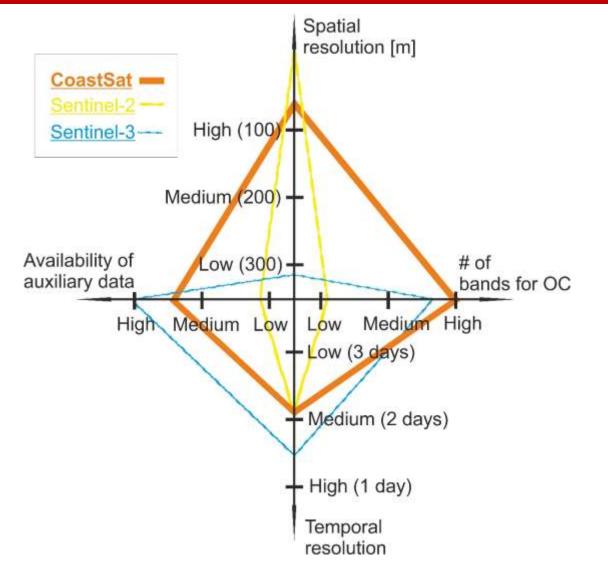
- Online Forums to support scientific use of data
- User Symposium COAST every 2 years to exchange state-of-art research
- Attract students to science: field visits, mesaurement days, science camps, distributing insitu measurement kits.
- Social media channels like Twitter, Facebook, Instagram
- Alert Service



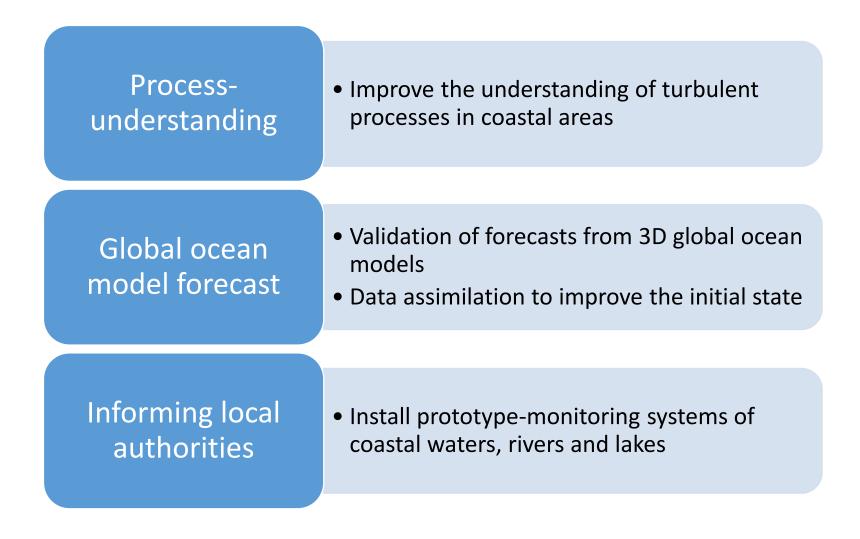
Follow CoastSat!

Future Work

Traceability of L2 (geophysical parameters) to L1 (radiance) product requirements


- Radiative transfer calculations / atmospheric correction
- Stray light effects
- Polarization
- Spectral sampling intervals
- SNR and instrument requirements at L1B

Optimized instrument design


- Reduced aperture (roughness / straylight sensitivity
- Reduced size and mass
- Maintaining spectral coverage and resolution

Optimized choice of platform.

Comparison With Recent Missions

Summer School Alpbach 2016

Keep the Oceans Clean!

Questions?

Back up slides

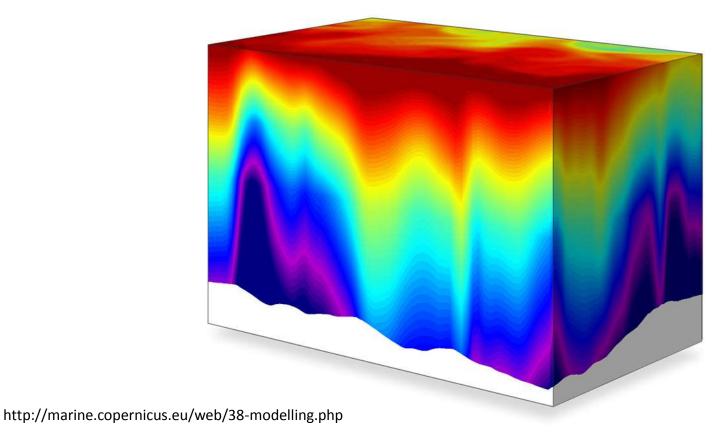
Traceability Matrix

Science Requirements	Measurements Requirements (bandwidth, spatial resolution, revisit time, exposure time)	Instruments	Instrument requirements	Mission Requirements (e.g. Orbit/life time)	Data Products
PR1: Measure chlorophyll-a concentration	Spatial resolution 5 - 10 km with a revisit time of 24h - 2d, wavelengths required 443, 645, 670/676 nm	High resolution spectrometer, including a NIR or ideally a SWIR band for atmospheric correction	Minimum color depth: 10-bit.	3-5 years would be required to follow the change of seasons	Measured radiance of the various wavelengths, which is then converted into chlorophyll-a concentraction (mg/l) based on existing methods and in situ data
SR2: Measure coloured dissolved organic matter (CDOM)	revisit time of 24 h - 2 d, wavelengths required 350, 410/412, 443, 667 nm. Little temporal variation (even over multi-year periods) within sites (Brezonik et al. 2015)		Minimum color depth: 10-bit.	3-5 years would be required to follow the change of seasons	Measured absorption is converted into CDOM concentration based on existing methods and in situ data
OR3: Measure turbidity	necessary to convert data to NTU units. 100x100km2 spatial	High resolution spectrometer, possibly an IR camera (also used to measure SST) to resolve clouds (to be removed from the data). Wavelength is based on MODIS instrument specification. Spectral resolution is based on Sentinel-3 OLCI	Dynamic range: 0.001 - 0.1. Minimum color depth: 10-bit.	3-5 years would already be good enough to contribute for annual trending of local turbidity	Spectral intensity data can be converted to Nephelometric Turbidity Units, NTU, by EoMap algorithm plus in-situ measurements
OR4: Measure sea surface temperature (SST)	At least monthly temporal resolution to cover seasonal effects. Data from Landsat8 used to measure the SST and turbidity of river plumes (V. E. Brando, et al, 2015) Spatial resolution: 30m Revisit time: 16 days	Thermal infrared instrument (TI) Advantages: - good resolution and accuracy - tested in other missions Weaknesses: - obscured by clouds - requires atmospheric correction Passive microwave instrument (PM) Advantages: - Clouds are mostly transparent - Relatively insensitive to atmospheric effects Weaknesses: - Poorer resolution and accuracy - Sensitive to surface roughness and precipitation Good to combine both	Required resolution: 0.2 K		Measured brightness temperature is converted into actual temperature based on existing methods

Complementarity of other missions

Better global coverage in space and time

Impact on Data assimilation in:


- Regional and local ocean model
- Ecosystem model

SMOS - Sentinel 2 Credit: ESA

From the Surface and Down / DA

 Required for data assimilation into 3D ocean models in order to derive estimates for sub-surface layers (Gregg, 2008)

Scientific Impacts

- Ecosystem, biochemical, and hydrological models need a better **spatial** and **temporal** coverage for:
- 1. Model validation
- 2. Data assimilation
- 3. Improving growth model

3 Axis star tracker

Mass (kg): DPU: <1.2 ; 30° baffle CHU: 1.4 Power: 16 – 50 V unregulated DPU: 6.5W;CHU: 0.5W Dimensions DPU: 155 x 210 x 56 30° baffle ; CHU: Ø147 x 283 (H) Relative accuracy: X/Y < 3 arcsec (1 σ) Z < 25 arcsec (1 σ)

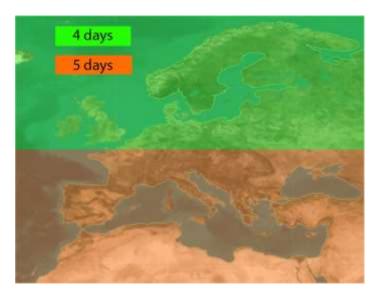
ADCS Architecture

GNSS Navigation

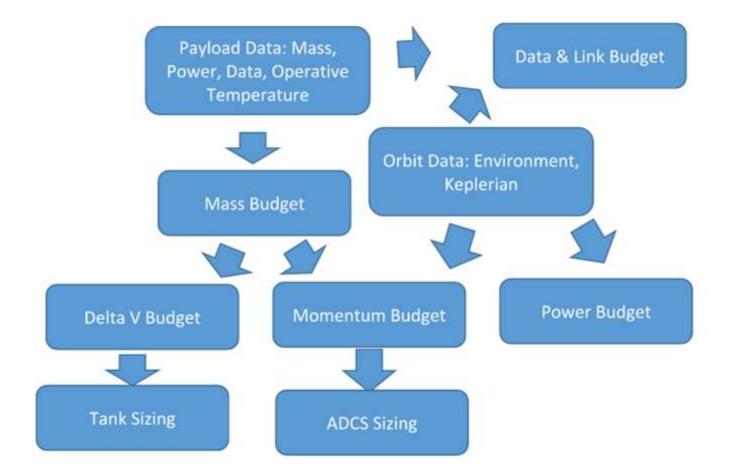
Mass : 1.7kg Power @28V: 10 W Unit dimensions : 300 mm x 180 mm x 45 mm

Summer School Alpbach 2016

Traceability Matrix


Science Requirements	Measurements Requirements (bandwidth, spatial resolution, revisit time, exposure time)	Instruments	Instrument requirements	Mission Requirements (e.g. Orbit/life time)	Data Products
PR1: Measure chlorophyll-a concentration	with a revisit time of 24h - 2d, wavelengths required 443, 645, 670/676 nm	High resolution spectrometer, including a NIR or ideally a SWIR band for atmospheric correction	Minimum color depth: 10-bit.	3-5 years would be required to follow the change of seasons	Measured radiance of the various wavelengths, which is then converted into chlorophyll-a concentraction (mg/l) based on existing methods and in situ data
SR2: Measure coloured dissolved organic matter (CDOM)	revisit time of 24 h - 2 d, wavelengths required 350, 410/412, 443, 667 nm. Little temporal variation (even over multi-year periods) within sites (Brezonik et al. 2015)		Minimum color depth: 10-bit.	3-5 years would be required to follow the change of seasons	Measured absorption is converted into CDOM concentration based on existing methods and in situ data
OR3: Measure turbidity	necessary to convert data to NTU units, 100x100km2 spatial	High resolution spectrometer, possibly an IR camera (also used to measure SST) to resolve clouds (to be removed from the data). Wavelength is based on MODIS instrument specification. Spectral resolution is based on Sentinel-3 OLCI		3-5 years would already be good enough to contribute for annual trending of local turbidity	Spectral intensity data can be converted to Nephelometric Turbidity Units, NTU, by EoMap algorithm plus in-situ measurements
OR4: Measure sea surface temperature (SST)	At least monthly temporal resolution to cover seasonal effects. Data from Landsat8 used to measure the SST and turbidity of river plumes (V. E. Brando, et al, 2015) Spatial resolution: 30m Revisit time: 16 days	Thermal infrared instrument (TI) Advantages: - good resolution and accuracy - tested in other missions Weaknesses: - obscured by clouds - requires atmospheric correction Passive microwave instrument (PM) Advantages: - Clouds are mostly transparent - Relatively insensitive to atmospheric effects Weaknesses: - Poorer resolution and accuracy - Sensitive to surface roughness and precipitation Good to combine both	Required resolution: 0.2 K		Measured brightness temperature is converted into actual temperature based on existing methods

Orbit: Single satellite


- 511 km altitude, SSO
- 95 minutes orbital period
- Two days revisit time above 47°
- Three days revisit time below 47°

Revisit time at different latitudes

Methodology for system design

Propulsion system

- Main engine: Hydrazine, 22N Monopropellant
- ADCS: 8 x hydrazine 2N
- Pressure fed, simple blowdown system
- S/C dry mass: 1387 kg
- S/C wet mass: 1468 kg
- Propellant mass: 74 kg

Lifetime: 5 years

Maneuver	Delta-v [m/s] / year	Delta-v [m/s] / lifetime
Altitude maintenance	5	25
Momentum wheels unloading	3	15
ADCS	10	50
Phasing	8.5	8.5
Overall	18/26.5	98

Ground station/ Area	Svalbard	Kiruna	Baltic Sea	Mediterranean Sea
Overflight time per day	6191	5078	9226 (4613 in sunlight)	8496 (4248 in sunlight)
Data rate	300 Mbit/s (X-band)	100 Mbit/s (X-band)	1 Gbit/s	1 Gbit/s
Max. amount per day	1.86 Tbit	0.5 Tbit	4.6 Tbit	4 Tbit

Onboard data preprocessing is required to only map coastal areas

Power budget

Element	Power [%]	Power [W]	Margin [%]	Power w/ margin [W]
Payload	46%	559	20%	670,80
Structure	0%	0	5%	0,00
Thermal	10%	122	10%	134,20
Power	9%	109	5%	114,45
TT&C	12%	146	10%	160,60
Command & Data Handling	12%	146	5%	153,30
Attitude control	10%	122	5%	128,10
Propulsion	2%	24	5%	25,20
Summer School Alpbach 20)16	Team Rec	k	78

Sum (System Power)	1228
System Margin	20%
Total Power w Margin[W]	1473 <i>,</i> 6
Bus Power	669

- Triple-junction ga/as solar cells 10 m^2
- Li-on Battery 127 Ah @EOL with
- UnRegulated Bus

Mass Budget

Element	Break Down	Mass [Kg]		Mass w/ margin [kg]
Payload	31%	399	10%	438,90
Structure	27%	348	5%	365,40
Thermal	2%	26	10%	28,60
Power	21%	132	5%	138,60
TT&C	2%	26	5%	27,30
C&DH	5%	64	5%	67,20
Attitude control	6%	77	5%	80,85
Propulsion	3%	39	5%	40,95
Launch Adapter	3%	39	5%	40,95
Propellant	8%	Team Red 74	10%	81,40

80

Mass Budget

Sum (System Mass)	1224
System Margin	20%
Total Mass w Margin[Kg]	1468,8
Dry Mass w Margin[Kg]	1.387,40
Bus Mass (No structure)	364

- Linear Dimension 3m
- Body Area 6 m^

Momentum Budget

• From orbital Environment to Momentum Budget

Aero Torque	1,06E-07
Gravitational	0,000055296
Solar Pressure	0,000010936
Total	6,63E-05
Margin	20%

ADCS Sizing

	De suisses entre		
	Requirements		
	Pointing accuracy	0,003	
	Knowledge	0,001	
Depation			
Reaction			
Wheel	Torque[Nm]	0,0124	•
	Momentum [Nms]	0,2358	
			Force
Thrusters	Torque	4	2,36
	Momentum	C	
	Moment Arm	1,5	
	Number of Thruster	8	
	Pulse time	2	
	Momentum for RW desaturation	0,0786	0,0524
	Total Thruster	4	2,4124
Magnetic			
Torquers	Dipole moment (A.m2)	6	
	B_worst case	0,000046	
	Torque provided (Nm)	2,76E-04	

Team Red

ADCS Sizing

- Element
- 4 Reaction Wheel
- 3 Magnetic Torquers
- 2 Star Tracker
- 3 Magnetometer
- 3 Fiber Optical Gyro
- 1 GPS / Galileo

Model W18E MTR-5 **Rigel L** SSTL magnetometer ASTRIX[®] 200 SGR-ReSI

Summer School Alpbach 2016

ADCS Architecture (Safe Mode)

Magnetometer

- Mass:190 gr
- Volume: 36*90*130 (mm)
- Power supply: Supply ± 12 V ; Consumption <300mW
- Sensitivity: ± 10 nT
- Range: ± 60 μT

3 Magnetic Torquers

- Magnetic torque: ± 5 Am² per Coil
- Mass: 500 gr
- Volume: 66*252*39 (mm)
- Power: 0,5W @ 5V p/ coil

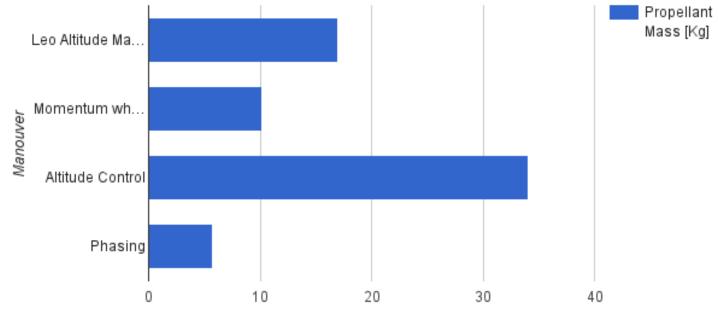
85

ADCS Architecture

4 Reaction wheels (Tetrahedron congifuration)

- Redundancy
- Mass(Kg): 2.3
- Speed range max operational [RPM]: 4000
- Max gross torque [Nm]: 0.248

3 Axis Laser Gyro


- Mass :12,7 kg
- Volume:
- GEU 295x150x145 mm³
- Power : 5.5 W

Team Red

Delta V Budget

Propellant Mass

Total Propellant Mass [Kg]	58	100% margin for attitude control
Total Mass + Margin [Kg]	64	10 % margin for the total value
Volume[m ³]	0,074	