

D-Type Explorer for Subsurface Interior sample REturn

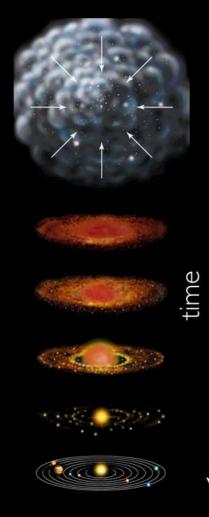
Team Orange

Return - Final Review

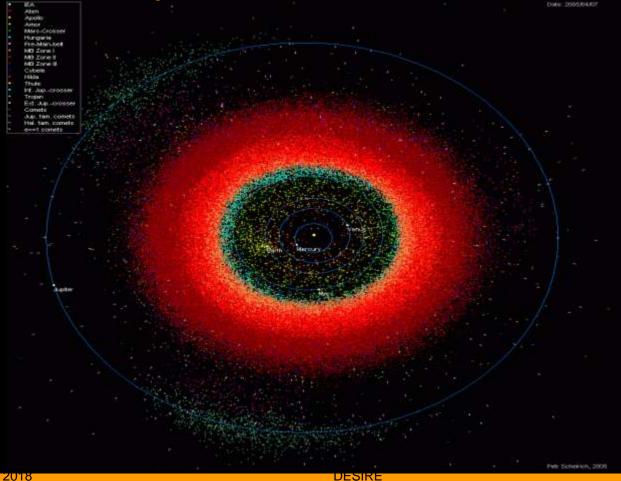
First sample return from a D-type Near Earth Asteroid!

Mission statement:

The DESIRE mission will return surface and subsurface material from a D-type asteroid in order to widen our understanding of the formation of the Solar System and how the building blocks of life were transported in it.

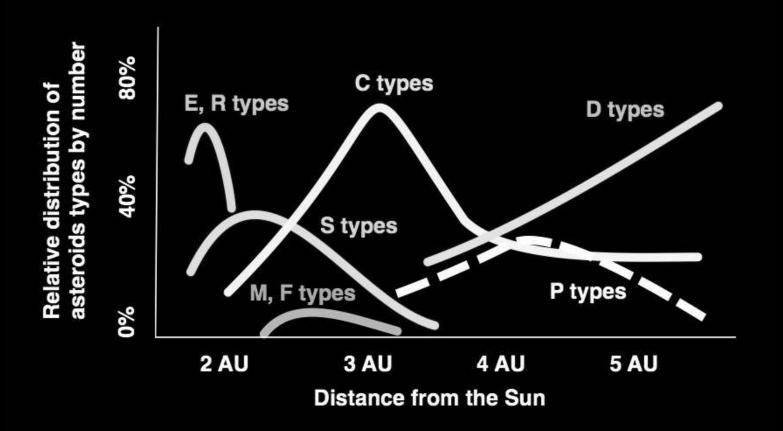

First sample return from a D-type Near Earth Asteroid!

- First mission to a Near Earth D-type asteroid
- First asteroid **subsurface** sample return
- Spacecraft + lander


Formation of the Solar System

Scientific Background

- Gravitational collapse of gas and dust particles
- Disk formation from gas and dust
- Rotation and accumulation of material in the centre
- Formation of the Sun
- Accretion within the disk
- Planetesimal formation
- Present Solar System structure


Asteroids in the Solar System

Taxonomic Classification

B _____ C ____ □/

Asteroid Distribution in the Solar System

Three approaches to understand the formation of our Solar System:

1. Earth based remote sensing

Remote Sensing

- Mineralogical composition and taxonomy
- Shape and rotation
- Size and albedo
- Position

Three approaches to understand the formation of our Solar System:

- 1. Earth based remote sensing
- 1. Data from space missions

Past missions to asteroids

NEAR-Shoemaker (1996)

Flyby/Orbiter

S-type general characteristics of asteroids

Past missions to asteroids

NEAR-Shoemaker (1996)

Flyby/Orbiter

Hayabusa (2003)

Orbiter/Lander/Sample Return

S-type general characteristics of asteroids Surface sample Itokawa (S-type)

Past missions to asteroids

NEAR-Shoemaker (1996)

Flyby/Orbiter

Hayabusa (2003)

Orbiter/Lander/Sample Return

S-type general characteristics of asteroids

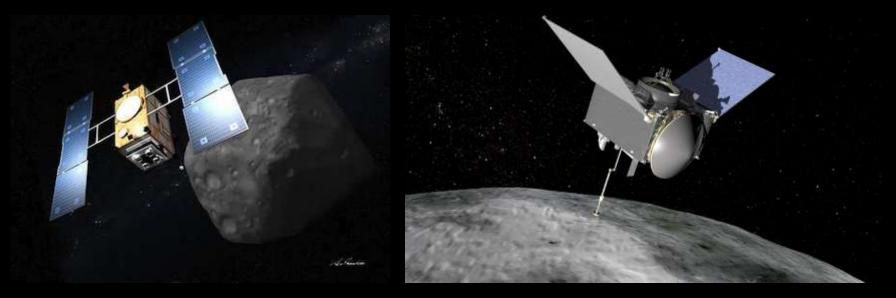
Surface sample Itokawa (S-type)

Dawn (2007)

Orbiter

Orbit Vesta (V-type) and Ceres (C-type) by Remote sensing

Present missions to asteroids



Hayabusa 2 (ongoing)

Orbiter/Lander/Sample Return

Surface sample Ryugu (C-type)

Present missions to asteroids

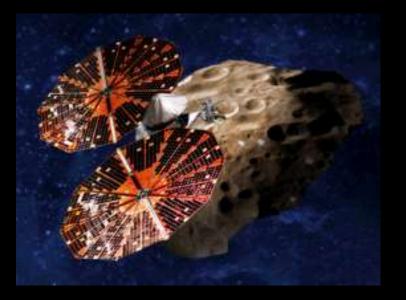
Hayabusa 2 (ongoing)

Orbiter/Lander/Sample Return

Surface sample Ryugu (C-type)

OSIRIS-REx (ongoing)

Orbiter/Lander/Sample Return


Surface sample Bennu (B-type)

Alpbach Summer School 2018

Poturn - Final Poviow

DESIRE

Future missions to asteroids

Lucy (2021) Jupiter Trojan Asteroids

Fly-by of C-, D- and P-type asteroids

Future missions to asteroids

Lucy (2021) Jupiter Trojan Asteroids

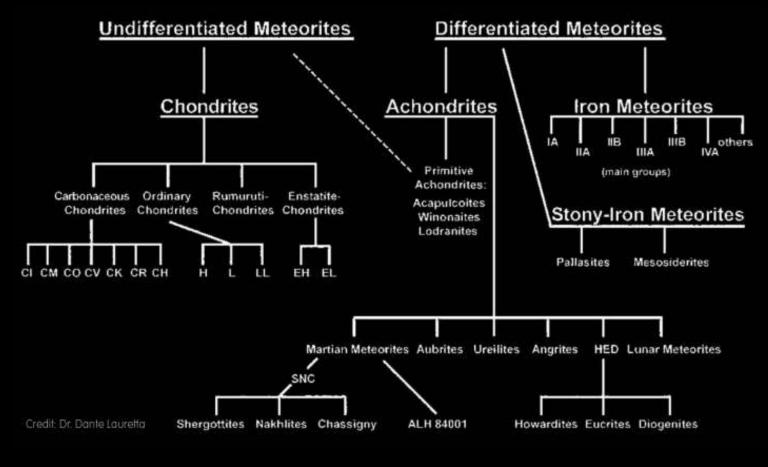
Fly-by of C-, D- and P-type asteroids

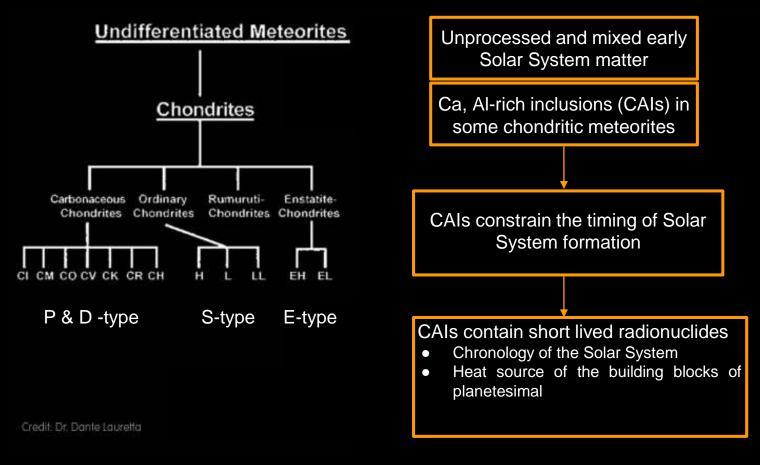

Psyche (2022) Asteroid Orbiter

M-type asteroid

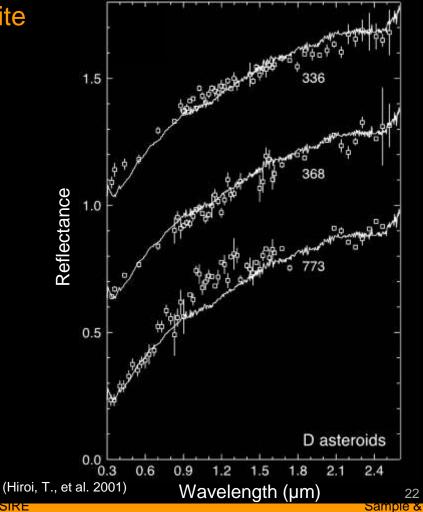
Three approaches to understand the formation of our Solar System:

1. Earth based remote sensing



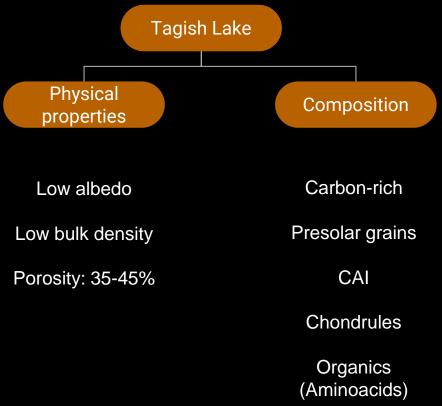

- 1. Data from space missions
- 1. Meteorites

Insights from the study of meteorites


Insights from the study of meteorites

Analogue material - Tagish Lake meteorite

Alpbach Summer School 2018



Poturn Final Poviow

DESIRE

Analogue material - Tagish Lake meteorite

Why a D - Type?

Why is it important to go to a D type?

- Confirm/discard parent body
- Meteorite collection not representative
- Test theoretical model on early solar system formation
- Learn disk dynamic small body migration and processes in solar system
- Chemical and chronological properties
- The study of organics and presolar grains

Scientific Objectives

Scientific objectives	Scientific requirements	Measurements	Method	Instrument on orbiter/lander	Instrument requirements			
Primary Objectives								
Q1: What were the building blocks of the Solar System and how did they evolve?	SR1: Determine the chemical composition and morphology of the building blocks at the time of early Solar System formation	Elemental composition	Spectroscopy	LIBS	Spectral resolution of 10 cm ⁻¹			
		Particle size and shape	Sample analysis	-	-			
	SR2: Characterize collisional history of primitive bodies	Mineralogy (shock metamorphism)	Sample Analysis	-	-			
		Internal structure	Radars	Low-Frequency Range radar (bistatic)	Res: 10-30m Penetration depth: 170 m Nominal Frequency: 50-70 mHz External Frequency: 45-75 Mhz			
	SR3: Determine the initial spatial distribution and migration of small bodies across the Solar System	Chemistry Isotopes ratios	Sample analysis	-	-			
Q2: What are the physical properties of NEAs?	SR4: Characterize D-Type asteroids	Global surface topography	Mapping Imaging	Wide Angle Camera	Resolution: 10 cm/pixel from 5km distance			
				Narrow Angle Camera	Resolution: 10 cm/pixel from 5km distance			
		Composition and mineralogy	Spectroscopy	Visible Near Infrared Spectrometer	Spectral resolution: 5nm Wavelength range: 0.4-3.3 um			
				Mid Infrared Spectrometer	Resolution: 1 um Spectral range: 5-15 um			
			Sample analysis	-	-			
		Internal structure	Radars	High frequency radar (monostatic)	Res: 2 m Penetration depth: 10-20 m Nominal Frequency: 300-800mHz External Frequency: 300-2500 Mhz			
				Low-Frequency Range radar (bistatic)	Res: 10-30m Penetration depth: 170 m Nominal Frequency: 50-70 mHz External Frequency: 45-75 Mhz			
Q3: How were the building blocks of life formed and transported inside the Solar System?	SR5: Characterize organic compounds present in primitive bodies	Identification of organic compounds	Spectroscopy	Raman spectrometer	Raman shifts: 4000 cm ⁻¹ -1000 cm ⁻¹			
			Sample analysis	-	-			
Alphach Summer School 2010			DEGINE		Campic			

Poture Final Poviow

Primary Objectives

What were the building blocks of the Solar System and how did they evolve?

Primary Objectives

What were the building blocks of the Solar System and how did they evolve?

What are the physical properties of Solar System bodies?

Primary Objectives

What were the building blocks of the Solar System and how did they evolve?

What are the physical properties of Solar System bodies? How were the building blocks of life transported inside the Solar System?

Q4: What was the astrophysical context at the time of Solar System formation?	SR6: Determine the presolar grain sources	isotopic ratios	Sample analysis	5	2
	SR7: Characterize the stellar environment in which the Solar System formed	Isotopic and chemical characteristics of presolar grains	Sample analysis	÷	-
	SR8: Characterize stellar processes				
QS: Can the Tagish Lake meteorite be linked to a specific spectral class of asteroids?	SR9: Testing if D-types asteroids are the parent body type of the Tagish Lake meteorite	Chemical composition	Spectroscopy	LIBS + Raman	Spectral resolution of 10 cm ⁻¹ Raman shifts: 4000 cm ⁻¹ -100 cm ⁻¹
		Isotopic ratios	Sample analysis		
Q6: What are the processes which are affecting the physical properties of asteroids today?	SRID: Characterize the interaction between the solar wind and asteroid surfaces	Low Energy Neutral Atoms	Neutral imaging	Neutral Particle Detector	Mass resolution: H, Heavy Energy range: 10eV to 3keV
	SR11: Determine the collisional record of D- type asteroids	imaging	Cameras	Wide angle camera	Resolution: 10 cm/pixel from 5km distance
		Mineralogy	Sample analysis	÷.	÷.
Q7: Asteroid impact avoidance	SR12: Characterize Near Earth Asteroids in order to plan a defence strategy	Chemical and physical properties	Cameras	Wide Angle Camera	Resolution: 10 cm/pixel from 5km distance
				Narrow Angle Camera	FoV: 1.7 degrees Resolution: 18.6 urad px-1 (1.86 m/pixel from 100 km distance)
			Radar	High Frequency Radar	Res: 2 m Penetration depth: 10-20 m Nominal Frequency: 300-800mHz External Frequency: 300-2500 Mhz
				Low-Frequency Bange Radar	Res: 10-30 m Penetration depth: 170 m Nominal Frequency: 50-70 mHz External Frequency: 45-75 Mhz
			Spectroscopy	LIBS + Raman	Spectral resolution of 10 cm ⁻⁴ Raman shifts: 4000 cm ⁻⁴ -100 cm ⁻¹

What was the astrophysical context at the time of Solar System formation?

What was the astrophysical context at the time of Solar System formation? Can the Tagish Lake meteorite be linked to a specific spectral class of asteroids?

What was the astrophysical context at the time of Solar System formation? Can the Tagish Lake meteorite be linked to a specific spectral class of asteroids?

What are the processes which are affecting the physical properties of asteroids today?

What was the astrophysical context at the time of Solar System formation? Can the Tagish Lake meteorite be linked to a specific spectral class of asteroids?

What are the processes which are affecting the physical properties of asteroids today?

Asteroid impact avoidance

Where do we need to go?

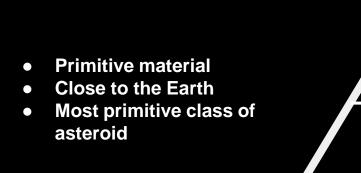
Target Selection

Selection Criteria

Primitive material

Comets and asteroids

Selection Criteria


- Primitive material
- Close to the Earth

Comets and asteroids

Asteroids

(Image courtesy of Mike Zolensky, NASA JSC)

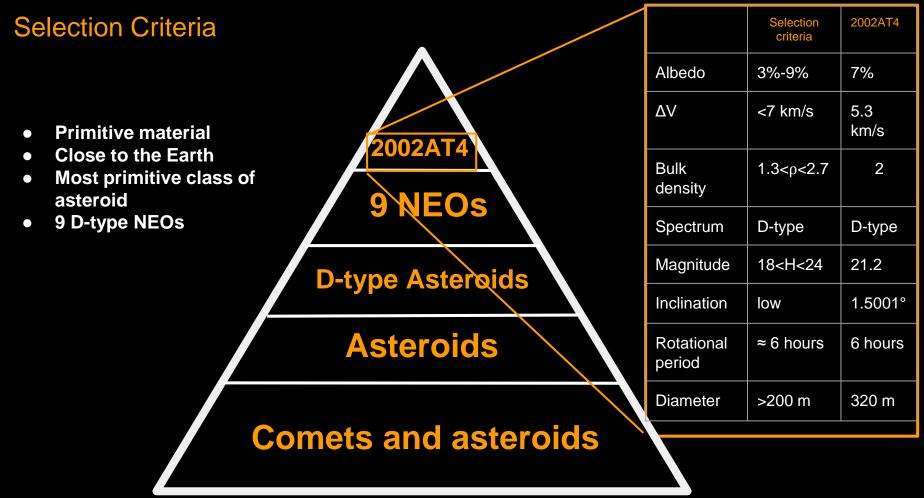
Selection Criteria

D-type Asteroids

Asteroids

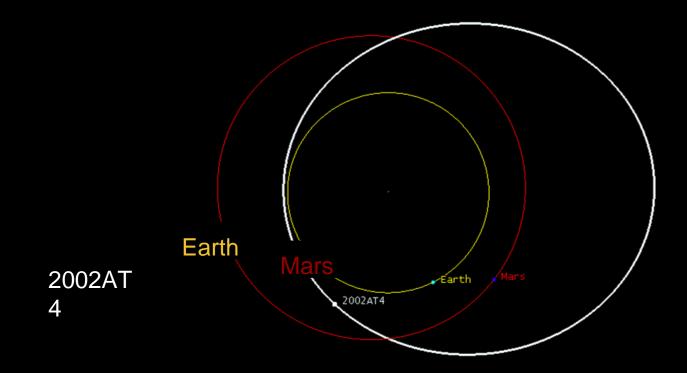
Comets and asteroids

Selection Criteria


- Primitive material
- Close to the Earth
- Most primitive class of asteroid
- 9 D-type NEOs

9 NEOs

D-type Asteroids


Asteroids

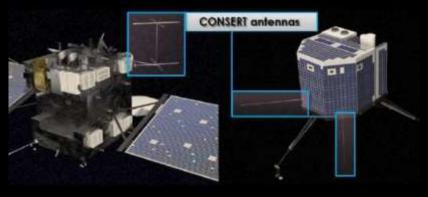
Comets and asteroids

Poturn Einal Poviow

Desired Primary and Secondary Targets

Instrumentation

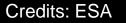
Camera

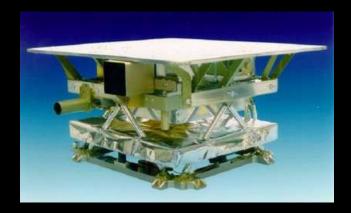

Narrow Angle

Wide Angle Camera Mapping

- Landing site selection
- Morphology
- Collisional history

Heritage: Rosetta




High Frequency Radar

- Physical properties
- Internal structure

Heritage: ExoMars, Rosetta

Low Frequency Radar

Credits: CSEM

Mid Infrared Spectrometer

Near Infrared Spectrometer Global physical properties

Heritage: Rosetta

Credits: IRF

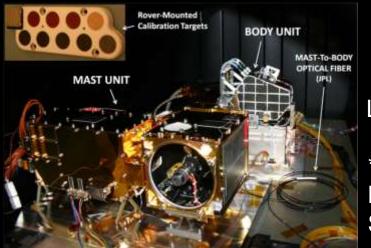
Neutral Particle Analyzer

Space weathering

Heritage: Chandrayaan-1

Lander instruments

Credits: CSEM


Descent cameras

Panoramic cameras

Geological context for the sampling site

Heritage: Philae

Lander instruments

Credits: LANL/CNES

LIBS* + Raman

*Laser Induced Breakdown Spectroscopy Elemental abundance

• Organics

Heritage: MSL/Mars2020

Sample Requirements

Property	Requirement	Reasons
Depth	> 20 cm	Value below skin depth with margin; likelyhood to get lithology intact
Mass	> 10 g	Ground-based instrument mass requirements to fulfill scientific goal
Temperature	< 313 K	To preserve organic material
Sample retrieval	Surface and subsurface	Context to time domain, impact gardening and space weathering effect

Mission Approach

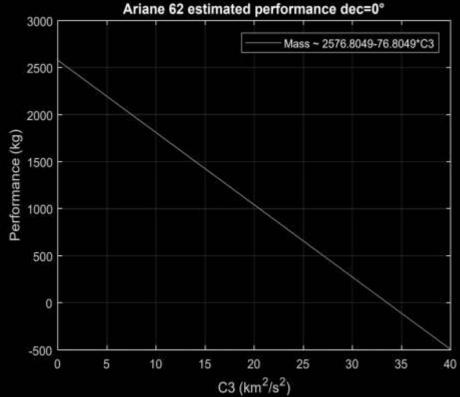
Mission Phases

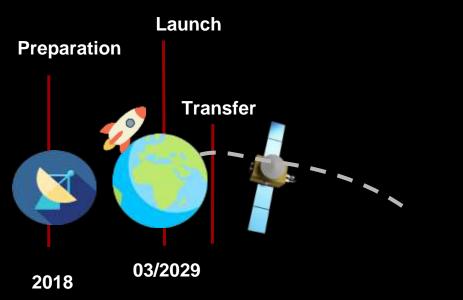
Preparation

2018

Preparation

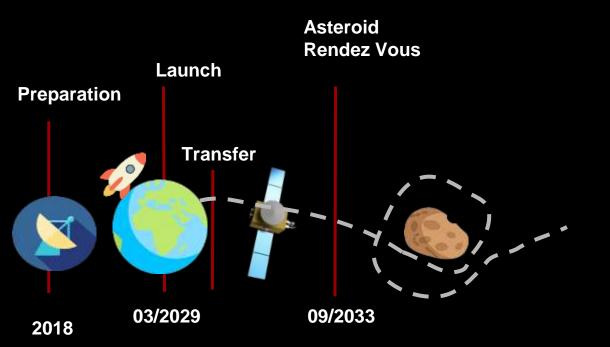
- Preliminary focus on observations
- Ground and space based
- Developing of scientific instruments
- Developing of technical solutions
- Setup sample curation facility

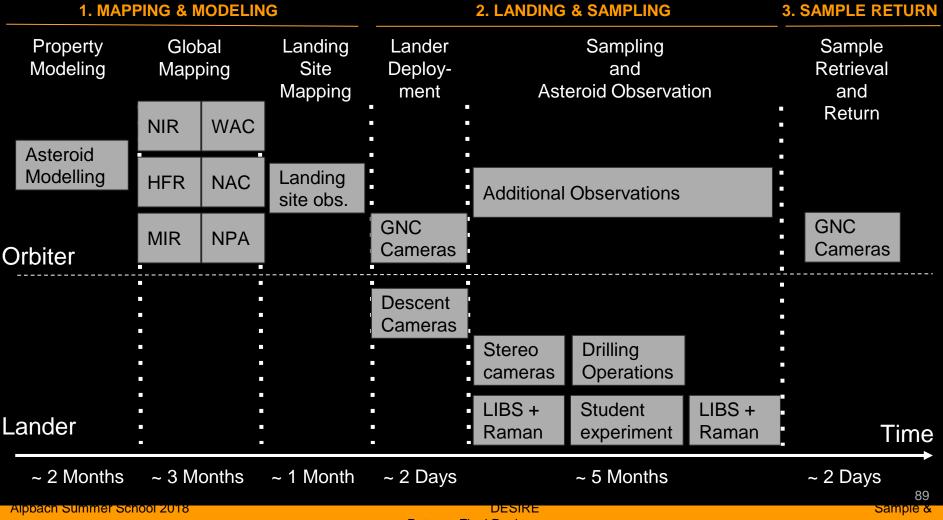

Mission Phases

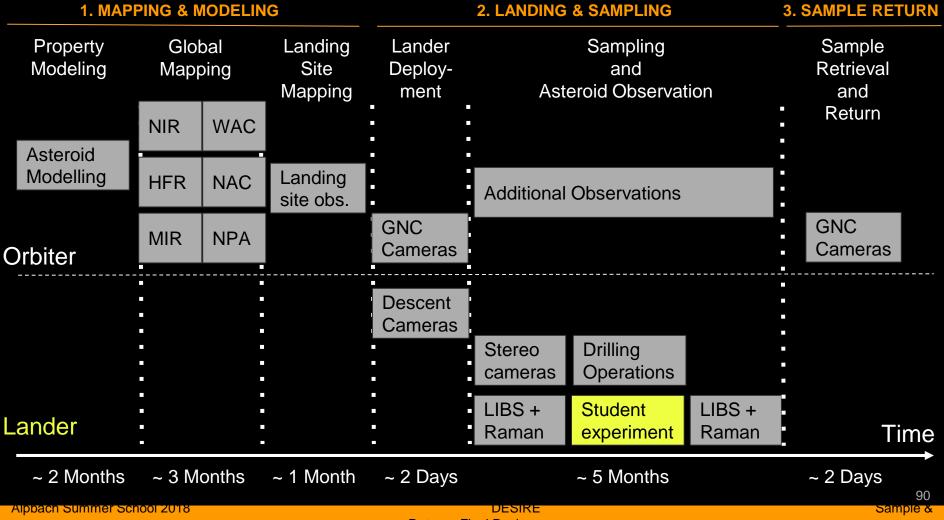


Launch System

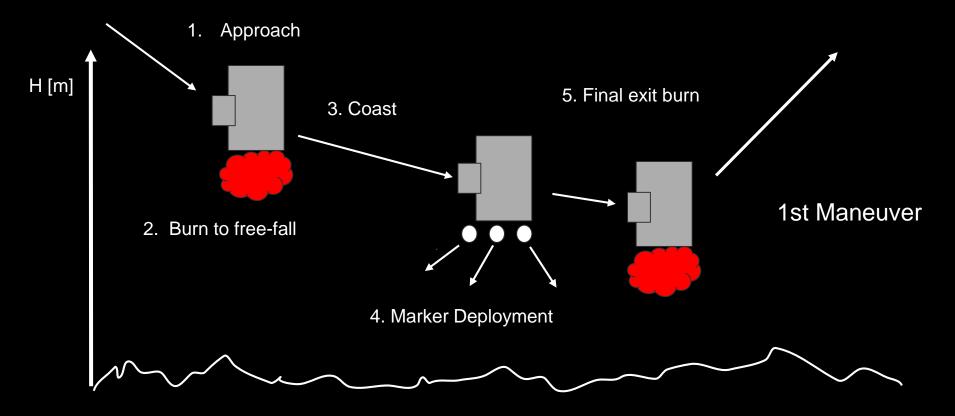
- Capability to transfer < 2.5 t Total Mass : 1839 kg
- Min natural vibration frequency: 30 Hz
- C3 =2.7 Km²/s²




Mission Phases

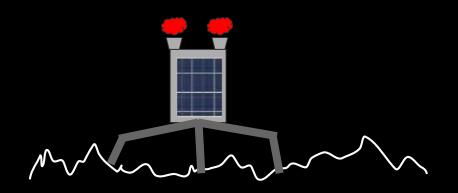

2002 AT4
03/2029
09/2033
08/2034
06/2035
7.0 km/s
3.7 km/s
11.8 km/s

Mission Phases


Poture Final Poviow

Poture Final Poviow

Landing & Sampling


Landing Approach and Contamination Avoidance Maneuver (LACAM)

Landing Approach and Contamination Avoidance Maneuver (LACAM)

Sampling - Lander



- Principle: harpoons for anchoring (4) + cold gas thrusters + feet screws.
- Harpoons to attach to the surface.
- Anchoring at touchdown (screws).

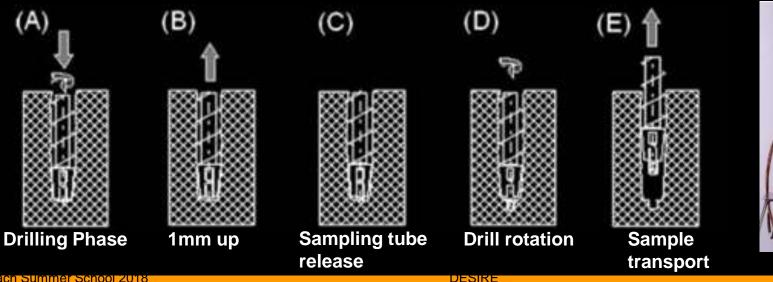
Lessons Learned from Philae

Philae heritage \rightarrow experiences

- Harpoons didn't fire
 - Heating Pyro wrong?
 - Degrading of Pyro?
 - No current in wire?
 - Leakage?
- Cold-gas thruster didn't work
 - Nail didn't penetrate membrane?

TIME UNTIL LANDER SEPARATION: 30 MINUTES

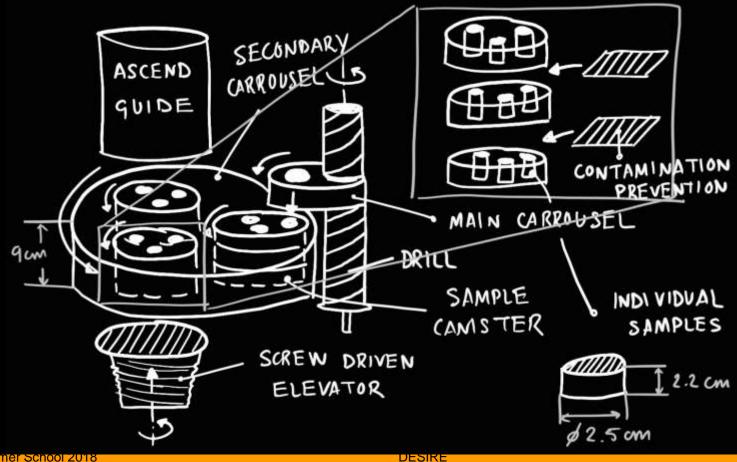
Lessons Learned from Philae


Philae heritage \rightarrow improvement

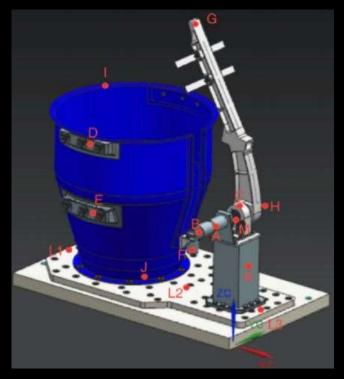
- Two different pyro materials
 - For each harpoon
 - Avoid degradation
 - Seal chamber
- COTS Thrusters
 - Flight tested
- Decreased Development Cost
 - Test data available

Sampling - Drilling

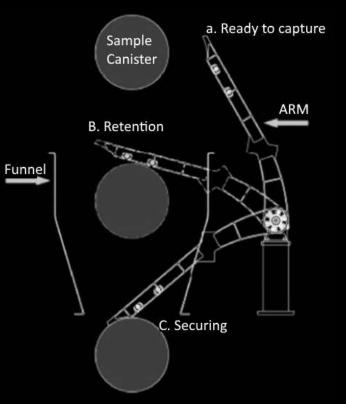
- Several samples (same site) at known depths
- Use thermal probe for temperature profile
- Slow drilling to avoid cohesion
- Drilling depth: 20 cm



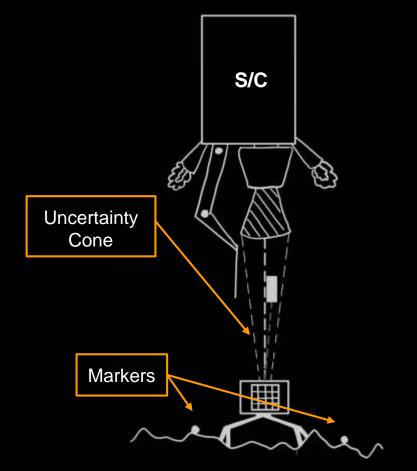
Sample Drilling Risk Mitigation


- Lander body rotates on base
- Allows multiple drilling sites
- Mitigate drilling obstacle risk

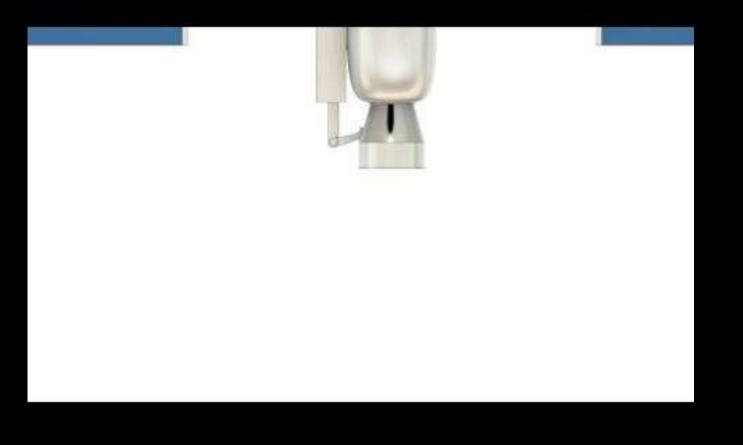
Sampling - Drilling



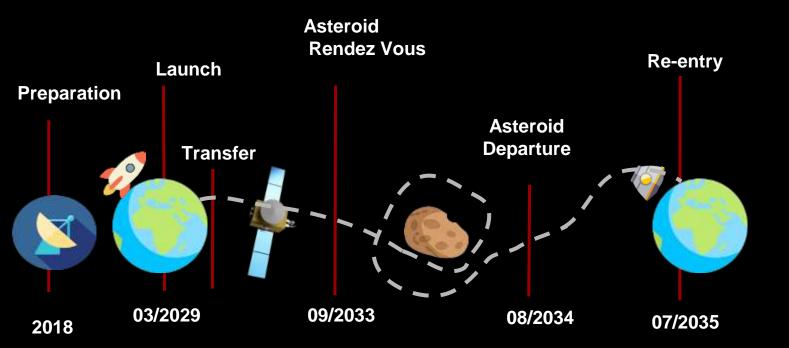
Sample capture


• Sample Canister Capture Mechanism (Carta et al. 2015)

Adapted from Carta et al. 2015



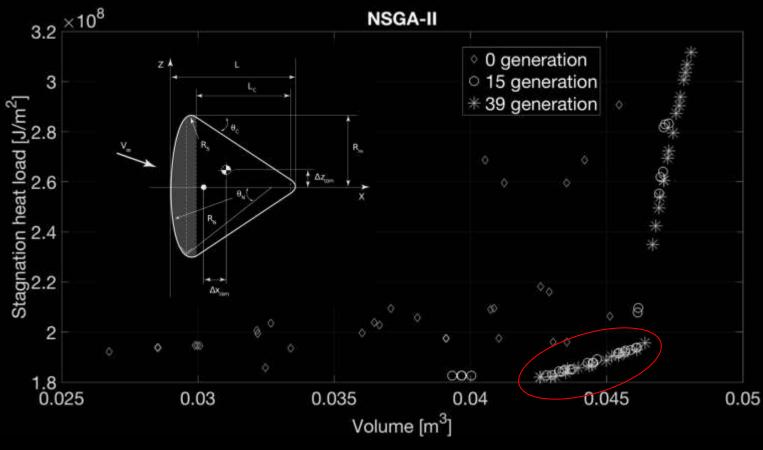
Sample Capture



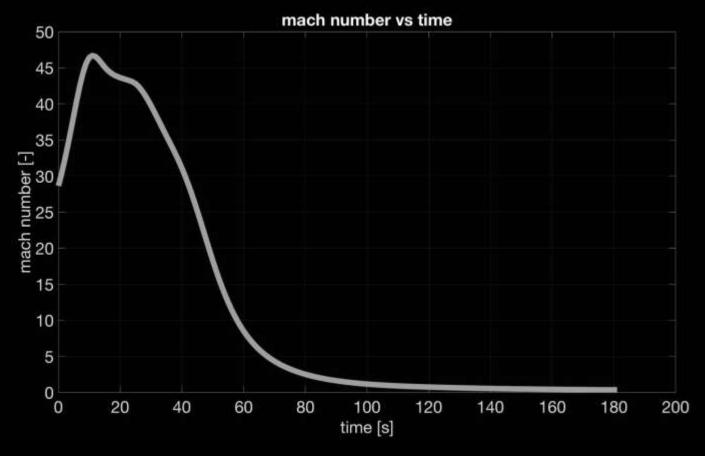
- Optical camera tracks the Sample Return Vehicle
- S/C hovers (body-fixed) at 20 m
- 5 15 cm/s docking speed
- Perform test maneuvers before
- Orbiter-Lander Horizon Synchronization
- TRL 6 (Carta et al. 2015)

Sample Capture

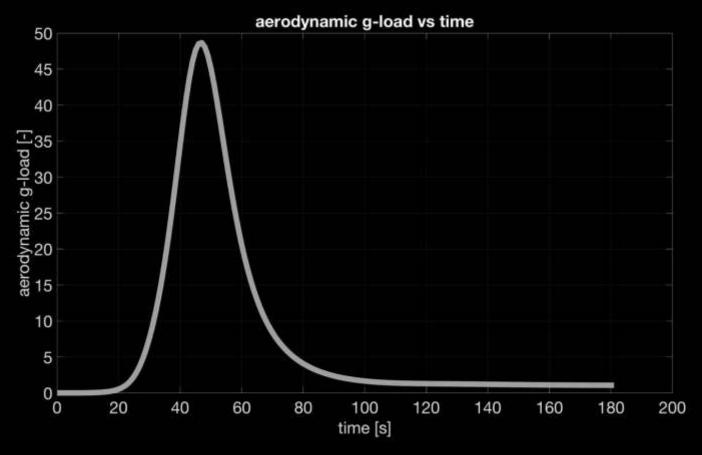
Mission Phases

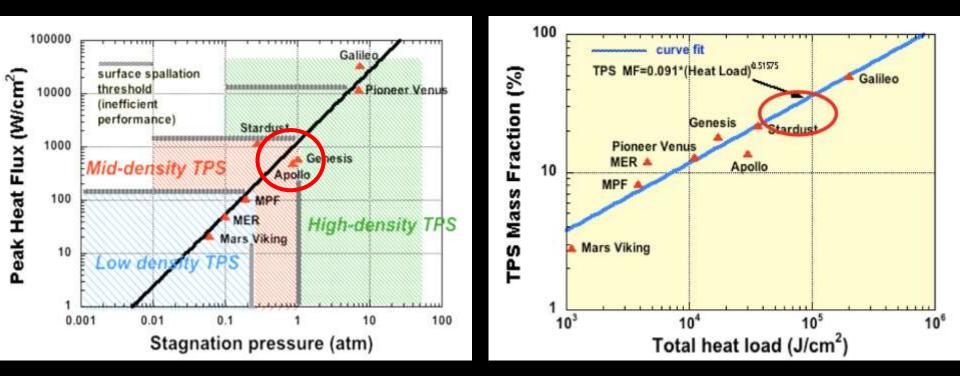

Entry Conditions:

- Precise landing site \rightarrow Entry Flight Path Angle: -10°
- Maximum stag. heat flux: 10⁷ W/m²
- Max G-Load: 50 g


Max Entry Velocity of 12.3 km/s


Re-Entry: Optimization procedure (NSGA-II)

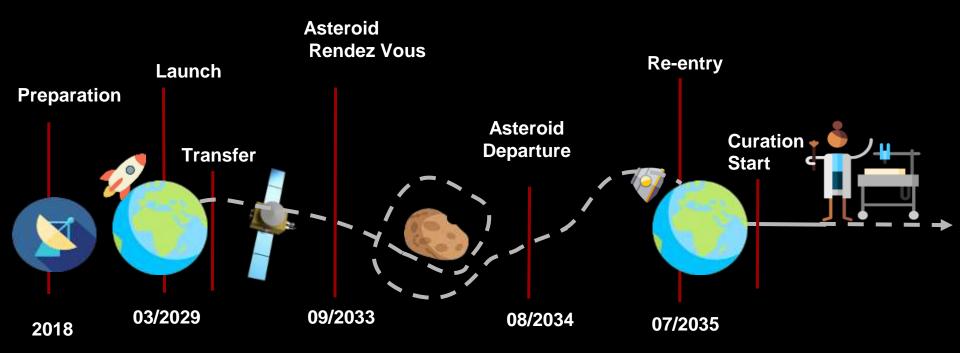

Re-Entry Trajectory Simulation: Mach Number


Re-Entry Trajectory Simulation: Stagnation Point Heat Flux

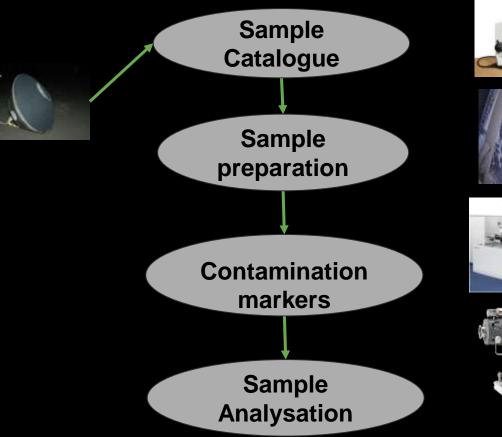
Re-Entry Trajectory Simulation: Aerodynamic g-Load

TPS design

Parachute


• Used for soft landing

• Opens at 11 km altitude and Mach number of 0.34


- Impact speed 3 m/s
 - \rightarrow area of main parachute: 7 m²

Mission Phases

Curation Phase on Earth

Microscope (Brunnel)

High precision balances

Integrated prep systems

Grind and polish system

X-Ray Photoelect ron Spectrosc opy (XPS)

Residual

Analyzer

Gas

Clean Room (ISO 14644-1)

RTF/Ra man spectro meter

Spacecraft - Preliminary Design

Name	Specifications	Margins
	off-the-shelf items (no changes)	5%
Equipment	off-the-shelf items (minor changes)	10%
	off-the-off-the-shelf items (major changes)	15%
	Equipments System	20%
Systems (at least 20%)	Propellant System	10% Margin+2%residual
		Margin on maximum separated mass

Mass and power Budget - Total Spacecraft

Alpbach Sun

	Mass (kg)	Power cons. (W)	Margin (%)	Final mass (kg)	Final power cons. (W)
1 Spacecraft	1199	10286	20	1438	12343
1.1 Main propulsion system	171	9450	0	171	9450
1.1.1 Engine + PPU	130	9000	5	137	9450
1.1.2 Tanks	41	0	10	45	0
1.2 Attitude orbit control system (dry)	86	50	5	90	53
1.3 Thermal control system	76	250	20	91	300
1.4 Power	245	0	0	245	0
1.4.1 Solar arrays + PPU	229	0	5	240	0
1.4.2 Batteries	5	0	5	5	0
1.5 Onboard computer + PL data handling	10	20	10	11	22
1.6 Rendezvous device	40	10	20	48	12
1.7 Reentry capsule	50	20	20	60	24
1.8 Telemetry, tracking and commanding	90	220	5	95	231
1.9 Payload / instrumentation	23	162	20	27	194
1.10 Structure & mechanisms	300	0	20	360	0
2 Propellant					
2.1 Xenon	378	0	10	416	0
2.2 Hydrazine (AOCS)	95	0	10	104	0
nmer School 2018		DESIRE			

Mass and power Budget - Lander

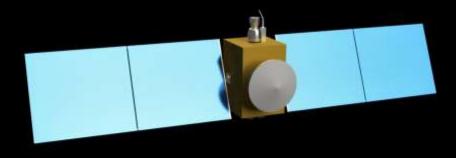
	Mass (kg)	Power cons. (W)	Margin (%)	Final mass (kg)	Final power cons. (W)
3 Lander	122	236	20	146	283
3.1 Structure	28	0	20	34	0
3.2 Attitude orbit control system	3	10	5	3	11
3.3 Thermal control system	4	10	20	5	12
3.4 Drill	5	12	20	6	14
3.5 Balancing mechanical support	4	6	20	5	7
3.6 On board computer	1	5	20	1	6
3.7 Electrical power supply	12	100	20	14	120
3.8 Communication	7	15	20	8	18
3.9 Payload / instrumentation	32	58	20	39	69
3.10 Return capsule	26	20	20	31	24

Mass, power and data Budget - Instrumentation

	Mass (kg)	Power cons. (W)	Margin (%)	Final mass (kg)	Final power cons. (W)	Data volume (Mbit/day)	Data volume w/ margin (Mbit/day)
1.9 Spacecraft instrumentation	23	162	20	27	194	4399	5278
1.9.1 Wide Angle Cam	2,0	12	5	2	12	1125	1181
1.9.2 High freq radar	0	88	5	0	92	0	0
1.9.3 Narrow angle cam	9	14	5	9	14	134	141
1.9.4 Low freq radar	2	10	5	2	11	36	38
1.9.5 Mid Infrared Spectrometer	3	2	5	3	2	2880	3024
1.9.6 Vis near Infrared	4	18	5	4	19	14	14
1.9.7 Neutral particle analyzer	2	11	5	2	12	1	1
1.9.8 LASER altimeter	4	22	5	4	23	10	11
2.8 Lander instrumentation	32	58	20	39	69	132	159
2.8.1 Low freq radar (passive)	0	10	5	0	11	36	38
2.8.2 Panoramic camera	13	11	5	14	12	12	13
2.8.3 LIDAR (based on BELA)	7	14	5	7	14	0	0
2.8.4 Descent Cam	0	2	5	0	2	73	77
2.8.5 LIBS+Raman	11	18	5	11	19	4	4
2.8.6 Student experiment	1	5	20	1	6	0	0

Total mass (kg)1958Total dry mass (kg)1438Total propellant mass (kg)520

DESIRE

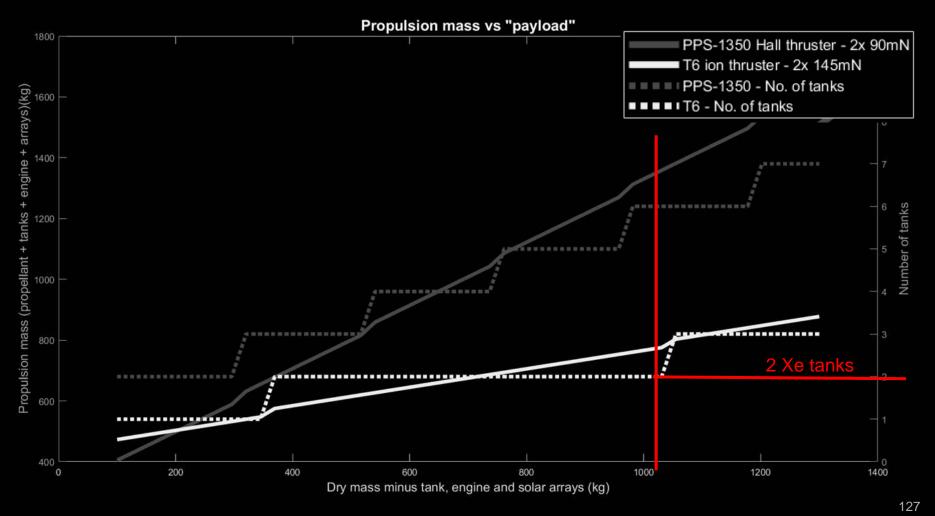

Public Outreach and University Project

- Space left for additional experiment(s) on Lander
 - Volume: 40cm x 15cm x 15cm
 - Power: 5 W
 - Mass: 1 kg

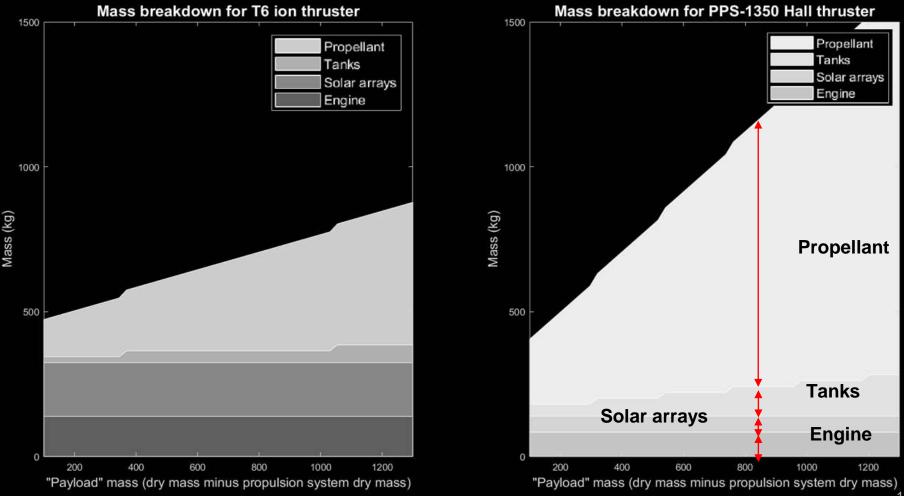
Preliminary S/C Design - Structure & Mechanism - Requirement

- 1. Survive launcher vibration and acoustic environment acceleration and frequency values in launcher user guide
- 2. Support spacecraft subsystems

Preliminary S/C Design - Propulsion

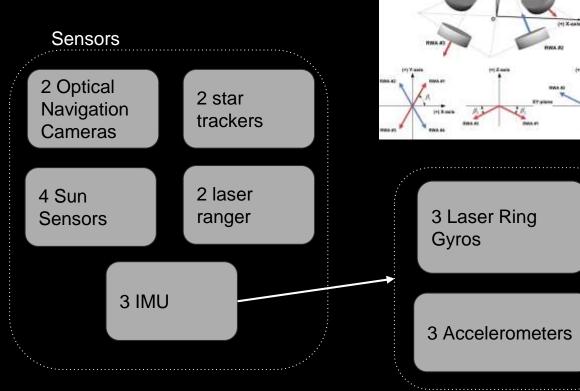

European electric thrusters chosen for study: T6 and PPS-1350

	T6 ion thruster	PPS-1350 Hall thruster
Thrust per engine	145 mN	90 mN
Nominal power	5 kW	1.5 kW
Specific impulse	4120 s	1650 s
Missions using thruster	BepiColombo (Mercury)	SMART-1 (Moon)
Mass of 4 engines	~ 130 kg	~ 84 kg


Preliminary S/C Design - Propulsion

European electric thrusters chosen for study: T6 and PPS-1350

- Simulated and studied 2 engines working at a time
- S/C has 4 engines for redundancy
- Simulations suggest PPS-1350 more efficient in overall mass when:
 - $\circ \quad \Delta v \text{ is low}$
 - Payload mass is low

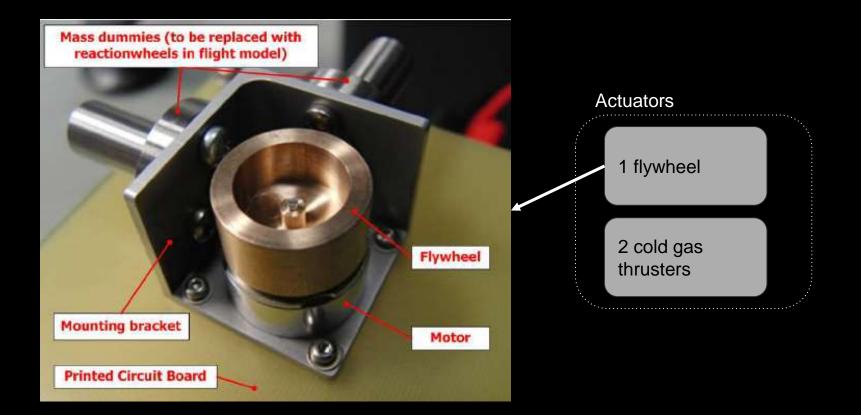


Propulsion system mass budget

	Mass (kg)	ESA margin (%)	Final mass (kg)
4 engines	130	5	136.5
2 Xe 208 litre tanks	40,8	5	42.8
Xe	378	10	416

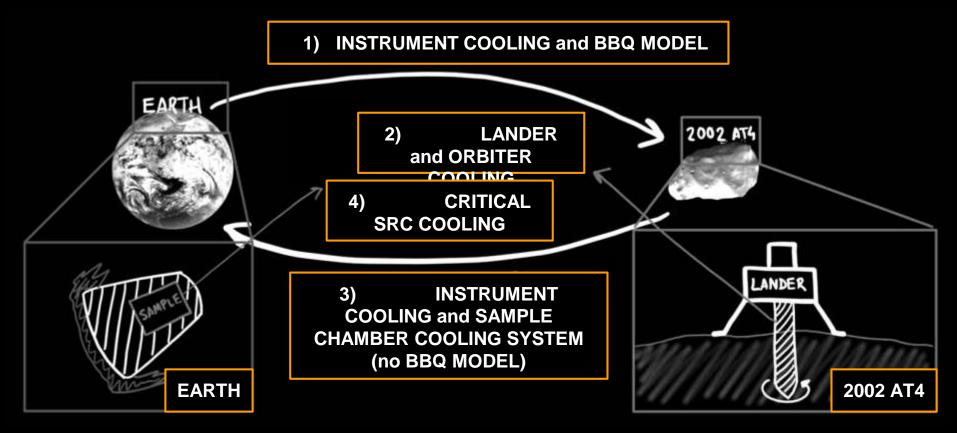
Preliminary Orbiter Design GNC/AOCS

Actuators 4 Reaction Wheels 16 monopropellant thrusters 4 low thrust monopropellant thrusters for hovering


GRANE INT

Yoon et al. 2014

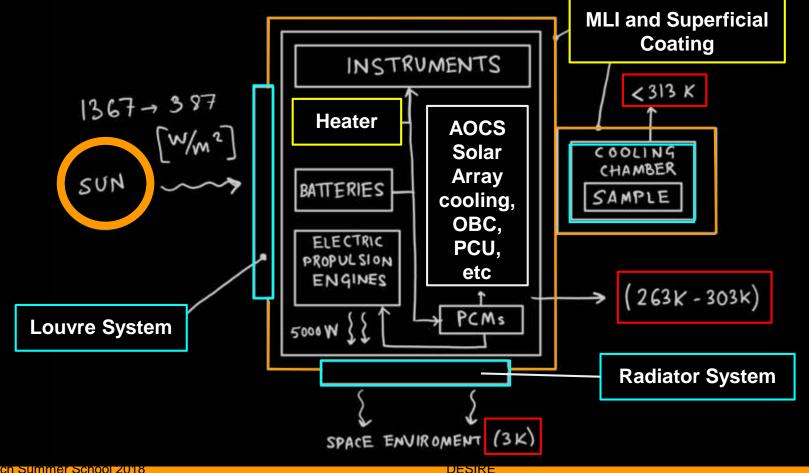
(45 Z-ants


Al Young

Preliminary Lander Design - GNC/AOCS

Thermal Control System Requirements:

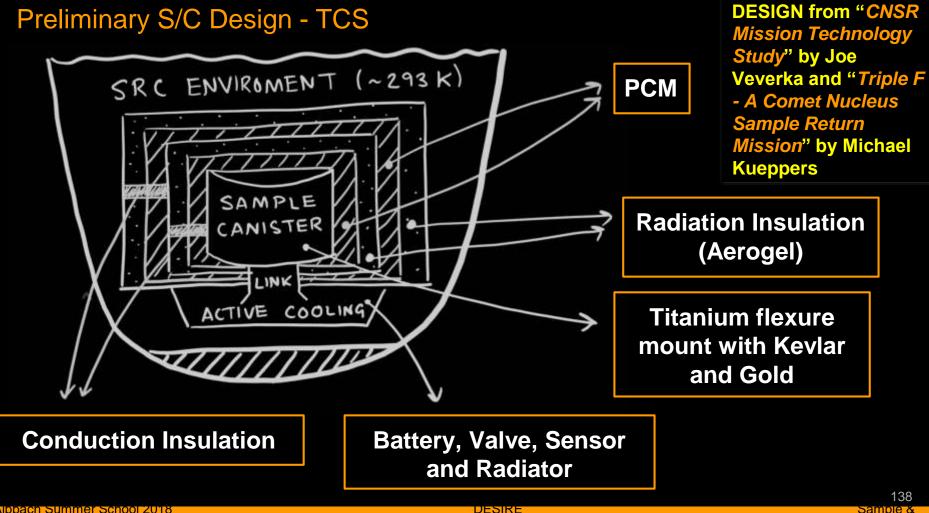
- <u>TCS-001</u>: The TCS shall maintain the temperature inside the spacecraft bus between 263K (-10°C) and 293K (20°C), with an optimal temp of 278K (5°C)
- <u>TCS-002</u>: The TCS shall maintain the temperature of the sample at optimal of 263K (-10°C) and absolute maximum of 313K (40°C). Exceptionally, it can be heated 323K (50°C) during the reentry for a max period of 2 hours.



Alpbach Summer School 2018

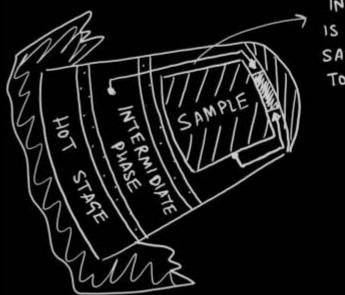
Poturn Final Poviow

DESIRE


CONCEPTUAL DESIGN

TCS for the spacecraft

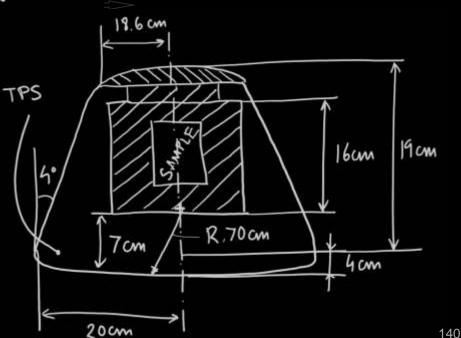
S/C Component	Mass Budget	Power Budget
Heaters	33kg	200W
Loop Heat Pipe (LHP)	7kg	N/A (heat switch by Heaters)
Radiator (Prop. system)	12kg (12 kg/m^2)	42W
MLI (15 layers)	17kg (0.73 kg/m^2)	N/A
Louvres	7kg	5W (when used)
Thermal Straps	0.12kg	N/A
Totals	76.12kg	247W


Alpbach Summer School 2018

Poture Final Poviow

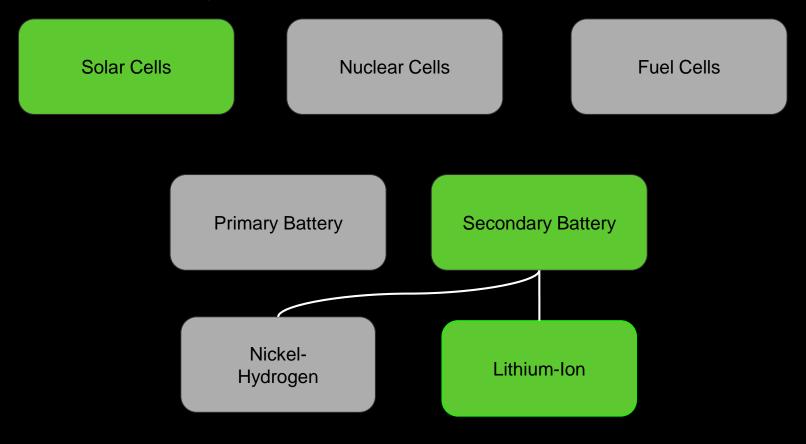
Sample &

TCS for the Sample Reentry Capsule (SRC):

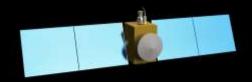

SRC Component	Mass Budget	Power Budget
Active Cooling Radiator	12kg	20W
Phase Change Material	7kg	N/A
Aerogel	Negligible	N/A
Titanium and Kapton	2kg	N/A
TPS	15kg	N/A
Totals	26kg	20W

TPS material: carbon phenolic and resin ablating

INTERMIDIATE PHASE IS CONNECTED TO THE SAMPLING COOLING SYSTEM TO INCREASE HEAT DISTPATION


TPS mass: ~15 kg

DESIRE


Preliminary S/C Design - Power

Preliminary S/C Design - Power

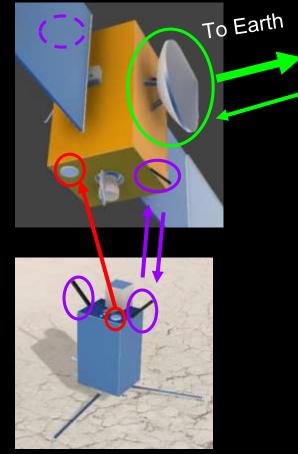
Satellite:

a.	Ma	x Power:	11 kW
b.	Sol	ar Cells:	
	i.	Size:	44 sqm
	ii.	Mass:	206 kg
C.	Bat	tery:	
	i.	Volume:	2.5 L
	ii.	Mass:	6 kg

Lander:

a.	Max	k Power:	100 W
b.	Sola	ar Cells:	
	i.	Size:	0.4 sqm
	ii.	Mass:	2 kg
C.	Bat	tery:	
	i.	Volume:	1.5 L
	ii.	Mass:	3.5 kg

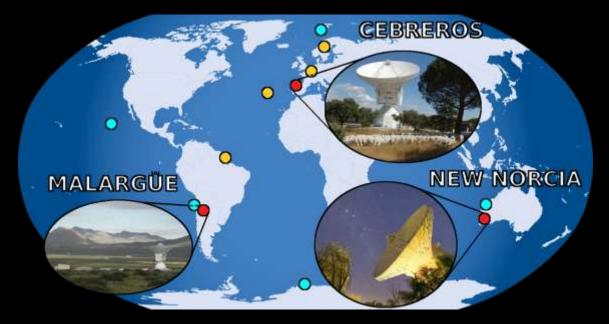
Preliminary S/C Design - On-Board Computer


RAM = Random Access Memory **On-Board Computer** CPU = Central Processing Unit Memory RAM, SSMM OUTPUT INPUT AOCS, propulsion system, Payload, actuators, ground station/ sensors, LEON3-FT CPU (x2) lander/spacecraft commands Data processing, housekeeping, telemetry, tracking and command

- S/C and lander OBC
 - Mass storage units: 200+10 Gbit (+ RAM and additional storage within the payload)
 - Software infrastructure: SCOS 2000

SSMM = Solid State Mass Memory

Preliminary S/C Design - Telemetry, tracking, and commanding (TT&C)


- For large data transfer (s/c):
 - gimbaled 2.2 m high-gain parabolic antenna
 - 8.5 GHz (X-band)
 - 200 W for the S/C transmitter
 - 0.22 Mbit/s data rate
- For telemetry, commands (ground stations and/or lander) and as a backup:
 - medium-gain 2 GHz S-band antenna
 - low-gain 2 GHz S-band antennas (x2)

Ground Segment

Ground station Network

- 8.5 GHz (X-band)
- ESA Tracking Stations (ESTRACK)
 - 35 m diameter (x3)
 parabolic antennas
 - <15 m parabolic antennas (part of the core network)
 - +augmented and cooperative network

Risk Assessment

Risk Map Before Mitigation

Likelihood Consequences	1 - Low	2 - Moderate	3 - Intermediate	4-High	5 – Very High
5 – Catastrophic	G.6		G.1, G.4		
4 – Critical	L.4, L.7		L.1, L.2, L.3, L.5, L.8	G.7, G.5, G.9, G.10	
3 – Major	G.3	G.2, L.6	G.8	O.8	
2 – Medium					
1 – Minor					

Risk Map After Mitigation

Likelihood Consequences	1 - Low	2 – Moderate	3 - Intermediate	4-High	5 – Very High
5 – Catastrophic	G.6				
4 – Critical	G.5, G.7, L.1,L.4, L.7	L.3, L.5	L.2, L.8	G.9, G.10	
3 – Major	G.3, O.1	L.6	G.8		
2 – Medium			G.1, G.4		
1 – Minor		G.2			

G.7: The asteroid is not detected \rightarrow (L=4, C=4)

mitigation: a wide angle camera is mounted on the spacecraft \rightarrow (L=1, C=4)

Development Schedule

Development Schedule

Phase	Year	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	***	2035	2036
0	Mission Analysis						11.0									
0	MDR				-											-
А	Feasibility															
~	PRR					_										
	Prilimery Definition															
в	Sample Curation Facility															
в	SRR															
	SRR+PDR				· · · ·											
С	Detailed Definition															
C	CDR								1 de l							
	Production															-
D	Ground Testing															
	QR/AR/FRR/ORR/LRR															
E	Operations											- 17				
E	ELR															
F	Disposal															
	MCR															


MDR: Mission Definition Review PRR: Preliminary Design Review SRR: System Requirement Review PDR: Preliminary Design Review CDR: Critical Design Review QR: Qualification Review AR: Acceptance Review ORR: Operational Readiness Review FAR: Flight Acceptance Review LRR: Launch Readiness Review CRR: Commissioning Result Review ELR: End of Life Review

Technological Readiness Level

Technical Readiness Level

- Heritage based approach
- Most subsystem will need minimal adaption
- High level of readiness, 6 or higher

- Subsystems that have limited heritage
 - Sample storing mechanism
 - Sample release mechanism
 - LIBS+Raman (Lander Instrument)

Cost Evaluation

Rough order of magnitude cost evaluation

Launcher (Ariane 62): 75 M€ ESA Project cost: 179 M€ MOC+S

MOC+SOC: 154 M€

Industrial cost: 810 M€

Payload: 83 M€

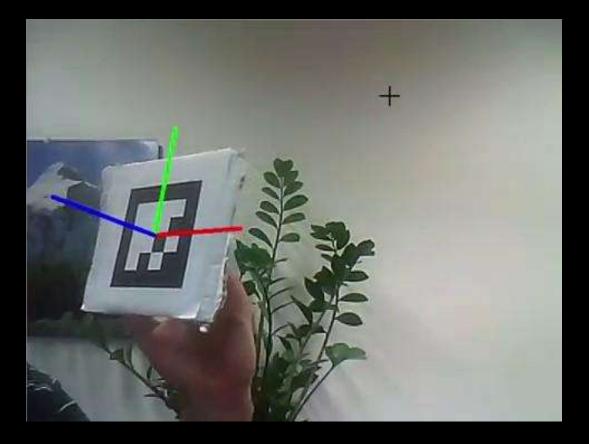
Contingency: 195 M€

TOTAL CaC: 1.496 B€

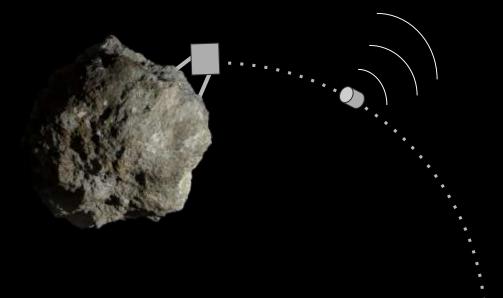
DESIRE Poturn Final Poviow 156 Sample &

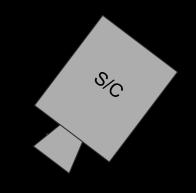
Thank you for your attention.

Appendix


Appendix index

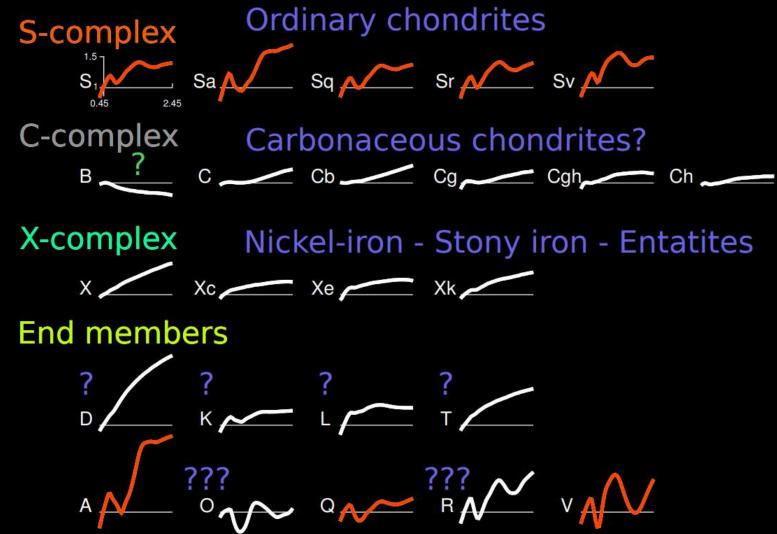
- 1. ???
- 2. Uncertainty Cone Sample Capture
- 3. Chemical propulsion
- 4. AOCS mass breakdown
- 5. Costs
- 6. Data budget


Primary and secondary target launch windows


Target	Earth departure	Asteroid arrival	Asteroid departure	Earth re- entry	Outbound delta-v	Return delta-v	Re-entry velocity
2002 AT4	2029 MAR	2033 SEP	2034 AUG	2035 JUL	7.0	3.7	11.8
2002 AT4	2030 SEP	2033 May	2034 JUL	2036 JAN	8.1	3.3	11.7
2001 SG286	2031 JUL	2034 OCT	2036 JUN	2039 MAY	7.4	3.1	12.1
2002 AT4	2034 SEP	2038 MAY	2039 JUL	2040 APR	7.3	3.1	11.5
2001 SG286	2034 DEC	2037 DEC	2038 NOV	2039 Sep	8.38	2.6	11.2

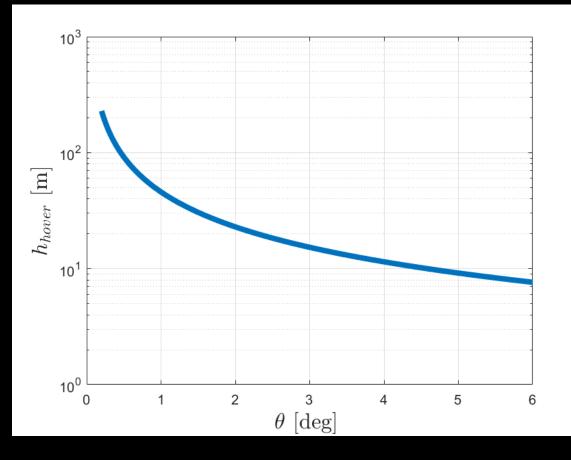
Delta V [m/s]						
Transfer Orbit:	7000					
AOCS Maneuvers:	300					
Return Orbit	3700					
Total	11000					

Sample Capture - 2nd Approach

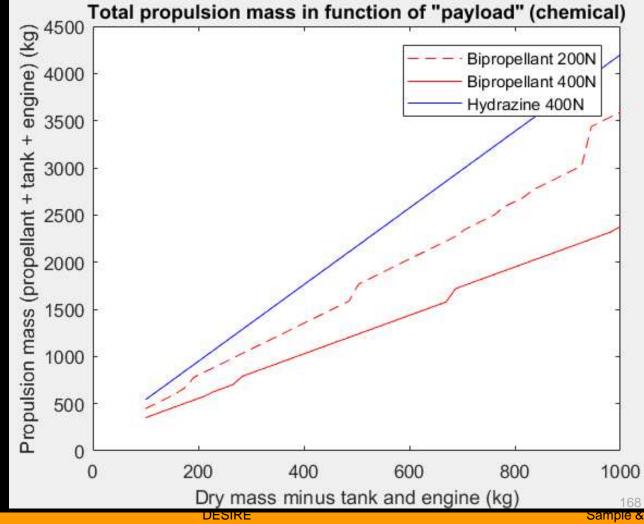


- Back-up option
- Multiple canisters available
- RF beacon
- Challenging dynamics

Scientific objectives	Scientific requirements	Measurements	Method	Instrument on orbiter/lander	Instrument requirements
Primary Objectives					
Q1: What were the building blocks of the Solar System and	SR1: Determine the chemical composition and morphology of the building blocks at	Elemental composition	Spectroscopy	LIBS	Spectral resolution of 10 cm ⁻¹
how did they evolve?	the time of early Solar System formation	Particle size and shape	Sample analysis	-	-
	SR2: Characterize collisional history of primitive bodies	Mineralogy (shock metamorphism)	Sample Analysis	-	-
		Internal structure	Radars	Low-Frequency Range radar (bistatic)	Res: 10-30m Penetration depth: 170 m Nominal Frequency: 50-70 mHz External Frequency: 45-75 Mhz
	SR3: Determine the initial spatial distribution and migration of small bodies across the Solar System	Chemistry Isotopes ratios	Sample analysis	-	-
Q2: What are the physical properties of NEAs?	SR4: Characterize D-Type asteroids	Global surface topography	Mapping Imaging	Wide Angle Camera	Resolution: 10 cm/pixel from 5km distance
				Narrow Angle Camera	Resolution: 10 cm/pixel from 5km distance
		Composition and mineralogy	Spectroscopy	Visible Near Infrared Spectrometer	Spectral resolution: 5nm Wavelength range: 0.4-3.3 um
				Mid Infrared Spectrometer	Resolution: 1 um Spectral range: 5-15 um
			Sample analysis	-	-
		Internal structure		High frequency radar (monostatic)	Res: 2 m Penetration depth: 10-20 m Nominal Frequency: 300-800mHz External Frequency: 300-2500 Mhz
				Low-Frequency Range radar (bistatic)	Res: 10-30m Penetration depth: 170 m Nominal Frequency: 50-70 mHz External Frequency: 45-75 Mhz
Q3: How were the building blocks of life formed and	SR5: Characterize organic compounds present in primitive bodies	Identification of organic compounds	Spectroscopy	Raman spectrometer	Raman shifts: 4000 cm ⁻¹ -1000 cm ⁻¹
transported inside the Solar System?			Sample analysis	-	-
Alphach Guinnich Gono	012010		DEGINE		Oampic


Poture Final Poviow

Secondary Objectives					
Q4: What was the astrophysical context at the time of Solar	SR6: Determine the presolar grain sources	Isotopic ratios	Sample analysis	-	-
System formation?	SR7: Characterize the stellar environment in which the Solar System formed	Isotopic and chemical characteristics of presolar grains	Sample analysis		
	SR8: Characterize stellar processes				
Q5: Can the Tagish Lake meteorite be linked to a specific spectral class of asteroids?	SR9: Testing if D-types asteroids are the parent body type of the Tagish Lake meteorite	Chemical composition	Spectroscopy	LIBS + Raman	Spectral resolution of 10 cm ⁻¹ Raman shifts: 4000 cm ⁻¹ -100 cm ⁻¹
		Isotopic ratios	Sample analysis	-	
Q6: What are the processes which are affecting the physical properties of asteroids today?	SR10: Characterize the interaction between the solar wind and asteroid surfaces	Low Energy Neutral Atoms	Neutral imaging	Neutral Particle Detector	Mass resolution: H, Heavy Energy range: 10eV to 3keV
	SR11: Determine the collisional record of D- type asteroids	Imaging	Cameras	Wide angle camera	Resolution: 10 cm/pixel from 5km distance
		Mineralogy	Sample analysis	-	-
Q7: Asteroid impact avoidance	SR12: Characterize Near Earth Asteroids in order to plan a defence strategy	Chemical and physical properties	Cameras	Wide Angle Camera	Resolution: 10 cm/pixel from 5km distance
				Narrow Angle Camera	FoV: 1.7 degrees Resolution: 18.6 urad px-1 (1.86 m/pixel from 100 km distance)
			Radar	High Frequency Radar	Res: 2 m Penetration depth: 10-20 m Nominal Frequency: 300-800mHz External Frequency: 300-2500 Mhz
				Low-Frequency Range Radar	Res: 10-30 m Penetration depth: 170 m Nominal Frequency: 50-70 mHz External Frequency: 45-75 Mhz
			Spectroscopy	LIBS + Raman	Spectral resolution of 10 cm ⁻¹ Raman shifts: 4000 cm ⁻¹ -100 cm ⁻¹
					165



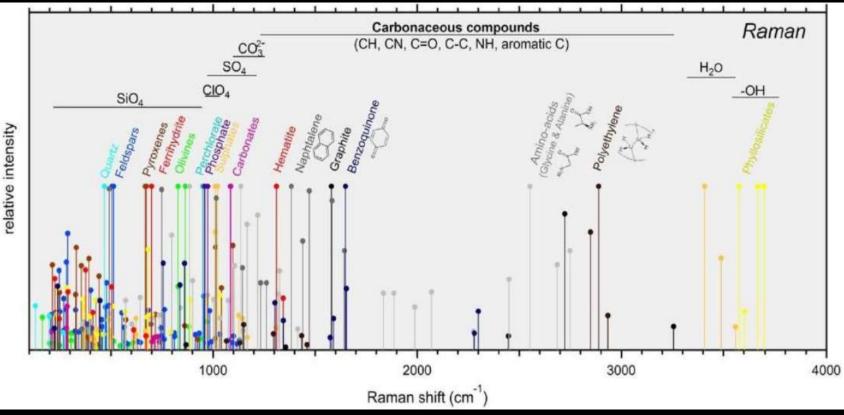
Alpbach Su

Uncertainty Cone Sample Capture

Chemical propulsion

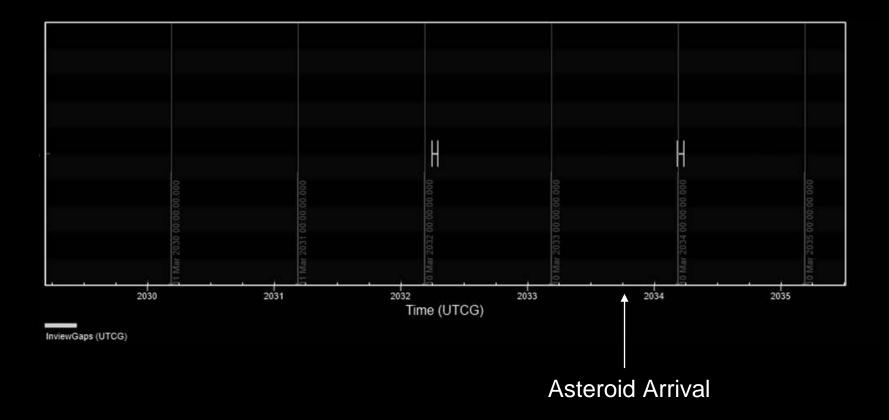
Return - Final Review

Alpbach Summer School 2018


AOCS mass breakdown

Sensor	Mass (kg)	Amount	Sub Total (kg)
Star Tracker	5	2	10
Sun Sensor	2	4	8
Camera	2	2	4
IMU	10	3	30
LIDAR	6,5	2	13
Actuator			
Reaction Wheels	5	2	10
Thruster (hot gas)	0,29	16	4,64
Hydrazine tank	6,4	1	6,4
Hydrazine tank	104	1	104
		Total (kg):	190,04

Name	Orbit	D (m)	deltaV (km/s)	H (mag)	Туре	MOID (AU)	Rotation period [h]
2009CV	AP	80	4.26	24.3	D	0.01154	?
2016WZ8	AP	10	4.81	28.4	D	0.01147	?
2017 DL34	AM	40	4.96	25.9	D	0.04691	?
2011 AM24	AM	505	5.02	20.4	D?	0.00989	?
2009 DL46	AM	240	5.08	22.0	D	0.01233	?
1993 HA	AM	607	5.30	20.0	D	0.016887	4.107 +-0.002
2002 AT4	AM	349	5.55	21.2	D	0.04220	6
2001 SK162	AM	872	5.57	17.9	T/D	0.03005	?
2001 SG286	AP	401	5.60	20.9	D	0.00512	?
2001 YE1	AP	449	5.84	20.8	Т	0.05938	?
2001WL7	AP	80	6.05	24.3	D	0.01488	? 170
		80	6.05		D	0.01488	? 170


DESIRE Roturn Final Roview

Example of Raman spectra

Muriel Saccocio, ISSO, ESA/ESTEC 2-6 October 2017

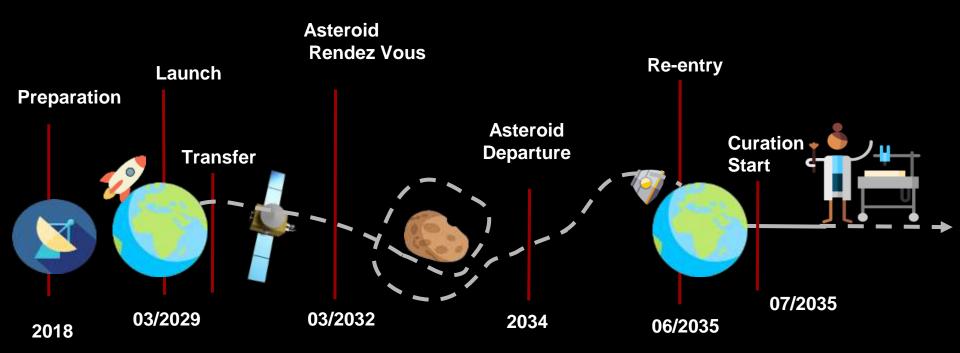
Solar Conjunction

Costs

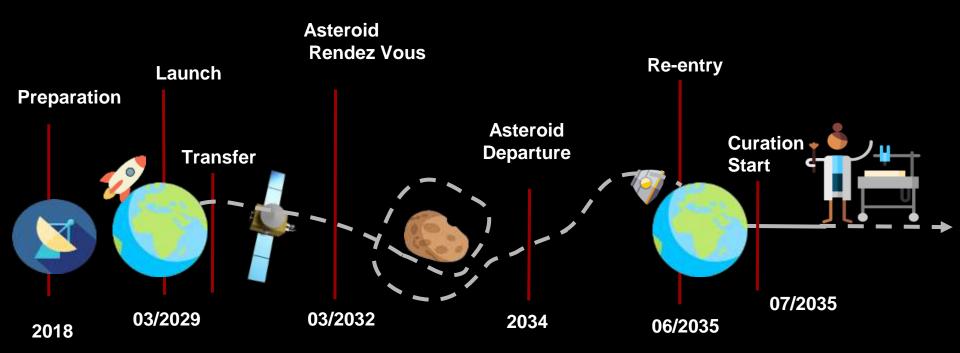
S/C	dry mass [kg]	Correcting factor	[.] Cost [M€]
Mech&thermal architecture	622	1,4	4 218
Electrical	489	1,4	4 513
Payload	27	1,2	2 33
		SUM	764
Lander			
Mech&thermal architecture	40	1,6	6 16
Electrical	37	1,2	2 33
Payload	39	1,3	3 51
		SUM	99
Reentry			
Mech&thermal architecture	60	2	2 30
pach Summer School 2018		DESIRE	

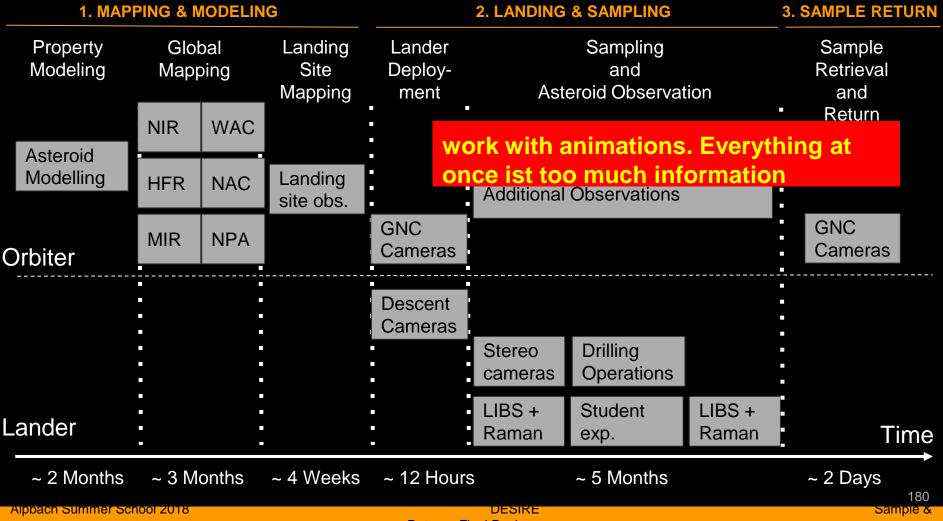
Poturn Final Poviow

175 Sample &

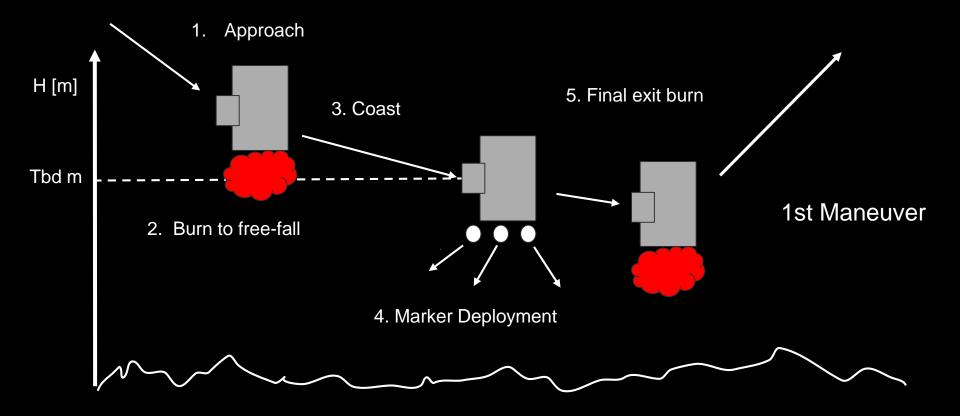

Data budget

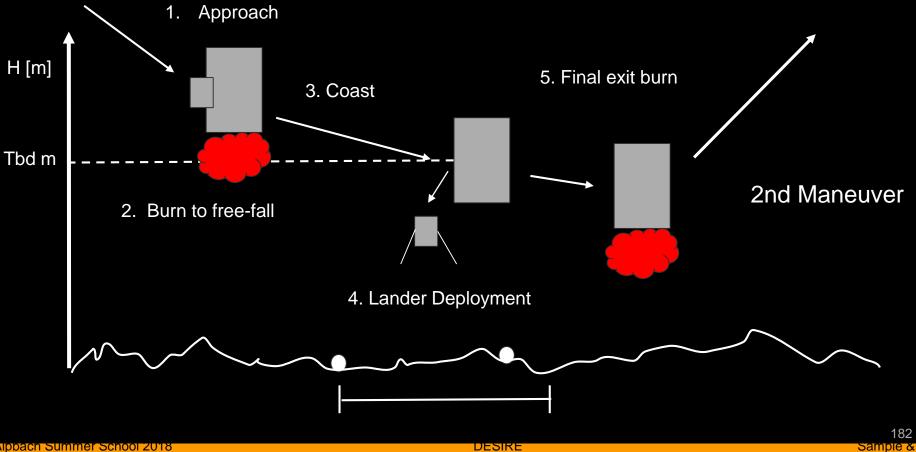
Payload		Data Volume [Mbit/s]	Data Volume [Mbit/sample]	Seconds or samples per 24h (for one tough day)	Amount of data [Mbit]	Usage		
Instrument	Wide Angle Cam		75	15	1125	overall mapping		
	High freq radar	0,3		0	0	landing site	not used at the s	ame time with others
	Narrow angle cam		67	2	134	mainly landing s	ite	
	Low freq radar	0,005		7200	36	overall mapping		
	Mid Infrared Spectrometer		360	8	2880	overall mapping		
	Vis near Infrared		0,45	30	13,5	overall mapping		
	Neutral particle analyzer		0,00072	1000	0,72	overall mapping		
	Student experiment			XXX	10			
				SUM:	4199,22			
Lander	Low freq radar (passive)	0,005		7200	36			
	Panoramic camera		1,2	10	12			
	LIDAR (based on BELA)	0,02	0,002	100	0,2			
	Descent Cam		7,3	10	73,40032			
	LIBS+Raman	15		ххх	4,2			
	Student experiment			4	0			
				SUM:	0	not used at the s	same time as s/c	125,80032
				Total SUM:	4199,22	Mbit		
				Amount of data with margin	5998,885714	Mbit	70-80% is the rea	al usable data
				Time to transfer data per 24 h	8	h		
2				Data rate	0,2082946429	Mbit/s		


Recycling bin

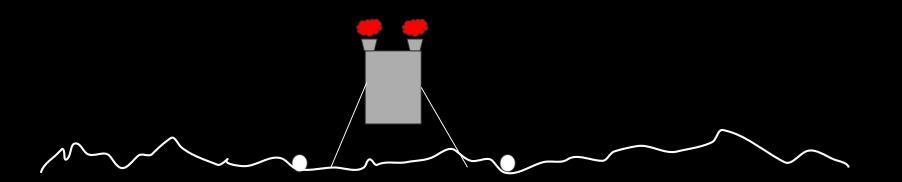

(Not appendix/backup slides)

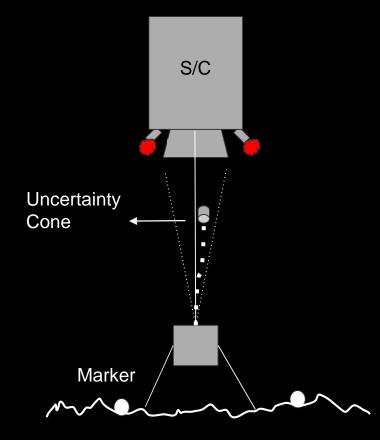
Mission Phases


Mission Phases

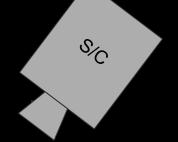


Poture Final Poviow


Landing Approach and Contamination Avoidance Maneuver (LACAM)


Landing Approach and Contamination Avoidance Maneuver (LACAM)

Landing


Sample Capture

- Optical camera tracks the SRV + 4 markers
- S/C hovers (body-fixed) at 20 m
- 5 15 cm/s docking speed
- Perform test maneuvers before
- Orbiter-Lander Horizon Synchronization
- RF-beacon on SRV

Sample Capture - 2nd Approach

Multiple shots = risk reduction But need beacon or radar reflector

