Credit: NASA, ESA, and S. Beckwith (STScI) and the UDF Team

Star Formation in The Early Universe

				· · · ·		and the second second	
and a the second	1		· · · · · · · · · · · · · · · · · · ·		1		
	1.		12 11 1			la serie a	
*							
			•				
	1 . Jan - 1		. N.				
14.17.	1. A.	1 -		1 m 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
	•			and the second	*		
1.1.27	h 2017					Team Blue	1
July 27						ieam blue	

TOPICS

Primary science topic:

Towards a complete view of star formation in the early Universe at $z\sim5$ and beyond

Secondary science topic:

Inner structure of "ridges" (dense filaments) in the Galactic ISM

Tertiary science topic:

Y-class Brown Dwarfs Observations

MOTIVATION

1

Madau et al. (2014)

MOTIVATION

MOTIVATION

INTRODUCTION

HOW DO STARS FORM?

(in the local universe...)

INTRODUCTION

Credit: NASA, Hubble Heritage Team, ESA, S. BeetwiftORS Team, 8.2-meter VLT Antu, ESO Credit: NASA, JPL-Caltech, T. Megeath

INTRODUCTION

Credit: NASA, Hubble Heritage Team, ESA, S. BeetwiftORS Team, 8.2-meter VLT Antu, ESO Credit: NASA, JPL-Caltech, T. Megeath

DUST - BASICS

- "Dust" describes small solid particles
- It absorbs the UV light from young stars
- It re-emits this energy in the IR

MOTIVATION

Madau et al. (2014)

Obtain direct measurements of the IR tracers of obscured star formation in distant galaxies

POLYCYCLIC AROMATIC HYDROCARBONS (PAHS)

PAHs PROBE STAR FORMATION IN GALAXIES

PAH features at 6.2, 7.7, 8.6, 11.3, 17 µm projected at $z \sim 5 \Rightarrow$ Spectral range: $\Delta \lambda = 30$ to 100 µm $\Rightarrow R \sim 200$

12

LINKING PAHS WITH MOLECULAR GAS

IONIZATION STATES AND POSSIBLE AGN SOURCE

FLUX DENSITY ESTIMATION

UV luminosity functions (brightness distribution of galaxies):

- No FIR luminosity functions at high z, therefore estimate from UV
- Need detection down to "knee" (L* galaxies) to constrain SFR

FLUX DENSITY ESTIMATION

Use SEDs of normal galaxies up to z~2 (Elbaz et al. 2011) to obtain expected flux density at 7.7 μ m (rest frame)

BEATING CONFUSION

- Need high resolution to detect faint FIR sources against background
- Number of FIR sources per solid angle brighter than targets taken from *Herschel* (Berta et al. 2011)

 \Rightarrow Mirror diameter d = 8 m

REQUIRED DETECTOR SENSITIVITY

Estimate integration time for S/N = 10 with S_{PAH} as before, d = 8 m, instrument transmission of 50% and splitting the incoming power across four pixels:

Photometry

Spectroscopy

REQUIRED FOV

- Statistical sample at z = 6: 1000 photometric detections (cf. Bouwens et al. 2015)
- Do spectroscopic follow-up observations on 1000 targets from all redshift bins
- Constrain FOV via total necessary observation time assuming ~5 min photo integration time, ~20 hr spectral integration time and estimating target density from UV LFs (Bouwens et al. 2015)

18

REQUIREMENTS - TRACEABILITY MATRIX

Торіс	Question / Driver	Code	Requirement level 1	Param	Code	Requirement level 2	Parameter values
ift	What does obscured star formation look like at high redshift?	ST1SR1	Resolve an L* galaxy at high redshift	6>z>4	ST1SR1SR1	Angular resolution	1.6' at 50 µm
dsh					ST1SR1SR2	Mirror size	d = 8 m
ıt high re	What is the relation between PAHs, H ₂ and AGN?	ST1SR2	Detect PAH features and emission lines		ST1SR2SR1	Spectral resolution	R = 200-1000
cion a					ST1SR2SR2	Spectral range	λ = 30-200 μm
format	What is the IR galaxy population at high redshift?	ST1SR3	Statistical sample up to z=6		ST1SR3SR1	Photometric detection time	t _{phot} ~ 5 min
Star 1					ST1SR3SR2	Spectroscopic detection time	t _{spec} ~ 10 hours
					ST1SR3SR3	Field of view	fov = 0.5' x 0.5' @ 50 μm
					ST1SR3SR4	Total observation time	t _{tot} ~ 2.5 yr

INTERFEROMETER AND SINGLE-DISH TRADE-OFF

- Interferometer offers increased angular resolution in situations where single telescope is not feasible (i.e. space launch with limited fairing volume)
- Equivalent size single dish offers much better sensitivity than an interferometer.
- Interferometer with folded mirrors and boom structure is very complicated.
- For high z, the brightness of sources is very low (Flux: $\sim 10^{-21}$ W/m²)
- Single dish telescope was selected to achieve required sensitivity.

TELESCOPE AND SENSOR REQUIREMENTS

- Angular resolution: 1.6" @ 50 μm
 - Sensitivity requires large collecting area: 8 m
 - On-axis designs for better angular resolution, mirror size is limited by fairing
 - Limited fairing diameter requires novel mirror folding techniques
- Required antenna temperature: 4 K
 - o Sunshield combined with passive and active cooling
- S/N of 5 required for detection
- NEP ~3 x 10⁻¹⁹ W/Hz^{1/2}

SATELLITE CONCEPT

PAHST MIRROR

DESIGN DRIVERS - TRACEABILITY MATRIX

Торіс		Question / Driver		Requirement level 1	Parameter values		Requirement level 2	Parameter values
Design		Shall operate in	DD1DR1	Shall communicate with GS on Earth	Halo orbit /Lissajous orbit	DD1DR1DR1	Data storage capacity and bit rate shall guarantee communication	
Orbit	וטט	L2 orbit	DD1DR2	Shall function in L2 environment during mission time	5 years	DD1DR2DR1	All components shall guarantee full functionality at L2	

Design Driver 2 Launcher Launcher		DD2DR1	Shall fit to Ariane 6	4.5 m x 18 m	DD2DR1DR1	Telescope mirror shall be foldable	Dish no larger than 3 m in more than one direction	
					DD2DR1DR2	Sun shield shall be foldable		
				DD2DR1DR3	Solar Panel shall be foldable			
	ESA launcher shall be used				DD2DR1DR4	Mass shall be in A5/A6 capability range for L2	7000 kg	
		DD2DR2	Shall tolerate Ariane 6 Iaunch	See Ariane 6 manual	DD2DR2DR1	Components shall pass qualification requirements for all vibration tests	See specifications for Ariane 6	
			DD2DR3	Shall connect to Ariane 6 fairing	See Ariane 6 manual	DD2DR3DR1	Parameters for spacecraft mass center, load tolerance and attachment shall be compatible with Ariane 6 fairing	See specifications for Ariane 6

Design Driver 3 Mandatory Disposal	Satellite shall be disposed of properly	DD3DR1	Main propulsion system should have EOL capability	30 m/s
---	---	--------	---	--------

OBSERVATION STRATEGY

Detected sources

- HST Deep Field UV observations
- N > 1000 sources in each redshift bin at z > 4
- Available magnitude and photometric redshifts
- Photometric mapping, OTF mode

Blind surveys

• Depends on FoV

SECONDARY SCIENCE BACKGROUND

RIDGES/FILAMENTS IN THE GALACTIC ISM

Dusty filaments in the Galactic ISM up to ~1.7 kpc have ~0.1 pc inner width (Arzoumanian et al. 2011).

"Ridges":

- Filamentary structures with high column density (>10²³ cm⁻², Hill et al. 2011).
- Forming high-mass stars through converging flows.

<u>Are ridges merged individual</u> <u>filaments ?</u>

G035.39–00.33 ridge in the W48 SF molec. complex at ~3 kpc (Nguyen-Luong et al. 2011).

TERTIARY SCIENCE BACKGROUND

BROWN DWARFS: DUSTY RINGS & THE ELUSIVE Y CLASS

- Detect their disks (Zakhozhay et al. 2016)
- Class Y:
 - \circ Extremely cold (250 < T < 400 K)
 - Existence confirmed only very recently (Cushing et al. 2011)
 - Not yet observed in the MIR/FIR
 - 24 currently known (Leggett et al. 2017)
 - WISE detects up to 6 pc away

Theoretical blackbody spectra of Y Class brown dwarves in the vicinity of the Sun.

INITIAL DESIGN PROPOSAL

- Foldable primary mirror (adaptation of JWST design)
- Foldable sun shield combined with V-Grooves
- Passive + active cooling
- Solar panel at the bottom
- Predicted used volume:
 - 11.18 m height
 - 4.57 m diameter

PAHST spacecraft. Main mirror (1),AI thermal shield (2), detectors (3), cryogenic systems (4), V-groove passive cooler (5), service module SVR (6), solar panels (7).

SELECTED MIRROR DESIGN

- 8 m Cassegrain design
- System focus located 1 m below primary mirror
- 1.6" resolution at 50 µm
- Dish surface tolerance is on the order of 1 µm (compared to nm precision for optical mirror surfaces)
- SiC is the standard material for the IR (Herschel, SPICA)
- Al coating (Herschel: ~1 µm)

INSTRUMENT SCHEME

INSTRUMENT REQUIREMENTS

- Spectroscopy and Photometry
- 30 200 µm [3 channels]
- Detectors must be highly sensitive NEP = $3 \times 10^{-19} \text{ W/Hz}^{1/2}$
- FoV slightly larger than HSTDF: ~30 '' x 30 ''
- Pointing accuracy: 0.5 "
- Pointing knowledge: 0.1 "

PHOTOMETRY MODE

- Will operate between 30 200 µm in three channels
- Dichroic filter will separate three channels and direct them to detectors via parabolic mirror
- Filter wheels will be present after channel selection
- Detectors will be TES (50 mK) for channels 1, 2 & 3

Ogburn, R.W., IV et al.

SPECTROSCOPY MODE

- Spectrometer: Reflection Grating
 Spectrometer
- Will operate between 30 200 µm in three channels
- Image slicer will flatten image
- Dichroic filters will separate the channels
- Detectors will be TES (50 mK) for channels 1, 2 & 3

Credits: chem.libretexts.org/

CRYOGENIC SYSTEM

CRYOGENIC SYSTEM: PASSIVE COOLING

Passive Cooling:

Sunshield	280	K
V-grooves	80	K
Aluminium Shield	20	K

Passive cooling TRL: 6 No electrical power needed

CRYOGENIC SYSTEM: ACTIVE COOLING

Active Cooling (telescope + detectors): Pulse-Tube x5 (3+2)

Joule-Thompson x2 (Telescope)[Planck]4Joule-Thompson x2 (Detectors)2

Hybrid Sorption/ADR(Detectors) [SPICA]

Pulse-Tube	TRL level
Joule-Thompson 2 K	TRL level
Hybrid Sorption/ADR	TRL level

20/15 K 4 K 2 K 0.05 K ~**6** ~**6**

~6

Credits: ESA/CEA/Néel

C 2 2

Pulse-Tube

Sorption - ADR

DETECTORS

0.05 K

Parameters	Channel 1	Channel 2	Channel 3
Central λ [μm]	47	87	155
Range [µm]	30-64	64-110	110-200
Angular resolution ["]	1.48	2.74	4.89
FoV [']	0.50	0.46	0.49
Pixels (photometry)	40x40	20x20	10x10
Pixels (spectroscopy)	430	300	1600

Transition Edge Sensors [SPICA, SRON] Readout: SQUIDs

Micro-Lamps for calibration [Spitzer/IRAC]

SAFARI detector optical coupling geometry with horns

ORBITAL ENVIRONMENT AT L2

- Solar constant: 1340 ± 10 W/m²
- Distance: 1.5x10⁶ km from Earth
- Orbit: Halo

Figure 5.2 Ion spectra for 10 years at L2 for solar and galactic sources.

LAUNCHER & ORBIT INJECTION

Ariane 64

ENVELOPE FOR LAUNCH

Ariane 6

11.18 m x 4.57 m

Total mass of load under 7,000 kg

MAIN MIRROR FOLDING OPTIONS

OTE in folded

configuration

Option 1

- Mechanism: TRL 7-8 (Due to size: TRL 4-5)
- Outer 2 m annulus will be segmented into 32 slices (15 kg)
- Mirror horizontally in fairing

Option 2

- JWST-like folding
- Side parts of the main mirror folded to the sides
- Mirror vertically in fairing

SELECTED MAIN MIRROR FOLDING CONCEPT

- Secondary mirror and supports are stowed behind the mirror
- Then sides of the mirror are folded backwards
- This method would make better use of the fairing volume
- Single central piece allows higher accuracy and cheaper production

MIRROR PRELIMINARY DESIGN

PAHST

DEPLOYMENT

PAHST DEPLOYMENT - ENVELOPE AND MIRROR

PAHST DEPLOYMENT - FINAL ASSEMBLY

PRODUCT TREE

49

SYSTEM ARCHITECTURE

TRL LEVELS

	Component	TRL level
Service	Structure	4
Module	Sunshield	4

	Optics and Structure	4
Payload	Detectors	5
	Structure	4

- System drivers: TRL < 6 are most critical
- Projects have to be initiated to increase the TRL level

POWER SUB-SYSTEM: BATTERIES

Battery required during LEOP:

Launch: 245 W x 130 minutes 530 Wh

Initialisation: 550 W x 90 minutes 800 Wh

Estimation: 200 Wh/kg - 4 kg

POWER BUDGET

Modes Power Paran	D	Service Module					Inst	rument				
	Power Parameters	AOCS	Power Regulation	Propulsion	Thermal Control	Comms/ TT&C	Data Handling	Sum SM	Detectors	TCS	Data Processing Unit	Sum Inst.
	Power cons. in (W)	130	35	180	160	25	100		10	1165	10	
e,	Duty Cycle in (%)	5	100	5	5	100	10		0	0	0	
s	Avr. Power in (W)	6.5	35	9	8	25	10		0	0	0	
	Margin in (%)	10	10	10	10	10	10		10	10	10	
	Total Power in (W)	7.15	38.5	9.9	8.8	27.5	11	102.85	0	0	0	0
	Power cons. in (W)	130	35	180	160	25	100		10	1165	10	
ŭ	Duty Cycle in (%)	30	100	10	100	100	100		100	100	100	
Scie	Avr. Power in (W)	39	35	18	160	25	100		10	1165	10	
~	Margin in (%)	10	10	10	10	10	10		10	10	10	
	Total Power in (W)	42.9	38.5	19.8	176	27.5	110	414.7	11	1281.5	11	1303.5
ы	Power cons. in (W)	130	35	180	160	25	100		10	1165	10	
sitie	Duty Cycle in (%)	40	100	30	100	100	100		0	0	0	
0d	Avr. Power in (W)	52	35	54	160	25	100		0	0	0	
Å	Margin in (%)	10	10	10	10	10	10		10	10	10	
Ì	Total Power in (W)	57.2	38.5	59.4	176	27.5	110	468.6	0	0	0	0

- Maximum power demand at 'Science Mode': 1718.2 W
- Including 20% system margin: 2061.84 W

POWER GENERATION

Calculation of BOL (Beginning-of-Lifetime) power:		
Efficiency of solar module in (%)	29.5	
Illumination intensity constant in (W/m ²)	1340	
Power per area on solar module in (W/m²)	395.3	
Solar panel packing loss (%)	77	
Margin in (%)	20	
Total BOL power generation in (W/m²)	243.5	

Calculation of EOL (End-of-Lifetin	ne) power:
Degradation per year in (%)	5
Margin in (%)	20
Resulting Degradation per yr	0.06
Mission Duration in (yr)	5
Life Degradation	0.74
Total EOL power in (W/m ²)	178.7

- Solar Cells: Triple-Junction InGaP/InGaAs/Ge
- Power at BOL: 243.5 W/m²
- Power at EOL: 178.7 W/m²
- Resulting Solar panel area: 13.84 m² w.r.t. 2061.84 W power demand

Solar panel area:	
Required solar panel area in (m²)	11.54
Margin in (%)	20
Resulting Solar Panel area in (m ²)	13.84

ON-BOARD COMPUTER & DATA HANDLING

Data Handling

- Memory Unit: Buffer of measurement data
 - o Data production of 4 MB/s in "Science Mode"
 - Observation of max. 38 hrs
 - Reference to SPICA
 - 38 h observation: ~600 GB
 - Usage of SpaceWire
 - Space proven: Gaia uses SpaceWire
 - Transmit data as soon as ground station is reachable

OBC of Herschel/Planck

Credits: ESA

COMMUNICATION SUBSYSTEM

- Amount of Data
 - Standard: 5 h 72 GByte
 Maximum: 38h 600 GByte
- Ka-Band is used as downlink
 - Maximum downlink bit rate: 75 Mbit/s
 - o Fast transmission due to high frequency
- X-Band is used as uplink
 - Maximum uplink bit rate: 9.5 Mbit/s
 - More reliable than high frequency bands

Credit: ESA

LINK BUDGET: Ka-BAND (Downlink)

Frequency				
Frequency (GHz)	32 GHz			
Wavelength (m)	0.0094 m			
Slant Range				
Range (km)	1500000 km			
Transmittion path loss	-1.9 dB			
Spaceloss	-246.1 dB			
Transmittion loss (Ls+La)	-247.9 dB			

Transmitter (Tx)					
P transmitter power (W)	15 W				
Transmitter loss	-1 dB				
Antenna Diameter (m)	0.2 m				
Antenna Efficency η	0.55				
Tx Antenna gain	33.9 dB				
Half-power beam width (degrees) Q	3.28°				
EIRP	44.7 dB				

Receiver (Rx)	
Antenna Diameter (m)	35 m
Antenna Efficency η	0.62
Half-power beam width (degrees)	0.019°
	67.50"
	0.33 mrad
Antenna gain	79.3 dB
Receiver noise temp (K)	-17.4 dB
Rx G/T	61.9

Link Budget		
EIRP	44.7 dB	
Antenna Pointing Loss	0.2°	
Transmission Loss	-247.9 dB	
Rx G/T	61.9 dB	
Boltzmann's constant (k)	228.6 dB	
Data Rate (bps)	25000 bps	
Final EB/EN	43.3 dB	

Maximum possible Data Rate E/N
265704563 bps
265.7 Mps
956536426744 bph
956.54 GB/h

•	Frequency	32 GHz
٠	Transmitter power	15 W
٠	Transmitter diameter	0.2 m
٠	Receiver diameter	35 m
•	Final EB/EN	43.3 dB

• Maximum possible data rate: **957 GB/h**

LINK BUDGET: X-Band (Uplink)

Frequency		
Frequency (GHz)	8.4 GHz	
Wavelength (m)	0.04 m	
Slant Range		
Range (km)	1500000 km	
Transmittion path loss	-1.9 dB	
Spaceloss	-234.4 dB	
Transmittion loss (Ls+La)	-236.3 dB	

Transmitter (Tx)		
P transmitter power (W)	15 W	
Transmitter loss	-1 dB	
Antenna Diameter (m)	0.2 m	
Antenna Efficency η	0.55	
Tx Antenna gain	22.3 dB	
Half-power beam width (degrees) Q	12.5°	
EIRP	33.1 dB	

Receiver (Rx)	
Antenna Diameter (m)	35 m
Antenna Efficency η	0.62
Half-power beam width (degrees)	0.07°
	257''
	1.25 mrad
Antenna gain	67.7 dB
Receiver noise temp (K)	55 K
Rx G/T	50.3 dB

Link Budget		
EIRP	33.1 dB	
Antenna Pointing Loss	0.2°	
Transmission Loss	-236.3 dB	
Rx G/T	50.3 dB	
Boltzmann's constant (k)	228.6 dB	
Data Rate (bps)	25000 bps	
Final EB/EN	31.7 dB	

Maximum possible	Data Rate E/N
	18484541 bps
	18.484541 Mps
	66544345856.64 bph
	66.54 GB/h

- Frequency 8.4 GHz
- Transmitter power 15 W
- Transmitter diameter 0.2 m
- Receiver diameter 35 m
- Final EB/EN **31.7 dB**
- Maximum possible data rate:
 67 GB/h

Manoeuvre	∆V (m/s)	Margin (%)	Total ∆V (m/s)
Launcher Dispersions	45	50	67.5
Station Keeping	3	50	4.5
RW Desaturations	5	100	10
EOL Disposal	10	50	15

Dry Mass of Spacecraft: 5699 kg

PAHST

ΔV ANALYSIS (2)

Scenarios	Mass Propellant (kg)	Mission Duration (yr)
А	346.73	5
В	410.24	10
∆ (%)	+18.31	+100

- Increasing propellant mass by $18\% \rightarrow$ Increase of mission duration by 100%
- Only station keeping costs are affected by the mission duration
- Propellant mass for **10** years was considered for the mission

MASS BUDGET

		Mass [Kg]	Maturity	Margin in (%)	Total (kg)
	Solar Arrays	80	Minor Modified	10	88
	Power Control	32	Minor Modified	10	35
	Harness	83	Minor Modified	20	100
	AOCS	66	Space Proven	5	69
Service Module	Structure	350	New	20	420
	Thermal Control	300	Minor Modified	10	330
	Data Handling	30	Space Proven	5	32
	Communication	21	Minor Modified	10	23
	Sunshield	600	New	20	720
				Mass SM	1817

Total	Dry Mass	4749
	Sys. Margin (%)	20
	Total Dry Mass (kg)	5699
	Propellant Mass (kg)	410
	Total Mass (kg)	6110

				Mass Payload	2933
Payload	Harness	100	Minor Modified	10	110
	Structure	300	New	20	360
	TCS	210	Minor Modified	20	252
	Detectors	46	Minor Modified	10	51
	Optics and Structure	1800	New	20	2160

Dry Mass: **5699 kg**

٠

- Propellant Mass: 410 kg
- Total Mass: 6110 kg

GROUND SEGMENT

GROUND SEGMENT

GROUND SEGMENT OVERVIEW

- Communication window for 3hrs each day
 - Prime: Cebreros (Spain)
 - X-Band and Ka-Band available
 - **Secondary:** Malargüe station (Argentina)
 - X-Band and Ka-Band available

Credits: ESA

	Year:		1				2			3	3			4				5			6	;			7				8				9			10				11			1	2		13-18
Phase:	Quarter:	1	2	3	4 1	1 2	23	4	1	2	3	4	1	2 3	3 4	4 1	2	3	4	1	2	3	4	1	2	3	4	1 2	2 3	3 4	1	2	3	4	1	2	3 4	4 1	12	2 3	4	1	2	3	4	
0	Mission Analysis																																													
0	MDR																																													
	Feasibility																																													
	PRR																																													
	Mission design 1																																													
В	SRR																																													
	PDR																																													
6	Mission design 2																																													
	CDR																																													
	Production																																													
	Ground Qual./Test														l													l																		
	QR																																													
	AR																																													
	ORR																																													
E	FRR																																													
	Operation								1																																					
F	Disposal																																													
		1				:		:						:			:	:	:			:			:	:		:		:		:					:				:		:			

* 20 % margin is included in every phase

RISK ASSESSMENT

Risk:	Impact:	Severity:	Likelihood:	Total:	Mitigation act:
Ariane 6 not available for launch	S/C	3	А	A3	Use other launcher
Delays in folding mirror development	S/C/P	3	С	C3	Delays accepted
Delays in sensor development	S/C/P	2	С	C2	Delays accepted
Sensor is not space proven	S/C/P	4	В	B4	Alternative sensor technology
Simpler folding mirror not feasible	C/P	4	В	B4	Using the JWST folding technology
Mirror opening malfunction	Ρ	3	В	B3	Structure design, materials selection, test campaign
Sunshade deployment malfunction	P/M	4	В	B4	Structure design, materials selection, test campaign

 $S \rightarrow Schedule, M \rightarrow Mission, C \rightarrow Cost, P \rightarrow Performance$

	Section:	Cost component:	Cost: [M€]			
		Telescope (ESA)	400			
	Payload	Instrument (Member state funded)	300			
	i ayidau	PLM (incl integration, assembly & test)	350			
		Total Payload: (ESA + MS)	1050			
0	a sure () a sure da sure l'a su	SVM	400			
(incl_integr	ration assembly & test)	Cryogenic system	150			
(incl. integr	auon, assembly a testy	Total Spacecraft:	550			
Pro	ject office (ESA)		200			
Opera	ations (MOC, SOC)		200			
Launcher (incl /	Adapter and launch service)	Launch (Ariane 6)	175			
Co	ntigency (15 %)		255			
		ESA cost at completion	2130			
		Member state contribution	300			
$SVM \rightarrow Service Module$		Total mission cost:	2430			

 $MOC \rightarrow Mission$ Operation Control SOC \rightarrow Science Operation Control

67

DEMONSTRATION

ST

DEMONSTRATION

DEMONSTRATION IN SPACE

57

DEMONSTRATION IN SPACE

PRESENTATION OF PAHST

DEMONSTRATION IN SPACE

OUTREACH

GENERAL PUBLIC APPEAL

OUTREACH

EDUCATION ACTIVITIES

Dusty friend of Paxi

Dust in the Universe lecture scenarios

Extension of Cesar programme

PRESENTATION OF PAHST

DEMONSTRATION IN SPACE

PAHST

Thank you for your attention!

Backup Slides

ST

DRAFT for content

- 1. Science statement
- 2. Science background
- 3. Science Questions
- 4. Requirements (Traceability matrix)
- 5. Instruments
- 6. Observation strategy

Mission analysis

- 1. Orbit
- 2. Orbital Environment
- 3. Mission timeline
- 4. Disposal

Ground Segment

- 1. Ground segment overview
- 2. Communication windows

Space Segment

- 1. Interferometer & Single dish tradeoff
- 2. Main mirror folding concept
- 3. Spacecraft concept and fairing configuration (solar+shade)
- 4. Product tree
- 5. System architecture
- 6. Thermal control
- 7. Attitude control
- 8. Communication subsystem
- 9. Mass budget
- 10. Power budget
- 11. Delta V budget
- 12. OBDH

Programmatics

- 1. Cost
- 2. Risks analysis
- 3. Project timeline

COSMIC STAR FORMATION HISTORY

MOTIVATION

5

SCIENCE CASE

Science Questions

What does obscured star formation look like at high redshift?

How does the PAH spectra compare at low and high redshift?

Can **Polycyclic Aromatic Hydrocarbons** be used to trace **Star Formation** in the **Early Universe**?

SCIENCE CASES

TOPICS

Primary science topic:

Star formation in the early Universe at $z \sim 5$

Secondary science topic:

Inner structure of "ridges" (dense filaments) in the Galactic ISM

Tertiary science topic:

Y-classification Brown Dwarfs Observations

[Tertiary science topic:]

[Follow-up of GRB afterglows]