calathus

sample return from an evolving world

Science Nini Berge, Zelia Dionnet, Gauthier Duvieusart, Florine Enengl, Grigori Fedorets, Lucy Kissick, Kristin Pump

Engineering

Denis Barros Caballero, Carlo Convenevole, Felix Hessinger, Bartosz Kejdziora, Adam Kiss, Javier Navarro Montilla, Moritz Novak, Hannah Petersson

science rationale

part i

Cosmic Vision question #1.3.

"Explore in situ the surface and subsurface of solid bodies in the Solar System most likely to host – or have hosted – life."

from Cosmic Vision page 9

Titan

Ceres

active

extinct

accessible

buried beneath thick icy shell

extruded to surface

icy world

icy world

icy world **and** rocky surface

Ceres

Cer	e s	
FACTS		Mars
Mass	9.393 ×10 ²⁰ kg	
Diameter	952 km	
Aphelion	2.98 AU	Jupiter
Perihelion	2.56 AU	
Orbital period	4.60 y	© MailOnline

Surface is dominated by impact craters, and lobate flow features are consistent with an ice-rich (Buczkowski et al., 2016) ground.

Inamahari

Razeka

Instaeus

Insto

Hamori

Zadeni

Homshuk

Bonsu

Datan

Localised bright spots strongly suggest upwelling and outburst of some fluid from a subsurface (de Sanctis et al., 2016) reservoir.

Mq/Na/Ca carbonates, chloride salts, NH₄ and hydrated clays such as phyllosilicates are abundant. (Carrozzo et al., 2018)

Hydroxylated surface and low bulk density both suggest Ceres contains significant water content. (McCord and Zambon, 2018)

Mondamin

laulani

Anura

Wangala Tholus

Shakaema

- Piuku

Tahu

Tholus

key science questions

- **1** Astrobiology: Did Ceres' subsurface contain the ingredients for life?
- **2** Origins: Did Ceres form in its present position?

did Ceres' subsurface contain the ingredients for life?

astrobiology

250 km

occator crater

- 92 km across
- 20 degrees N

occator crater

- 92 km across
- 20 degrees N
- fractured and domed

occator crater

- 92 km across
- 20 degrees N
- fractured and domed
- bright carbonate spots

Credit: NASA/JPL/Dawn

carbonaceous material hyper-saline brines

"Thermal evolution simulations ... yield present-day liquid at depth if Ceres had a small core or no core at all" (Neveu and Desch, 2015)

cryosphere

"Modelling suggests ...At present, there may be several regional muddy seas buried under a frozen crust" (Travis et al., 2018)

potential hydrosphere (?)

silicate core

carbonaceous material

hyper-saline brines

cryosphere

"The liquid was relatively alkaline ... as has been predicted for fluids reacting with chondritic material." (Carrozzo et al., 2018)

"Brine eruption is the most likely formation mechanism explaining bright mantling structures." (Ruesch et al., 2018) Alkaline sodium-ammoniumchloride-carbonate brines = carbonates with these species. (Thomas et al., 2017; Vu et al., 2017) "The presence of hydrated carbonates indicates their formation/exposure ... is geologically recent and dehydration is ongoing, implying a still-evolving body." (Carrozzo et al., 2018)

"Ongoing freezing may overpressurize liquid or briny reservoirs, driving cryovolcanic outflow" (Neveu and Desch, 2015)

bright material

- diverse carbonate salts including sodium, calcium, magnesium, ammonia carbonate
- complex organic molecules also present in brine layer

astrobiology questions

- 1 What is the nature of the bright material?
- **2** Were the ingredients for life present in the subsurface of Ceres?
- **3** What role do small body hydrospheres play in the search for life?

did Ceres form in its present position?

origins

C.

Volatiles are gas

Volatiles are solid

Morbidell et al., 2016; Kruijer et al., 2017

ammonia-rich crust

too volatile to condense in situ in asteroid belt (Morbidelli et al., 2016)

carbonaceous surface

agrees with carbonaceous chondrite spectra (De Sanctis et al., 2015)

- high volatile content around 30% water (Prettyman et al., 2017)

origins questions

- 1 What is the nature of Ceres' carbonaceous material?
- 2 Where did Ceres and other C-type asteroids form?
- **3** Did C-type small bodies like Ceres contribute to the delivery of Earth's water?

why sample return?

- 1 Precise
- **2** Future-thinking
- **3** Provides context
- 4 Reproducible

Credit: Vincianne Debaille

sample characterisation

Methods	Measurement		
X-ray diffraction	Mineral/chemical structure	<u>ן</u>	
Gas chromatography mass spectrometry	Identification of the insoluble organic phase Spatial distributions of organics and minerals and link between them		Are the ingredients for life present in the subsurface of Ceres?
X-ray IR spectroscopy			
Electron Microprobe	Elemental composition	ר	Did Coros originato
Scanning Electron Microscopy	Sample microstructure		beyond the main belt? - How much beyond (KBC
Thermal ionization mass spectrometry	Ratios of radioactive isotopes , age of the components		gas giant region)

"Jupiter's moon Europa ... has a **high priority** in the search for habitability in the Solar System."

"These science goals could be achieved by a dedicated Europa orbiter and/or lander."

"While highly desirable, a Europa lander may not be technologically feasible within 2015-2025."

A sample return from Ceres is the ideal training ground to realise this goal

from Cosmic Vision page 25

traceability matrix

Science Question	Science Objective	Science Requirements	Observational Requirements	Instrument	Instrumental Requirements	System	System Requirements
Are the ingredients for life present in the subsurface of Ceres?	SO1: To determine how Occator crater carbonates in the faculae form.	SR1.1: The chemical composition shall be measured.	OR1.1: The minimum spatial resolution shall be 0.5 µm.	sample return (SR), X-ray diffracto- meter	IR1: A sample with a minimum volume of 4 cm ³ at a minimum depth of 50 mm below the surface of Ceres shall be taken while holding the samples temperature	Orbiting Sample (OS)	SysR1.1: The sample shall be returned safely to earth.
					temperature beneath 235 K.		

mission profile

part ii

mission objectives

- 1 To return carbonate samples from the surface of Ceres to Earth
- **2** To characterize the landing site to contextualize the returned samples

what will we do?

- Sample return
 - Retrieving 3 samples from within the reach of the arm for subsequent analysis on Earth
- In situ measurements
 - Temperature analysis of the surface
 - Mapping of the landing site during descent
 - Close-up imaging of the sampling site and panoramic view
 - Isotopic and composition analysis of one sample
- Surface mapping from orbit

how will we do it?

Layout of spacecraft

How will we do it? Ariane 64

Mission system	Wet mass (kg)	
Orbiter		2500
Piazzi	Bus	57
	Surface module	200
Drymass		2757
Wetmass		5505

Ariane 64 capacity for Earth escape: 7400 kg

mission scenario

mission scenario

Credit: NASA

Credit: The watchers

Credit: entwinedandenlivened

Credit: NASA

orbit

orbit budget

	dV (m/s)	Propellant mass (kg)	Propellant type
Outbound trajectory	17415	2327	Xenon
Orbit insertion	149	170	Hydrazine
Orbit manouvres	94	265	Hydrazine
Inbound trajectory	4410	397	Xenon
	dV (m/s)	Propellant mass (kg)	Propellant type
Landing	419	33	Hydrazine
Launch & rendezvous	371	7	Hydrazine

mission phases

Phase 0 Alpbach

Phase A Feasibility Phase B Preliminary definition Phase CD Detailed Definition & Production and Qualifications

Phase E Mission Operation

launch on 29/06/2030

Mission Phases

spacecraft design

lander ascent module

orbiter

DimensionsSolar Panel Area2.5 m x 3.0 m x 3.5 m110 m²

Subsystems

- On-board Computer
- Thermal Control
- Telecommunication
- Attitude Determination and Control
- Power
- Propulsion
- Payload

payload orbiter camera

Derived from the OSIRIS Narrow Angle Camera onboard Rosetta

Narrow angle camera specifications

Field of view2.2°Angular resolution9.3 µradiaCCD4096Shutter<1</td>

2.2° x 2.2° 9.3 µradians / pixel 4096x4096 <1 ms The OSIRIS NAC Photo: Max Planck Institute

ion propulsion

- Model: QuinetiQ`s T6
- Kaufman-type Ion Engine
- 2.5° Gimbal-capability along 2 axis

Heritage

Bepi Colombo

	Value	Unit
Thrust	110	mN
l _{sp}	4000	S
Power consumption	4000	\bigvee
Mass to power ratio	7	kg/kW
	Crec	lit: QinetiQ

xenon propellant

Medium	Xenon gas
Fill Pressure	86 bar
Water Volume	268 L
Dimensions	diameter 907 mm
Length	673 mm
Mass	max 22 kg

telemetry

ground station - ESTRACK

- DSA1 New Nordica
- DSA2 Cebreros
- DSA3 Malargüe

link budaet	Mission system	Instrument/ Usage	Data [kbit/s]	Margin [-]	Total [kbit/s]
min baagee	nce	lmages (Orbiter)	1006	0.05	1.056
	Scie	Telecom. & Status	0.9	0.05	0.945
data distribution	ping &	Images (Sampling)	0.29	0.05	0.3045
	Map	Mass- Spectrometer	0.37	O. 1	0.3737
0.1%	Total with margin			0.2	1267.3
■ Science	nt	lmages (PIAZZI)	560	0.05	587.2
Margin	Desce	lmages (Orbiter)	461	0.05	484
		Telecom. & Status	1	0.05	1.05
 Telecommand & Housekeeping 	Total with margin			0.2	1224.3

Telemetry Systems

		Downlink		
	X down (status & telecom.)	X down (science data)	Ka down (science data)	X down (PIAZZI to Orbiter)
Frequency [GHz]	8.42	8.42	32	8.44
Bandwidth [MHz]	5	5	100	10
Distance [km]	4.039E+08	4.039E+08	4.039E+08	60
Power [W]	150	225	150	1
Data Rate [Mb/s]	0.003	0.6	1.3	2
D _{Antenna} [m]	0.2	2.2	1.3	0.1
Margin [dB]	6.001	5.477	5.722	32.543

Telemetry Systems

		Downlink		
	X down (status & telecom.)	X down (Lcience data)	Ka down (science data)	X down (PIAZZI to Orbiter)
Frequency [GHz]	8.42	8.42	32	8.44
Bandwidth [MHz]	5	5	100	10
Distance [km]	4.039E+08	4.039E+08	4.039E+08	60
Power [W]	150	225	150	1
Data Rate [Mb/s]	0.003	0.6	1.3	2
D _{Antenna} [m]	0.2	2.2	1.3	0.1
Margin [dB]	6.001	5.477	5.722	32.543
thermal control

thermal control

Spacecraft: Calathus

Hot Case

Source	Heat flux
Electronics (W)	200
Sun (W)	138340
Radiation (W)	-85994
Sum (W)	52546

Cold Case

Source	Heat flux
Radiation (W)	-395

Solution

- 2.46 m² of radiators & louvres
- Electric heaters

other sub-systems

On board computer

Bus-Speed	100.0 Mbit/s
Storage	4 GByte
Processor	RAD750

ADCS

Driving requirement:

Camera pointing = 0.53 mrad/sec (angular momentum = 2.385 Nms)

• Star trackers

- Sun sensors
- 6 reaction wheels (redundancy)
- Reaction control thrusters

power budget

power budget - Calathus

Subsystem		C	Drbiter	Bus Su		Surfac	ace module	
	Margin [%]	Power [W]	Power + margin [W]	Power [W]	Power + margin [W]	Power [W]	Power + margin [W]	
Telecomunication	5	220	231	20	21	-	_	
Payload	20	20	24	-	_	Max. 90	108	
Propulsion	10	23000	25300	10	11	-	_	
Thermal control	5	395	415	41	43	41	43	
OBC + ADCS + GNC	5	10	11	58	61	35	37	
Beacon	5	_	_	0.7	0.74	-	_	
SUM	_	23645	25981	130	137	166	188	
System margin	20	4729	5196	26	27	33	38	
SUM+system margin	-	28374	31177	156	164	199	226	

mass budget

mass estimate - Calathus mission

	Dry Mass without Margin	Margin		Total	%of Dry
	in kg	%	kg	in kg	in kg
Structure	300	20	60	360	20.15
Thermal Control	52	5	2.6	54.6	3.49
Mechanisms	26	20	5.2	31.2	1.75
Communication	37	5	1.85	38.85	2.49
Data Handling	4	20	0.8	4.8	0.27
GNC	54	5	2.7	56.7	3.63
Propulsion	158	5	7.9	165.9	10.61
Power	745	20	149	894	50.05
Harness	140	5	7	147	9.41
Payload (including Lander)	189	5	9.45	198.5	12.7
Total Dry Mass (excl. adapter)	1705		247	1952	
System margin		20		390	
Total Dry with margin (excl. adapter)				2342	
Reentry Capsule (RC)	40				
Total Dry with margin incl. RC (excl. adapter)	1745			2382	
Propellant - Xenon	2724	5		2860	
Propellant - Hydrazine	207	5		217	
Adapter mass (including seperation mechanism)	110			110	
Total wet mass (excl. adapter)	4676			5459)
Total wet mass (incl. adapter)	4786		5569		

orbiter

lander ascent module

Piazzi lander

On board computer

Bus-Speed	77.2 Mbit/s
Storage	2 Gbyte
Processor	100 MHz

Properties

Wet Mass (kg)	194
Dimensions (m)	D1.5 x 0.6
Thrust (N)	400
Propellant	Hydrazine

ADCS

Driving Requirement: Turn 90° shortly after separation (angular momentum = 0.018 Nms)

▶ RW/P050

Feature	Value
Angular momentum (Nms)	0.050
Max Torque (Nm)	0.007
Mass (kg)	0.24
Volume (mm)	58 x 58 x 25
Max. Power (W)	<1.0

Piazzi lander

ARM CAMERA:

- Heritage of INSIGHT
 mission
- Arm camera: to image the sampling side

THERMAL MAPPER:

- Heritage of MARA from Hayabusa 2
- Determination of the brightness and temperature around the sampling site (10 cm spot)

DESCENDING CAMERA:

- Heritage of ROLIS onboard Philae
- Bottom camera: to image the surface during descent

MASS SPECTROMETER:

- Developed for exploration of Mercury
- analysis of light elements, volatiles as well as light organic components

landing site

Examples of possible landing sites

Have to avoid steep slopes and fractures

Dawn does not give sufficient resolution to make a definite choice

VINALIA

sampling

requirements for the sampling process

- 4 samples (at different locations)
 - 3 samples back to Earth + 1 sample analyzed in situ
- Mass: 5 15 g for each sample
- Depth: 50 mm
- Temperature:

Assessment	Temperature range	Scientific justification
Optimal conditions	< -40 °C	Maximal temperature on Ceres
Fine	- 40°⊂ to - 20°⊂	Almost no chemical or biological change below -20 °C
Acceptable	-20 °C to -5°C	
Critical	> -5 °C	Sublimation of the water

Driller/sampler

Principles of operation:

- The stroke generation bases on a modified reluctant electromagnetic principles
- The armature moves a hammer
- The core and coil are acting as counter-masses
- The hammer and the counter mass moves in opposite directions which reduces forces acting on a lander.
- The coil is powered by an electric impulses generated by a capacitor

Advantages:

- No heat generation
- Low level of power consumption
- Able to penetrate highly compressed material
- Operating in microgravity on planets, moons and asteroids,
- Well scalable

Key features:

- ~4 W of power consumption
- 3 kg weight
- 380 mm height
- 4 J of stroke energy

Credit: JPL

Leonardo S.p.A Honeybee Robotics

Alternative solutions (ultrasonic dril, drill, rotary precusive) (make mission more feasible)

Drilling bit/sampling container

Actuator interface

Slope for solid sample brake

Worm to drain drilling

Container material: hardened titanium Crown material: hardened titanium with diamonds inserts Dimensions: 60 mm in length 8 mm in diameter

Mass: 6g

Passive sampler with

Flat springs to counteract losing loose material with low adhesive

Crown screwed with container for sample release

thin container walls provides more efficient drilling

Drilling crown with diamonds inserts

robotic arm Keyfeatures:

- 2m length
- 3kg of weight
- ~60W of power consumption
- Brush for decontamination

Main functions:

- Camera maneuver
- Brush maneuver
- Penetrator deployment
- Drilling support
- Depth measurement

Heritage:

- Phobos-Grunt
- Luna27

Credit: CBK PAN

Drilling / sampling scenario

orbiter

lander

lander ascent module

Ascending module

Used for bringing the sample from the surface of Ceres to orbit for docking with the orbiter

Metrics

Total height (m)	0.6
Dry mass during ascent (kg)	45.9
Wet mass during ascent (kg)	53.3

chemical propulsion

Pros:

- Long heritage ullet
- Simple, reliable ulletsystem
- Low-cost \bullet

Cons:

- Toxic propellant •
- Relative low \bullet performance

400N Monopropellant Hydrazine Thruster

Thrust range vac

lsp range vac

Propellant

120 to 420N

212 to 220 sec

P2 - design 3.8 kg

Hydrazine

Credit: Space-propulsions.com

Pros:

- Long heritage
- Simple, reliable system
- Low-cost

Cons:

- Toxic propellant
- Relative low performance

SURFACE TENSION TANK OST 31/0

Max. Propellant Volume (I)	78
Propellant	Hydrazine
Pressurant Gas	Helium or Nitrogen
Expected Operating Pressure (bar)	24.6

orbiting sample (OS)

orbiting sample

Launch from the surface into a 100 km circular orbit Separation of Orbiting Sample (OS) and the propulsion stage, removal of propulsion stage Orbiter manoeuvres to catch the OS

3

System design

Orbiting Sample (OS) ----- Technology proposed and tested for Mars Sample Return

Credit: "Mars Sample Return Spacecraft Systems Architecture"- H. Price, Jet Propulsion Laboratory Physical caracteristics:

- Diameter: 16 cm
- Mass: 5.48 kg

system de	sign	
Orbiting Sample (OS)		
Telecommunication	Power	Thermal control
 Radio beacon: Allow the orbiter to detect de OS in a range of at least 30 km UHF/VHF: 30-3000 MHz Transmiter+antennas 	 25% of the surface covered by solar arrays producing 0.1 W when lighted up Lithium batteries: 52 Wh 	 Two separated volumes Heating The temperature should be less than -5 °C

mass budget - orbiting sample

System	Element	Mass (kg)	Margin	margin (kg)
Telecom	Transciver	0.085	0.05	0.08925
	Antennas	0.0165	0.05	0.017325
Power	Battery	0.258	0.05	0.2709
	Solar arrays	0.32	0.2	0.384
Thermal	Heaters	O. 1	0.05	O. 1 1
OBC	OBC	0.094	0.05	0.099
Structure	Structure	3	0.2	3.6
TOTAL		3.77		4.57
TOTAL with margins	+20%			5.48

rendezvous system

Technology proposed and tested for Mars Sample Return

Credit:"Mars Sample Return Spacecraft Systems Architecture"- H. Price, Jet Propulsion Laboratory Physical characteristics:

- Capture cone: 0.5 m diameter entry, 0.2 m exit
- Estimated mass: 70 kg
- Power consumption between 27W and 34 W
- Less than 0.5 m accuracy lidar detection
- Blocking arm
- Transfer mechanism to fix the OS in the reentry

capsule

orbiter

lander

lander ascent module

Earth reentry scenario

Reentry scenario

3

Stages of the reentry:

Orbiter burned in the atmosphere

Orbiter manoeuvers Reentry capsule separation from the orbiter

2

Earth tracking

Reentry scenario and requirements

Landing spot Trade-off

		Utah de	essert	Aust	ralia	Atlantic	ocean	Kazakh	istan
Parameters	Weight factors	Ranking	Score	Ranking	Score	Ranking	Score	Ranking	Score
Population density	0.3	1	0.3	4	1.2	5	1.5	3	0.9
Accessibility	0.3	4	1.2	4	1.2	1	0.3	4	1.2
Soil hardness	0.15	3	0.45	3	0.45	4	0.6	2	0.3
Political situation	0.15	4	0.6	4	0.6	2	0.3	3	0.45
Feasability	O. 1	4	0.4	5	0.5	1	O. 1	2	0.2
TOTAL	1		2.95		3.95		2.8		3.05
ID	Require	ement							
SYS-0-RC-001	RC sha	RC shall maintain the samples bellow -5 °C							
SYS-O-RC-005	Reentry thermo	Reentry velocity shall be less than 14.6 km/s for thermochemical equilibrium reasons							

System design

Technology proposed and tested for Mars Sample Return

Credits: "Overview of the Mars Sample Return Earth Entry Vehicle"- Robert Dillman and James Corliss

Physical characteristics:

- Diameter: 0.8 m
- Mass: 41 kg
- **spin-stabilized** to maintain the proper orientation
- designed for a terminal velocity landing of 41m/s
- Hypersonic ballistic coefficient: 46.7 kg/m 2
- No parachute
- no on-board attitude control system

mass budget – return capsule

System	Element	Mass (kg)	Margin	Mass with margin (kg)
Orbiting sample	Orbiting sample	3.77	0.13	4.57
Telecom	Beacon (x2)	0.60	0.20	0.72
Power	Battery	0.26	0.05	0.27
Structure	Structure	8.2	0.2	9.84
Heat shield	Heat shield	14	0.2	16.8
Mechanisms	Latches and hinges	0.5	0.2	0.6
	Sealing	1	0.2	1.2
TOTAL		27.8		34
TOTAL with margins	+20%			40.8

Power budget – return capsule

Reentry capsule (RC) power consumption

System	Element	Power consumption (W)	Margin	Power with margin (W)
Telecom	Beacon	1.4	0.05	1.47
TOTAL		1.4		1.47
TOTAL with margins	+20%			1.76

Battery: 52 Wh

Estimation of RC electric power time: 47 hours Estimation of RC reentry time: less than 10 hours

back on Earth

part iii

planetary protection

Reasons to be careful

Ceres environment:

- Potential of **liquid water** in the past
- Metabolically useful energy sources and large quantities of organic material
- Faculae is too young to have been completely sterilized by interplanetary radiation and has not been exposed to temperatures >160°C

No provable natural influx of material from Ceres to Earth equivalent to the sample

Forward and backward protection actions to be taken

- Sterilization of s/c before launch to avoid false-positives life-detection
- Approval from planetary protection officer before launch from Earth, Ceres, and before reentry
- Everything that has been in contact with Ceres must be **tightly contained** or **sterilized** before and after reentry

CLASS V: Restricted Earth Return

the curation plan

risk

	5	Low	Medium	High	Very High	
Severity	4					
	3	Very Low				
	2					
	1					
		A (remote)	B (unlikely)	C (likely)	D (highly likely)	E (near certain)
				Likelihood		

ity	5	Low	Medium	Risk 1	Very High			
	4							
ever	3	Very Low						
Se	2							
	1							
		A (remote)	B (unlikely)	C (likely)	D (highly likely)	E (near certain)		
				Likelihood				
Risk 1: Returning the sample								
		Severity	: 5					
		Likeliho	od: C	\subset				
		Mitigrat	ion: ESA	ESA is working on Mars Sample				
			Retu	irn, new techi	nologies are dev	eloped.		

Severity	5	Risk 2	Medium	Risk 1	Very High				
	4								
	3	Very Low							
	2								
	1								
		A (remote)	B (unlikely)	C (likely)	D (highly likely)	E (near certain)			
				Likelihood					
		Risk 2:	lone	engines					
		Severity	r: 5						
		Likeliho	od: A						
	Mitigration: By the time Calathus is launched, othe will have used this technology.								

	5	Risk 2	Medium		Risk 1		Very High	
ity	4				Risk 3			
ver	3	Very Low						
Se	2							
	1							
		A (remote)	B (unlikely)		C (likely)		D (highly likely)	E (near certain)
					Likelihood			
	Risk 3:				У			
Severity:								
Likelihood: C								
		Mitigrat	tion: Mat	ūri	ng require	d	technology.	

TRL estimation

System/subsystem	TRL	Comment		
Separation mechanisms	5-6			
lon propulsion	6	Loritada fram variaus saaca missions		
Thermal Control	8	Heritage from various space missions		
ADCS + GNC	8			
Rendezvous system	З	Principles of operation similar to solution that are going to		
Reentry capsule	3-4	be used on the Mars Sample Return mission		
Sampling device	2-3	Some components have space heritage, i.e.: from Rosetta		
Manipulator arm	4			
NA Camera on Orbiter	5-6	Heritage from various space science missions, e.g.: Rosetta,		
Cameras on lander	6-7	Phobos-Grunt, InSight.		
Mass spectrometer	7			

estimation of costs

Assumptions for this estimation:

- Based on mass
- Calculation divided into mechanical, electrical and payload costs for each the orbiter, lander and re-entry
- The more complicated the part, the higher the multiplied factor

public outreach

outreach plans

- social media presence
- live messaging on important mission events (e.g. Twitter, TV, streaming)
- educational packages for schools and universities
- presence at public science events
- cooperation with ESA outreach

WHAT DO	ES P
2 CE	RES
TASTE	LIKE ?

mission objectives

- To return carbonate and carbonaceous samples from the surface of Ceres to Earth
- To characterize the landing site to contextualize the returned samples

mission objectives

- To return carbonate and carbonaceous samples from the surface of Ceres to Earth
- To characterize the landing site to contextualize the returned samples

Backup slides

Thermal control

Sample preservation during transfer

Objective 1:

Are the ingredients for life present in the subsurface of Ceres?

Science	Science	Observational	Instrument	Instrumental	System	System
Objective	Requirements	Requirements		Requirements		Requirements
SO1: To determine how occator crater carbonates in the faculae form.	SR1.1: The chemical composition shall be measured.	OR1.1: The minimum spatial resolution shall be 0.5 μm.	sample return (SR), X-ray diffractometer	IR1: A sample with a minimum volume of 4 cm ³ at a minimum depth of 50 mm below the surface of Ceres shall be taken while holding the samples temperature beneath 235 K.	Orbiting Sample (OS)	SysR1.1: The sample shall be returned safely to earth.
		OR1.2: The minimum spectral resolution shall be 4 cm ^(-1.)				
						SysR1.2:The sample shall be protected from hazards.
					lander(L)/dril I(D)	SysR1.3: The sample shall be taken in the faculae (=the white spots) of the occater crator.
					Orbiter	see Orbiter Requirements
					Bus	see Bus Requirements
					Lander	see Lander Requirements

System	System	
Requirements	Subrequirements	
SysR1.1: The sample shall be returned safely to earth.	SysR1.1.1:The sample shall be kept beneath 235K after recovery (still acceptable between 235 and 205K).	
	SysR1.1.2: The pressure in the Orbiting Sample shall remain 10^(-5) mbar.	
	SysR.1.1.3: The orbiting sampler shall be collected during the first hour after landing on earth.	
SysR1.2:The sample shall be protected from hazards.	SysR1.2.1: The sample shall be protected from organic contamination.	
	SysR1.2.2: The sample shall be protected from environmental hazards.	SysR1.2.2.1. Radiation energy (x-ray) on the sample shall not exceed 7keV in one hour.
		SysR1.2.2.2: The temperature inside the sample return basket shall not exceed 263K.
		SysR1.2.2.2: The temperature inside the sample return basket should not exceed 233K.
SysR1.3: The sample shall be taken in the faculae (=the white spots) of the occater crator.	SysR1.3.1: The sample shall be taken by drilling.	SysR1.3.1.1: The sample shall be taken 50 mm below the surface of Ceres.
	SysR1.3.2: The sample shall be put in a return basket upon collection.	SysR1.3.2.1: The return basket shall have a minimum volume of 4 cm^3.

Science Objective	Science	Observational	Instrument	Instrumental	System
	Requirements	Requirements		Requirements	Requirements
SO2: To investigate what the occator crator carbonates are made of.	SR2.1: The chemical distributions of organics shall be measured.	OR1.1	SR, IR spectroscopy	IR1, all subrequirements	SysR1
	SR2.2: The chemical distributions of minerals shall be measured.	OR2.1	SR, IR spectroscopy	IR1, all subrequirements	SysR1
	SR2.3: The grain morphology shall be measured.	OR1.2	SR, Scanning Electron Microscopy	IR1, all subrequirements	SysR1
SO3: To characterize the bright material in the faculae to tell us about the conditions (as habitability, salinity, ph-value) within the unconstrained subsurface water-rich reservoir of Ceres.	SR1.1	OR1.1	SR, X-ray diffractometer	IR1, all subrequirements	SysR1
	SR1.2	OR1.2	SR, Scanning Electron Microscopy	IR1, all subrequirements	SysR1
	SR2.1	OR1.1	SR, IR spectroscopy	IR1, all subrequirements	SysR1
	SR3.1: The elemental composition shall be measured.	OR3.1: The elemental composition measurements shall be measured with a spatial resolution of 0.2mm with a level of precision of 100ppm.	SR, electron microprobe	IR1, all subrequirements	SysR1

Science	Science Boguiremente	Observational Requirements	Instrument	Instrumental Requiremente	System	System Boquiromonto
Objective	SR3.2: The temperature variations shall be measured.	OR3.2: The resolution of the thermal image shall be measured with an accuracy of 2K.	thermal mapper (TM)	IR3.1: The thermal mapper shall measure the wavelength between 5.5 and 7, 8-9.5 μ m, 9.5-11.5 μ m, 13.5-15.5 μ m, 5-100 μ m and between 8-14 μ m with a rate of one measurement every 20 minutes in the same field of view as the lander camera.	lander	SysR3: The images shall be transmitted to the ground sation
SO4: To relate the characterization of SO3 to other water rich reservoirs such as Pluto, Ganymede.	SR4.1: The organic compounds, amonia - rich compounds, ions, minerals shall be identified.	OR4.1: The comparing techniques shall be done to be relateable to the triton and pluton fly-bys and the JUICE mission.	SR, Miscellaneous	IR1, all subrequirements		SysR1
SO5: To characterize organic material.	SR5.1: The chemical composition for organics shall be measured.	OR5.1: The abundance of the different components shall be measured with a precision of 10 ppb.	SR, Gas Chromatograph y Mass Spectrometer (GCMS)	IR1, all subrequirements		SysR1
	SR5.2: The chemical distributions of organics shall be measured.	OR2.1	SR, IR spectroscopy	IR1, all subrequirements		SysR1
	SR5.3: The chemical distributions of minerals shall be measured.	OR2.1	SR, IR spectroscopy	IR1, all subrequirements		SysR1

Science Obiective	Science Requirements	Observational Requirements	Instrument	Instrumental Requirements	System Requirements
SO6: To investigate when the organic material formed.	SR5.1	OR5.1	SR, Gas Chromatography Mass Spectrometer (GCMS)	IR1, all subrequirements	SysR1
SO7: To investigate how the organic material has envolved under aqueous conditions. (=investigate types organic molecule)	SR5.1	OR5.1	SR, Gas Chromatography Mass Spectrometer (GCMS)	IR1, all subrequirements	SysR1
	SR5.2	OR5.2	SR, IR spectroscopy	IR1, all subrequirements	SysR1

Objective 2:

How representative is the sample of surrounding environment?

Science	Science	Observational	Instrument	Instrumental	System	System
Objective	Requirements	Requirements		Requirements		Requirements
SO8: How does ceres relate to small bodies and protoplanets?	SR8.1: The faculae of the occator crater shall be mapped.	OR8.1: The resolution of the images taken shall be minimum 1 m/px with an exposure time under 5 ms.	orbiter camera	IR8.1: Images of the faculae of the occator crater shall be taken.	orbiter	SysR8.1: The images shall be transmitted to the ground station
		OR8.2: The resolution of the images taken shall be minimum 0.6 m/px.	orbiter camera	IR8.1: Images of the landing site shall be taken.	orbiter	SysR8.2: The images shall be transmitted to the ground station
		OR8.2: The resolution of the images taken shall be minimum 100mrad / px.	lander camera for descent, lander camera on arm	IR8.2: Images of the sample site shall be taken.	lander	SysR8
SO9: To investigate if ceres-like asteroids contribute to water delivery on earth.	SR9: The isotopical analysis shall be done.	OR9: The accuracy of the isotope ratios shall be better that 10 ⁽⁻⁵).	mass spectrometer (MS) on the lander	IR9.1: The massspectrometer shall analyze material outside the sample site.	MS	SysR9.1: The data shall be transmitted to the ground station.
				IR9.2: The volume of the sample shall be minimum 1cm ³ .		
	SR9: The compositional analysis shall be done.	OR9: The accuracy of the compositional ratios shall be better that 10 ⁽⁻⁵⁾ .	mass spectrometer (MS) on the lander	IR9.1	MS	SysR9.1
				IR9.2		

Science Objective	Science Requirements	Observational Requirements	Instrument	Instrumental Requirements	System Requirements
SO10: What was the temperature under which minerals on Ceres (carbonates, ammoniae phyllosilicates) were formed	rSR1.1	OR1.1	SR, X- diffractometer	IR1, all subrequirements	SysR1
	SR1.2	OR1.2	SR, Scanning Electron Microscopy	IR1, all subrequirements	SysR1
	SR3.1	OR3.1	SR, electron microprobe	IR1, all subrequirements	SysR1
SO11: What was the pressure under which minerals on Ceres (carbonates, ammoniae phyllosilicates) were formed	SR1.1	OR1.1	SR, X- diffractometer	IR1, all subrequirements	SysR1
	SR1.2	OR1.2	SR, Scanning Electron Microscopy	IR1, all subrequirements	SysR1
	SR3.1	OR3.1	SR, electron microprobe	IR1, all subrequirements	SysR1

Objective 3:

Did Ceres originate beyond the main belt? - How much beyond (KBO, gas giant region)

Science Objective	Science Requirements	Observational Requirements	Instrument	Instrumental Requirements	System Requirements
SO12: how does Ceres' properties compare to icy moons (e.g. Enceladus)	SR9	OR9	MS	IR9.1, IR9.2	SysR8
SO13: KBO case: how does ceres compare to D-type asteroids (- candidates for depleted KBO comets)	SR1.1	OR1.1	SR, X-diffractometer	IR1, all subrequirements	SysR1
	SR1.2	OR1.2	SR, Scanning Electron Microscopy	IR1, all subrequirements	SysR1
	SR3.1	OR3.1	SR, electron microprobe	IR1, all subrequirements	SysR1
SO14: What is the age of the carbonaceous material?	SR14.1: The ratios of the isotopes Mg26- Al26 shall be measured.	OR14.1: The accuracy of the isotope ratio measurements shall be 10^(-6).	SR, Thermal ionization mass spectrometry	IR1, all subrequirements	SysR1
SO15: What is the age of the carbonates?	SR15.1: The ratios of the isotopes Pb-Pb, U-Pb shall be measured.	OR14.1	SR, Thermal ionization mass spectrometry	IR1, all subrequirements	SysR1
SO16: What is the age of ammoniated phyllosilicates?	SR16.1: The ratios of the isotopes Rb87- Sr87, Mg26-Al26, Pb- Pb shall be measured.	OR14.1	SR, Thermal ionization mass spectrometry	IR1, all subrequirements	SysR1

BACKUP SLIDES

Orbiter carlo Magnitude (km): 87.811424 For_Evaluation_Purposes_Only

AGI

orbiter camera

We envision a narrow angle type camera.

Resolution similar to the OSIRIS Narrow Angle Camera (NAC) on Rosetta.

<u>Field of view:</u> <u>Angular resolution:</u> <u>CCD:</u>

2.2° x 2.2°

18.6 μradians / pixel 2000 x 2000 pixels

We will use a different shutter mechanism allowing exposures down to 1 ms and a newer CCD compared to the NAC.

mapping phase

We map the Cerealia and Vinalia faculae for potential landing sites from 43 km altitude.

First we map the entire faculae with 0.8 m / px, Factor > 4 better than Dawn's resolution.

Then map a chosen landing site from 20 km altitude at < 0.4 m / px.

We estimate that this can be done in 2 months.

Total power consuption budget

MODES	TOTAL POWER CONSUPTION (W)			
CALATHUS				
Launch	120			
Travel	32629			
Operational mode 1	649			
Launch Piazzi	681			
Safe	405			
Rendezvous	679			
Re-entry	515			
PIAZZI				
Launch from Orbiter	108			
Operational mode 2	169			
Take off	94			

Rendezvous system(RS)
Rendezvous System (RVS)

- 1. Launch from the surface into a 100 km circular orbit
- 2. Separation of Orbiting Sample (OS) and the propulsion stage, removal of propulsion stage
- 3. Orbiter manoeuvres to catch the OS

System design

Technology proposed and tested for Mars Sample Return

Credit:"Mars Sample Return Spacecraft Systems Architecture"- H. Price, Jet Propulsion Laboratory Physical characteristics:

- Capture cone: 0.5 m diamiter entry, 0.2 m exit
- Estimated mass: 70 kg
- Power consumption between 27W and 34 W
- Less than 0.5 m accuracy lidar detection
- Blocking arm
- Transfer mechanism to fix the OS in the reentry

capsule

System design

Credits: esa.int

Timeline: sampling and measurements

Timeline: <u>samplingand</u> measurements

Time points	Action	Duration
ТО	Landing on Ceres	lh
TO -> T1	Collecting and send image of surroundings; decisions by science team	1 d
T2	Brushing	0,5h (10 min / spot)
T2 -> T3	Collecting and send image; decisions by science team	1d
T4	Collecting samples and delivereing to the returning capsule and to the mass spectrometer	8h (max., depending on hardnes)
Τ5	Bus launch	1h

Timeline: Sampling and measurements

tS	Time points	Action	Duration
$\hfill \square$	TO	Separation	0
\bigcirc	TO -> T1	Collecting descent images	
	Τ1	Landing on Ceres	1h
	T2 -> T3	Collecting and send image of surroundings; decisions by science team	1 d
\square	T3	Brushing	0,5h (10 min / spot)
D S	T4 -> T5	Collecting and send image; decisions by science team	1d
n e	Τ5	Collecting samples and delivereing to the returning capsule and to the mass spectrometer	8h (max., depending on hardnes)
	Т6	Bus launch	1h
ц П П	Τ7	Reaching orbit	1h
	T8	Randevous of returning capsule and orbiter	2 d (max.)
\sim \sim	T8+	Contingency time for randevous	1 week

 \bigcirc

e l i n

 \bigcup