
MAGMA-C Magnetic Mantle Constellation

"A 3D-Picture of our Earth's Mantle" **Team Blue**

Team Blue - Alpbach Summer School 2019

Fanny Boutier, Daithí Byrne, Daniele Calvi, Sreemoyee Chakraborty, Marie Fayolle, Fabian Mueller, Samuel Ocaña Losada, Lidia Luque, Tatu Peltola, Jesus Vilaboa Perez, Alice Praet, Wolfgang Senoner, Jan Snizek, Panagiotis Trifa, Sebastian Zieba Tutors: Jerome Loicq, Adriana Elizabeth Nuncio Quiroz

Speakers

Science Case

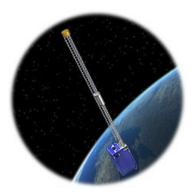
Marie Fayolle

Payload

Jesús Vilaboa Pérez

Mission Profile

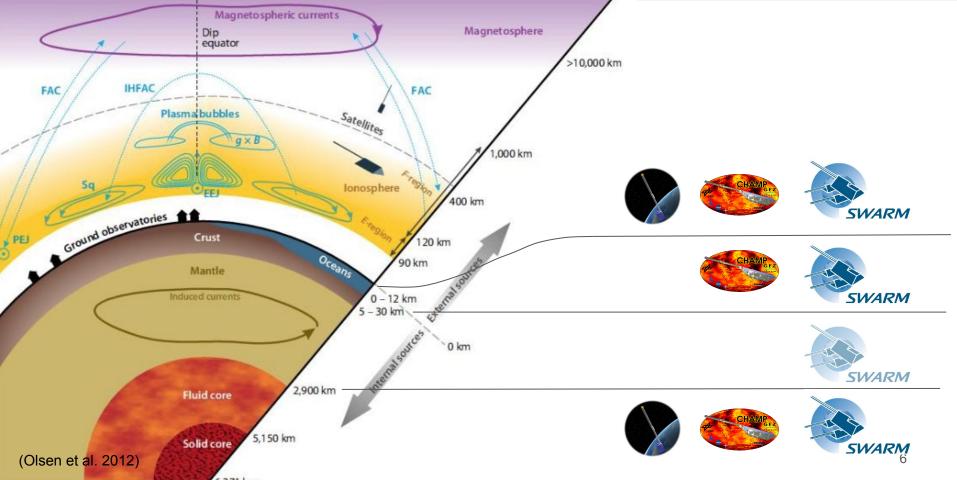
Samuel Ocaña Losada


Spacecraft Design

Fanny Boutier

Science Case

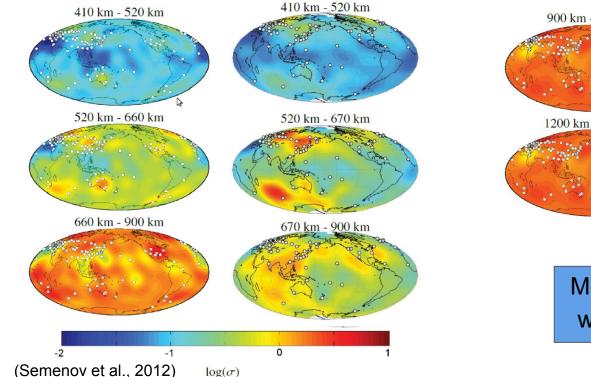
Past magnetic field missions

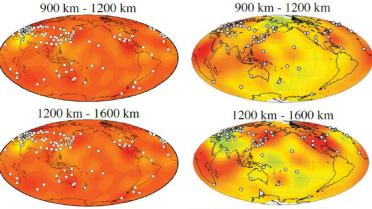

Ørsted (1999-2013)

CHAMP (2000-2010)

SWARM (2013-)

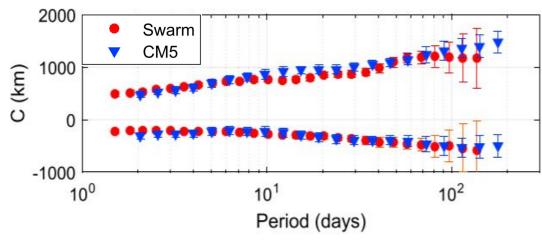
Earth's Magnetic Field





State of the art: 3D conductivity profile

Ground-based measurements

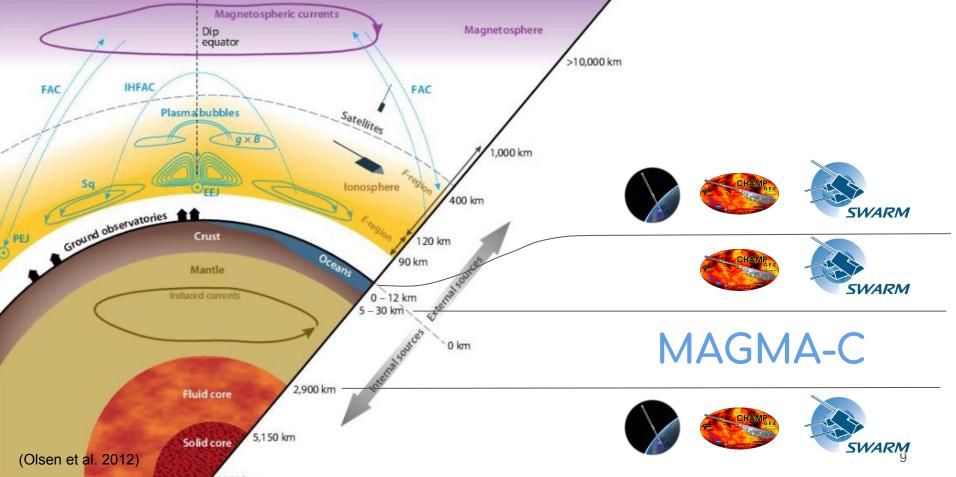


Models diverge rapidly with increasing depth

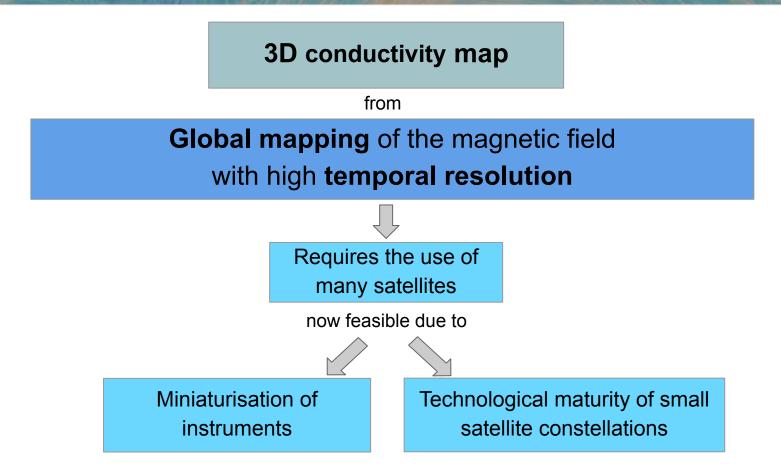
State of the art: 1D conductivity profile

Space-based data

C-response


- Some disagreement in 1D model
- Large uncertainties at lower end of depth measurement

(Adapted from Grayver et al., 2017)


The Earth's Magnetic Field

Feasibility

Measure the total magnetic field at ionospheric altitudes with high spatial and temporal resolution to **isolate the magnetic field due to induced currents in the mantle**.

Provide unprecedented **3D conductivity profile** of the Earth's mantle.

Mapping of the **water content** and **temperature** in the mantle will advance knowledge of mantle structure and dynamics.

Main objective

To establish a 3D conductivity profile of the mantle from the induced magnetic field due to magnetospheric and ocean currents.

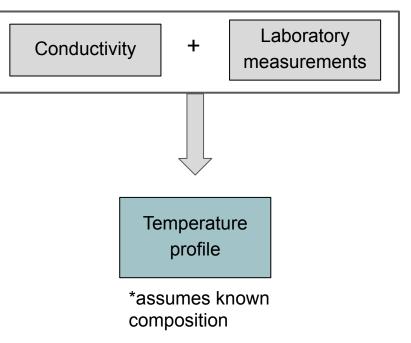
Specific objectives

Map the water content in the mantle

Create a 3D temperature profile of the mantle

Byproduct

Improve the existing model for the ionospheric currents


Specific Objectives: Temperature profile

Create a 3D temperature profile of the mantle

Important input in models of mantle structure and convection

Conductivity interpreted in terms of **temperature** variations by making **assumptions on the composition** (Civet et al., 2015)

Specific Objectives: Mantle water content

Map the water content in the mantle

"One of the more important influences on Earth's **structure** and **dynamics**."

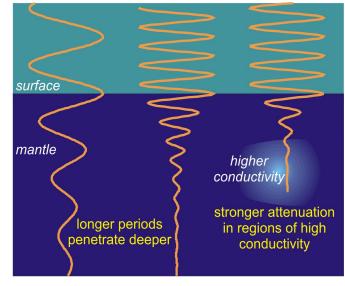
- Main driver of plate tectonics
 Insights into other planets
- Slows seismic waves
 - → Improve earthquake modelling

(Hirschmann et al., 2012)

Conductivity varies two orders of magnitude for expected ranges of **water content** (Karato, 2011)

Model of Venus (ESA)

Measurement strategy


Induced magnetic field in the mantle due to other magnetic field sources

Skin effect:

Inducing magnetic field variations with lower frequencies generate deeper currents in the mantle.

Isolate induced fields at a given **frequency** gives the magnetic field at a certain **depth**.

⁽Haagmans et al., 2015)

Measurement strategy - inducing sources

We measure the total magnetic field

$$\vec{B}_{\text{measured}} = \vec{B}_{\text{core}} + \vec{B}_{\text{crust}} + \vec{B}_{\text{tides}} + \vec{B}_{\text{magnetosphere}} + \vec{B}_{\text{ionosphere}} + \vec{B}_{\text{mantle}}$$

Which sources could be used to extract the induced field in the mantle?

Induced field

Tidal field	Magnetospheric field	lonospheric field
Internal field Period precisely known: T = 12.42 hours	External field Highly time-varying signals	Internal field Strong dayside/nightside variations
↓ ↓		↓
Induced and inducing fields can be separated	Induced and inducing fields can be separated	Induced and inducing fields cannot be separated
BUT denth of 10 - 300 km only		

Measurement strategy - inducing sources

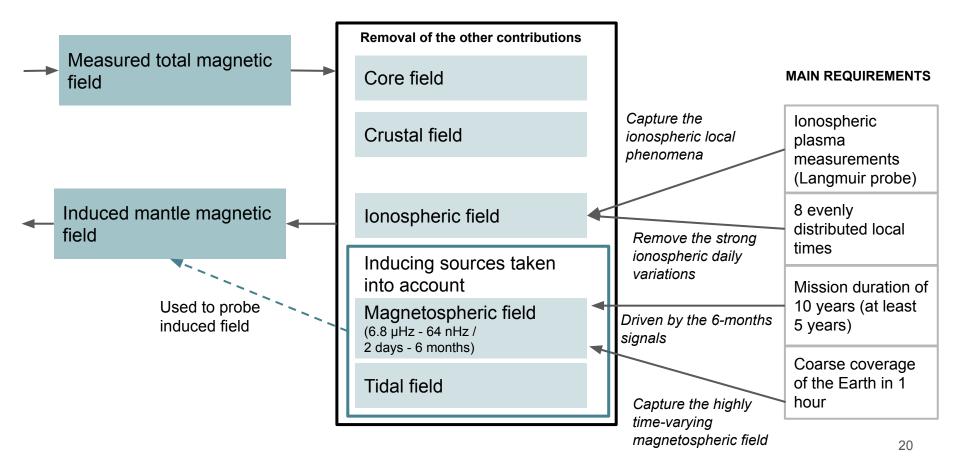
Frequency range of the inducing field used to get the mantle field

	Period	Depth (skin effect)
Magnetosphere (ring current)	2 days - 6 months	≈ 400 - 1600 km
Oceanic tides	12.42 h	10 - 300 km

Adapted from Kuvshinov, n.d.

CONTRIBUTIONS TO BE REMOVED		INDUCING FIELDS USED TO GET THE MANTLE FIELD		
Core field	Crustal field	Ionospheric field	Tidal field	Magnetospheric field
Year to decade variations	Static field	Strong daily variations T = 24, 12, 8, 6 hours	T = 12.42 hours	Irregular, non-periodic signals, varying on short timescales
Longest period signals		The inducing and induced parts cannot be separated.	Very precisely known period	
Cannot use T > 1 ye (overlap with secula	J	annot use T < 1 day signals derive the induced currents	1 	

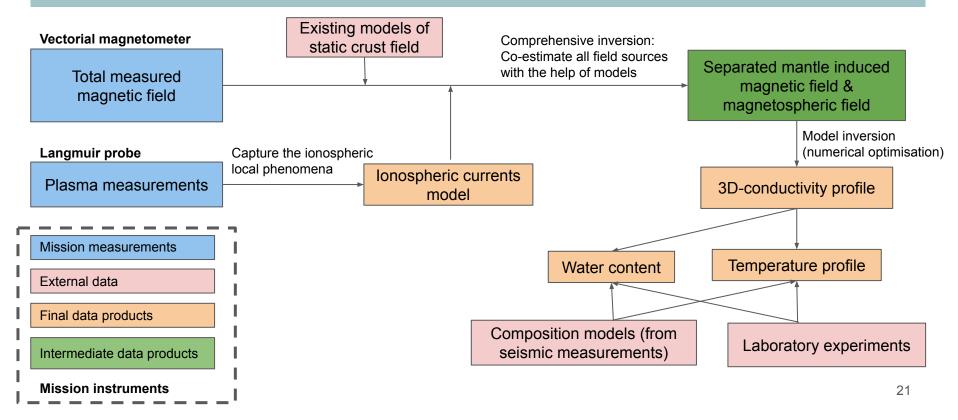
Separation of the magnetic field



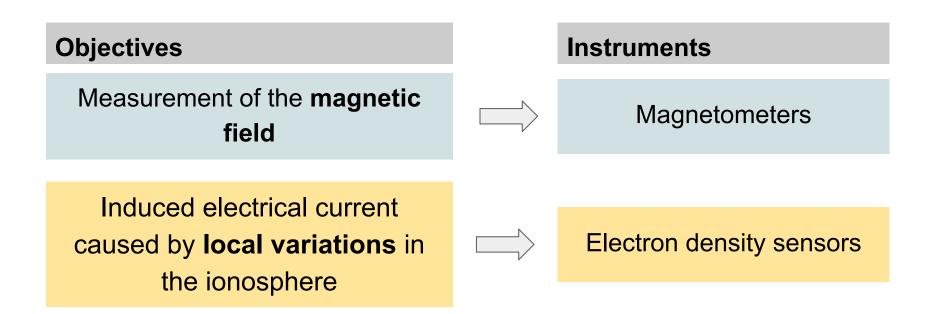
CONTRIBUTIONS	TO BE REMOVEI)	 	NDUCING FIELDS USE	D TO GET THE MANTLE FIELD
Core field	Crustal field	Ionospheric field		Tidal field	Magnetospheric field
Year to decade variations	Static field	Strong daily variations T = 24, 12, 8, 6 hours		T = 12.42 hours	Irregular, non-periodic signals, varying on short timescales
		T = 24, 12, 8, 6 hours signals have to be removed			1 hour mapping of Earth with large space scales (few thousands kilometers)
		♦ local times evenly distributed (3 hours separation)			Better spatial resolution over 1 day (few hundreds kilometers)

I

Summary of the measurement strategy



Data products


From magnetic field to data products

Scientific Payload

Scientific Payload

Scientific Payload - Requirements

Instrument	Measurement requirements	
Vector Field Magnetometer (VFM)	Range of strength of the magnetic field: ± 25000 nT to ± 60000 nT Noise density in the range of pT/ \sqrt{Hz}	
Absolute Scalar Magnetometer (ASM)		
Star trackers (to have VFM precision measurements)	1 nT \rightarrow Accuracy: 0.001 deg	
Electron density sensors (Langmuir probe)	Range of the ionosphere storms: 100 Hz - 3 kHz	

Vector Field Magnetometer (VFM)

Capability of the instrument:

VFM gives information about the value of each of the components of the magnetic field.

Characteristics of the instrument:

<u>Why it is good</u>: improves the range of the Themis VFM (only \pm 25000 nT).

- Range: ± 65000 nT
- Noise density (1 Hz): 25 pT/√Hz
- Mass: 25 g sensor, 40 g electronic
- Size sensor: 20 x 20 x 21 mm
- Size electronics: 65 x 65 x 10 mm
- Power consumption: < 0.4 W
- Maximum sample rate: 250 Hz
- TRL 6 (No flight heritage) year 2019

Why is the instrument needed?

To measure the magnetic field vector in order to have the information needed for the science objective.

Reference: Miniaturised fluxgate sensor LEMI-020. Lemi LLC sensors. Lviv Centre of institute for space research.

Attitude Determination: Star Trackers

Capability of the instrument:

Star tracker for precise attitude determination.

Characteristics of the instrument:

Number of star trackers: three in order to avoid the sun blinding effect

Location: in the same optical bench that the VFM

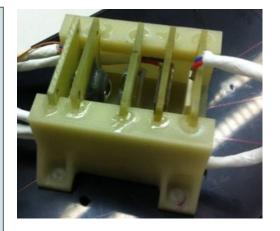
- Mass: 250 g
- Size: 45 x 50 x 95 mm
- Power consumption: nominal < 1 W
- Accuracy: 2 arc seconds \rightarrow 0.0005°
- Design: lens and electronics are radiation shielded
- TRL 6 (No flight heritage) year 2019

Reference: KU Leuven Star Tracker. CubeSat Shop KU Leuven Star Tracker for nanosatellites.

Why needed?

Fundamental element for the Vector Field Magnetometer to improve the quality and precision of the measurements.

Absolute Scalar Magnetometer (ASM)


Capability of the instrument:

provides absolute measurements of the magnetic field strength.

Characteristics of the instrument:

Miniature atomic scalar magnetometer \rightarrow rubidium isotope ⁸⁷Rb.

- Range: tested at ± 71428 nT
- Noise density (1 Hz) \rightarrow < 15 pT/ \sqrt{Hz}
- Mass (sensor + electronics): 500 g
- Size (sensor + electronics): 20 mm 30 mm
- Power consumption: < 1 W
- TRL 6 (No flight heritage) year 2016

Reference: Haje Korth, et al. Miniature atomic scalar magnetometer for space based on the rubidium isotope ⁸⁷Rb

Why we need the instrument:

- To reduce the offset problem due to manufacturing/behavioral errors.
- For the in-flight calibration of the VFM (Vector Field Magnetometer).

Compatibility magnetometers

Problem to solve:

• Cross-talk during the measurements between the vector field and scalar magnetometer

Solution:

- Two booms configuration. One boom for each magnetometer
- Magnetic cleanliness program: on ground (flat sat) + in flight

Other options:

- Use instead of a scalar magnetometer an external field to calibrate → similar to the BepiColombo mission
- An ASM dual mode (burst/vectorial) → similar to MagSat: but 10x noise compared to fluxgate

Electron density sensor - Langmuir probe

Capability of instrument:

Provides measurements of the **electron density**, **electron temperature** and electric potential.

Characteristics of the instrument:

Design: 2 probe configuration.

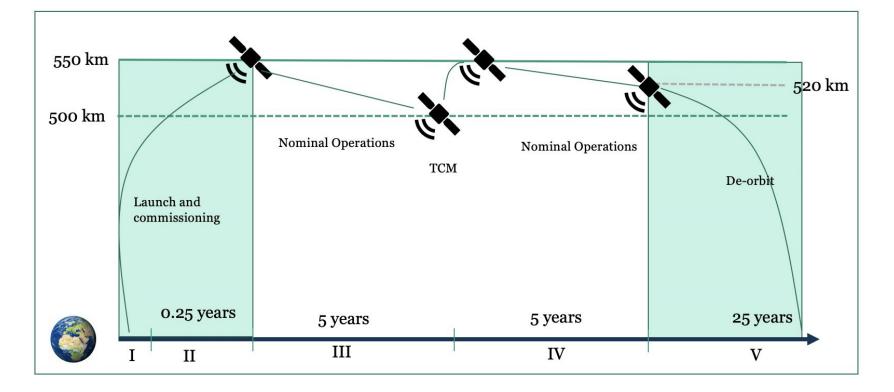
- Mass (of each probe): 100 g
- Size (of each probe): 52 mm x 10 mm
- Power (of each probe): 0.25 W
- Relative error in electron density $\approx 10\%$
- Low pass filter: 4 kHz
- High pass filter: 10 Hz
- TRL 9 (flight heritage in the mission Astrid 2)

Reference: B. Holback, et al. LINDA – the Astrid-2 Langmuir probe instrument. European Geophysical Society

Why we need the instrument:

To measure the local storms and the plasma bubbles to be later subtracted from the magnetometer data.

Scientific Payload & Requirements

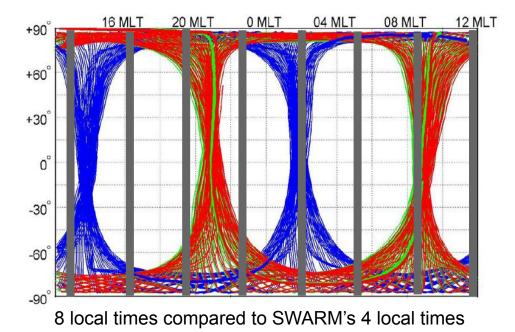


Instrument	Scientific requirements	Instrumental requirements
Vector Field Magnetometer (VFM)	Range of strength of the magnetic field: $\pm 25000 \text{ nT}$ to $\pm 60000 \text{ nT}$	Range of the instrument: ± 65000 nT Noise density: 25 pT/√Hz
Absolute Scalar Magnetometer (ASM)	Noise density in the range of pT/√Hz	Range of the instrument: ± 71428 nT Noise density: 15 pT/√Hz
Star trackers (to have VFM precision measurements)	Accuracy: 1 nT \rightarrow 0.001 deg	Accuracy: 2 arc seconds → 0.0005 deg
Electron density sensors (Langmuir probe)	Range of the ionosphere storms: 100 Hz - 3 kHz	Range of the instrument: 10 Hz to 4 kHz

Mission Profile

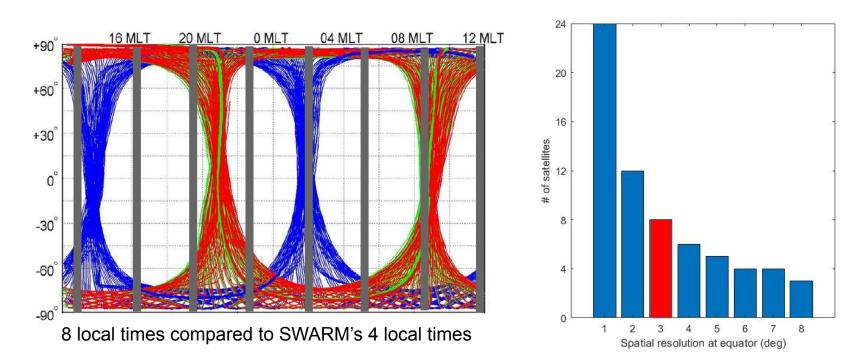
Overall Mission Profile

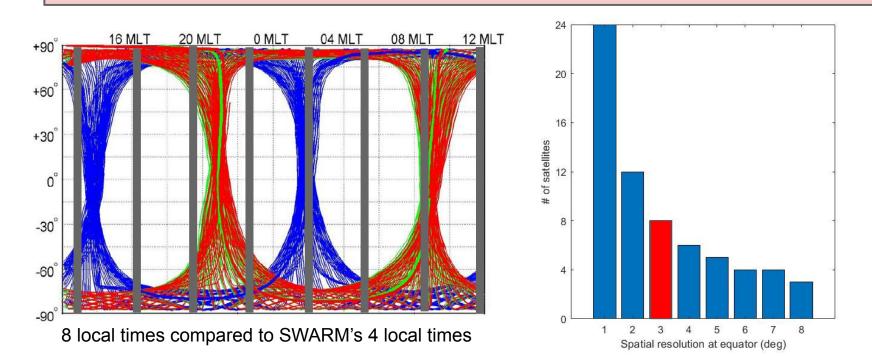
Mission profile - Orbital planes



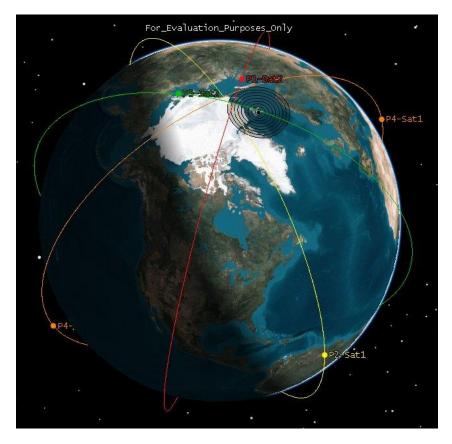
1. Measure ionospheric currents (reducing drag effect) >> Altitude of 550 km

Mission profile - Orbital planes


- 1. Measure ionospheric currents (reducing drag effect) >> Altitude of 550 km
- 2. Coverage of 8 local times


Mission profile - Orbital planes

- 1. Measure ionospheric currents (reducing drag effect) >> Altitude of 550 km
- **2.** Coverage of 8 local times **3.** \approx 300 km spatial resolution after 1 day

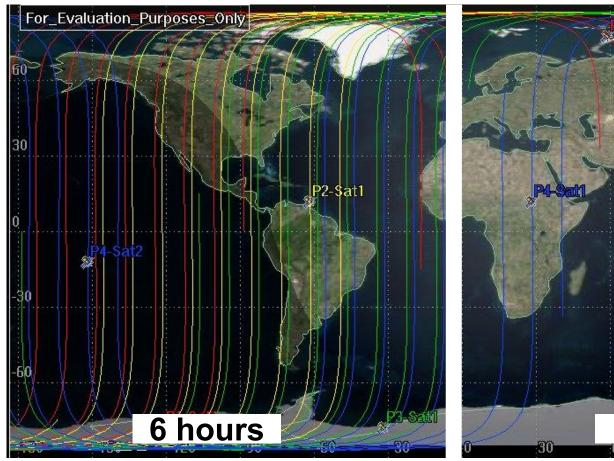

Constellation of 8 satellites \rightarrow divided into 4 orbital planes

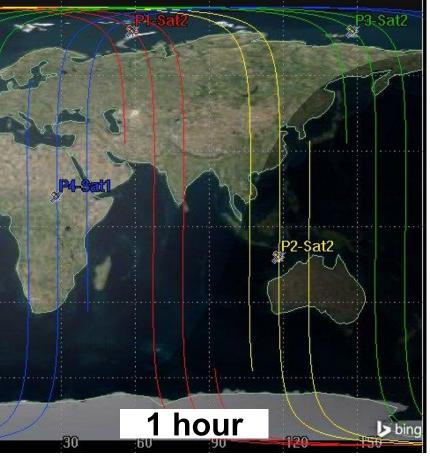
Mission profile - Orbits

Altitude	550 km
Inclination	87°
Eccentricity	0 (circular)
ΔRAAN (relative)	45°
ΔM (relative)	180°

Mission profile - Ground Tracks

2-\$at


For_Evaluation_Purposes_Only


Altitude	550 km
Inclination	87°
Eccentricity	0 (circular)
ΔRAAN (relative)	45°
ΔM (relative)	180°

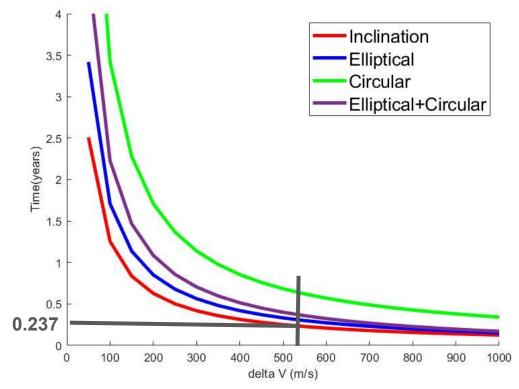
		X	Ą,			2	-80
		ŷ/	V.				
-	X	23	Å,	l			
-			Ų				
		A	V				
	2		A				
			A				
	CX M	X	V				
	2		V				
	Con la	1	Ą		1	1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-	
		X	V				
	2	5	A	Ņ			
		2	Ą				
-	N. No	X	V		1		2
	2		٨		Ī	A NUMBER OF STREET, ST	
			Ą		T		
	X	Ż	V				
5		1	Ą			A State and a state of the	
Υ.			Ą			1	
		X	V				
		5	A	Į			
A.***		X	1				
-	No.	X	Ų				
		5	A				
		2	Ą			Contraction of the local division of the loc	
œ.	1	Ý.	V				
_	×	X	Ņ				
1.000		X					
a lateral	X	X	V				
	×	X	A				
			Y				
		V	1			Contraction of the local division of the loc	TH
-	X	X	L				
-	C and	0	ł				
		X					
	2	X	h				
			V				
-		X	Δ,	V		i (EI
	2	X	l				
		5	V	N		-	- 25
		\langle	Į				<u> </u>
	•	X				30	Υ.
	1	1	A	V		1	ar.
		2	М				1
	C	X	Δ			6	
		Ý	Y		-		
	a		A				
	У	4	M				
	/	Ż	V	Ņ			
		2	N				
		1	V			30	
		Ŷ	Q.				

Mission profile - Temporal Resolution

Mission profile - Launcher

Initial configuration:

2 orbital planes separated 90° in RAAN


RAAN change

Use of J2 perturbation for RAAN drift of the planes

Inclination change: 2°

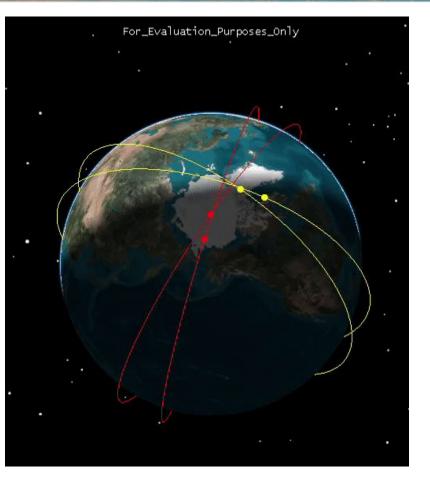
Phasing

180° over 2 days

Mission profile - Transfer

Initial configuration:

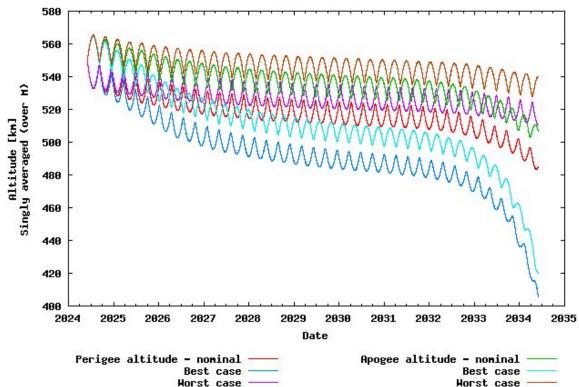
2 orbital planes separated 90° in RAAN


RAAN change

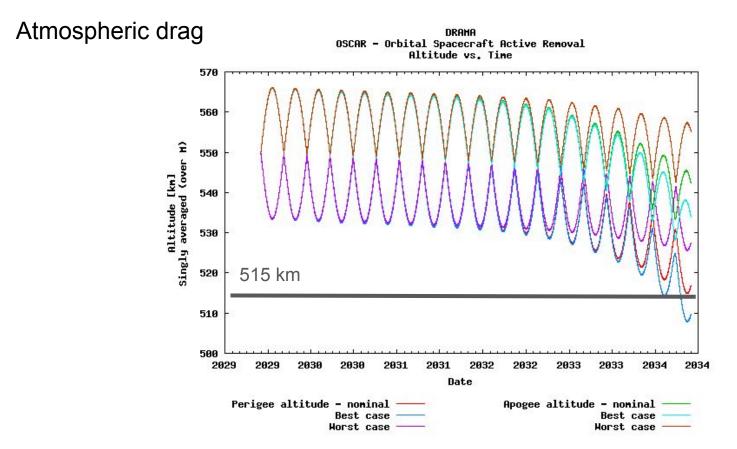
Use of J2 perturbation for RAAN drift of the planes

Inclination change: 2°

Phasing


180° over 2 days

Mission profile - Environment


Atmospheric drag

DRAMA OSCAR - Orbital Spacecraft Active Removal Altitude vs. Time

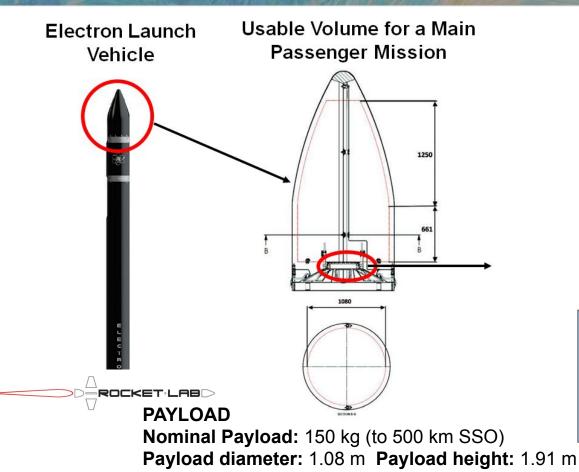
Mission profile - Environment

43

Maneuver	ΔV (m/s)	
Transfer	530	
Phasing (2 day)	84	
Orbit maint.	27.5	
Attitude control	Reaction Wheels + Magnetorquers	
De-orbit	None	
Margin (10%)	64.15	
Total:	705.65	
Propellant mass:	10.03 kg	

Ground stations and downlink

Main station: Svalbard (Min. coverage: 540.850 s / Max. Coverage: 695.511 s)


Download: Every 8 days (Science) / Every day (Housekeeping)

Maneuvers: Pair of ground stations at the equator

Launcher - Spacecraft Interface

Customized Multiple Spacecraft Separation System

Carrying Structure [RUAG Space 2019]

Payload Plate configurations can be customized to accept single or multiple satellites, independent of whether they are CubeSat or microsatellite form factors.

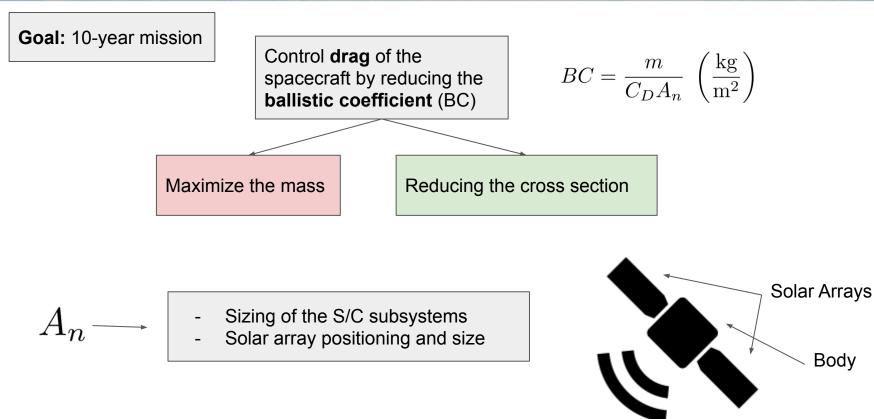
Launch environment

Simulation for Quasi-Static Loads*:

Most Severe Combinations of Static and Dynamic Accelerations

- Shock Loads
- Acoustic Loads
- Radio frequency
- Random vibration
- Venting

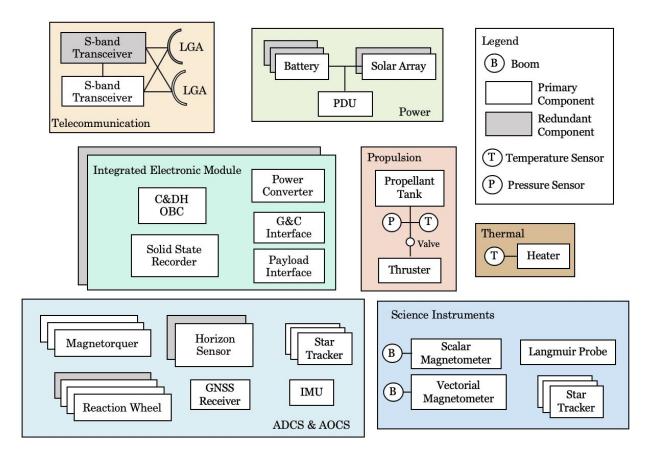
Linear static analysis of the frame



Displacement distribution

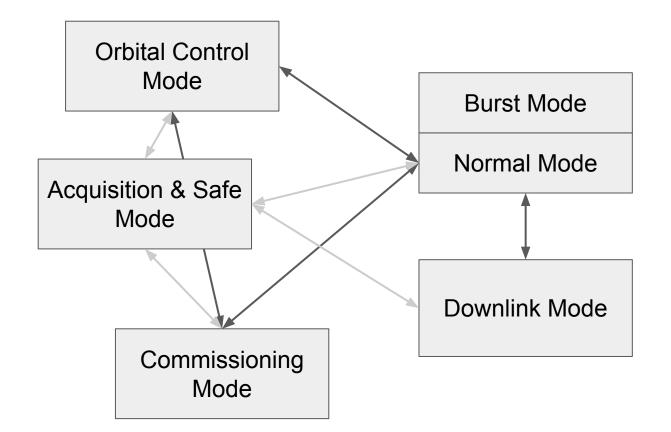
Spacecraft Design

Key Spacecraft Design Drivers



Objective	Device	Requirements
Determination of orbital position	GPS receiver and GPS antenna	Position accuracy: 10 m
Attitude determination of the satellite	Gyroscopes and Inertial Measurement Unit (IMU)	Accuracy: 1 deg
Attitude control of the satellite	Reaction wheels and magnetorquers	NADIR pointing
Orbit keeping	22N HPGP Thruster	Δv = 613 m/s

Preliminary spacecraft design



Mass Budget					
Subsystem	Mass	Contingency	Total Mass		
Science Instruments	2.55 kg	20~%	3.06 kg		
Telecommunication	0.81 kg	20~%	$0.97 \mathrm{~kg}$		
Propulsion	$1.9 \ \mathrm{kg}$	20~%	$2.28 \mathrm{kg}$		
C&DH	$2 \mathrm{kg}$	20~%	$2.4 \mathrm{kg}$		
ADCS	$3.2 \mathrm{kg}$	20~%	$3.84 \mathrm{kg}$		
Structure	$7.25 \ \mathrm{kg}$	$20 \ \%$	$8.7 \ \mathrm{kg}$		
Power	$5.5 \ \mathrm{kg}$	20~%	$6.6 \ \mathrm{kg}$		
Total Dry Mass	23.21 kg	20~%	29 kg		
Harness	1.84 kg	$20 \ \%$	$2.2 \mathrm{kg}$		
Propellant	10 kg	20~%	$12 \mathrm{kg}$		
Total	$35 \mathrm{kg}$	20~%	42 kg		

Operation Modes

Power Budget - current best estimates

-	MACING		Contex
MAGNE			Constallation
R	V		
	abach 201	9 - Tean	Blue

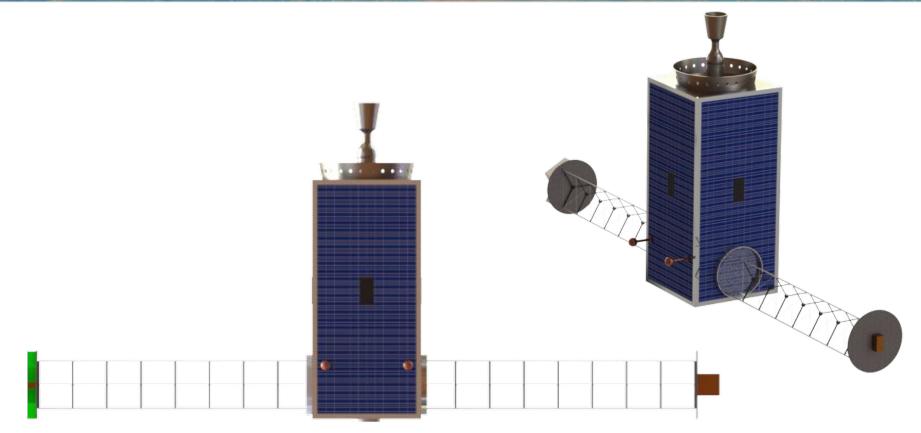
	Power Budget for each operating mode				
Subsystem	Safe Mode	Orbital Control Mode	Normal / Burst Mode	Commissioning Mode	Downlink Mode
Science Instruments	-	-	$4.5 \mathrm{W}$	- 1	-
Telecommunication	$2 \mathrm{W}$	$2 \mathrm{W}$	$2 \mathrm{W}$	2 W	8 W
Propulsion	-	8 W	-	-	-
C&DH	$5 \mathrm{W}$	$5 \mathrm{W}$	$5 \mathrm{W}$	$5 \mathrm{W}$	$5 \mathrm{W}$
ADCS	-	$30.5 \mathrm{W}$	$30.5 \mathrm{W}$	$30.5 \mathrm{W}$	$30.5 \mathrm{W}$
Structure	-	-	-	10 W	-
Battery	~	-	$25 \mathrm{W}$	- 1	-
Subtotal	7 W	$45.5 \mathrm{W}$	67 W	47.5 W	43.5 W
Margin	20~%	20~%	20~%	$20 \ \%$	20~%
Total	8.4 W	54.6 W	80.4 W	57 W	$52.2 \mathrm{~W}$

Sizing the solar arrays and batteries

Assumptions for the sizing

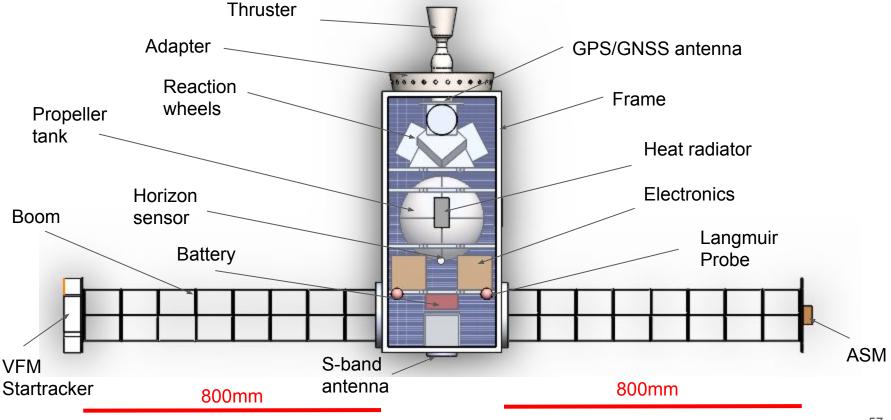
- RW will not be switched on all the time
- Eclipse time worst case consideration
- Regulation Type \rightarrow Peak Power Tracking
- Mission lifetime \rightarrow 10 years

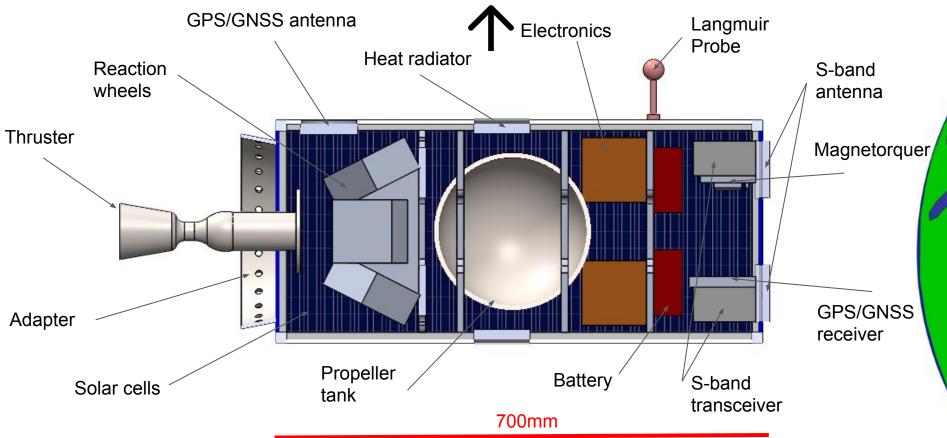
- Batteries:
 - **DoD = 15%**
 - Capacity = 93 Wh
- Solar Cells:
 - \circ Power Required \rightarrow 80.4 W
 - EOL power capability \rightarrow 114 W/m²
 - Area = 0.85 m²

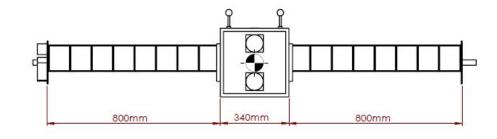

	Daylight	Eclipse
Power (W)	80.4	23
Time (min)	60	36
Efficiency (Regulation)	0.8	0.6

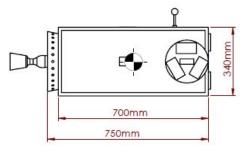
Solution

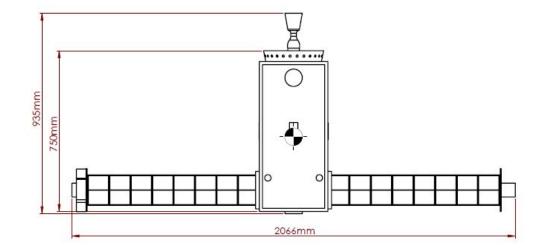
- 2 packs of batteries (8 cells for each pack and capacity of 77 Wh)
- Solar Array on all S/C faces (except nadir & thruster face)

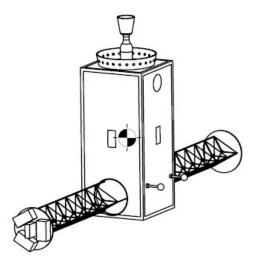

Spacecraft - 3D Model


Spacecraft - Configuration


Spacecraft - Configuration

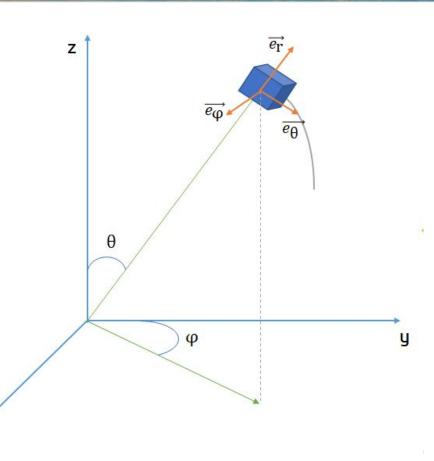





Spacecraft - Mechanical Drawing

Stabilization and orientation

Using the moment of inertia of spacecraft for stabilization in **NADIR pointing**.


NADIR provide us with direct pointing by the smallest area of the spacecraft to the Earth:

- Better efficiency of solar cells
- Smaller power consumption
- Patch antenna orientation

Moments of inertia: (kilograms * square millimeters) Taken at the output coordinate system.

lxx = 5734785.7	lxy =
lyx = 1902650.3	lyy =
17x = -1856252.1	17V =

xy = 1902650.3 /y = 10232918.5 zy = -867447.0 lxz = -1856252.1 lyz = -867447.0 lzz = 6792433.3

Platform ADCS & AOCS

Objective	Device	Mass	Power
Determination of	GPS receiver	110 g	1 W
orbital position	Patch antenna (for the GPS)	80 g	80 mW
Attitude determination	2 x Earth horizon	33 g (in total)	0.132 W (in total)
of the satellite	inertial measurement unit	16 g	0.35 W
Attitude control of the	4 x reaction wheel	940 g (in total)	8 W (in total)
satellite	3 x magnetorquer	120 g (in total)	0.8 W (in total)

Normal Mode

From science requirements we need **1 Hz sampling** from each of our science instruments.

Burst Mode

To adapt our constellation to future scientific needs, the acquisition rate can be tuned up to **250 Hz**.

Data Budget for each operating mode					
Type of Data	Safe Mode	Orbital Control Mode	Normal / Burst Mode	Commissioning Mode	Downlink Mode
Science Instruments	-	-	0.1 to 7.6 kbits/s	-	-
Housekeeping	-	10 kbits/s	10 kbits/s	10 kbits/s	10 kbits/s
Downlink duration	-	4.85 min	4.8 to 8.45 min	4.85 min	4.85 min

Normal mode

- Daily downlink: housekeeping data
- Weekly downlink: scientific data

Burst mode

Weekly downlink of both science and housekeeping data

Thermal Subsystem

Classic LEO Case

From our system:

- Worst Hot Case: Burst mode
 - Power dissipation: 30 W
- Worst Cold Case: Safe mode
 - Power dissipation: 8.5 W

Heat source	Hot Case	Cold Case	
Electronics (W)	30	8.5	
IR earth (W/m ²)	258	216	
Albedo (W/m ²)	466.62	0	
Sun (W/m ²)	1368	0	

Temperature equilibrium:

T _{min, eq}	T _{max, eq}	
-53.4°C	55.5°C	

```
T_{min} operative = - 30°C
T_{max} operative = 40°C
```

Solution for our system:

- Heaters for critical component:
 - Pack battery (heater integrated in the COTS equipment)
 - Propulsion system
- Area > 0.02 m² of Radiator (≈ 4.8 W)

Programmatics

Risk Analysis

		A	В	Orbit insertion C	D	E	66
	1						
	2			Propulsion			
Severity	3		Boom deployment	AOCS			
	4	Launch stage On-board Computer	Power system				
10	5		Scientific sensors Telecommunication				

Estimated Mission schedule

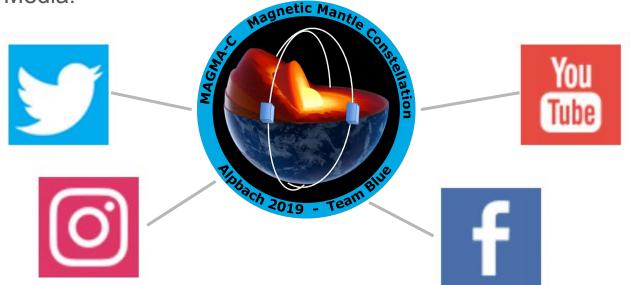
			Mission Schedule MAGMA	- <i>C</i>		
Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F
2019	2020	2021	2022	2023	2024	2035 2060
6 Months	12 months	12 months	18 months (Phase C/D)	18 months (Phase C/D)	10 years	Estimated end
Feasability study	Preliminary Mission studies	Detailed Definition studies	Design, Development	Testing, evaluation	Launch, Deployment	Disposal

Technology Readiness Level

Component	TRL
Boom	9
S-band antenna	9
Langmuir probe	9
Thruster	9
Reaction wheels	9

Component	TRL
Solar panels	9
Battery	9
Scalar sensor	6
Startrackers	6
Vector sensor	6

Analysis Approach: back-of-the-envelope calculations taking into account development, testing etc.


Component	Cost [M€]	Notes
Satellites Launcher Ground Segment Project Team	80 10 25 35	Per unit: 10 M€ (x8) 2 Launchers with max. 4 satellites each 2.3M€ per year & 10.5 years Commissioning & operations
Total	150	-
Incl. 20% margin	180	-

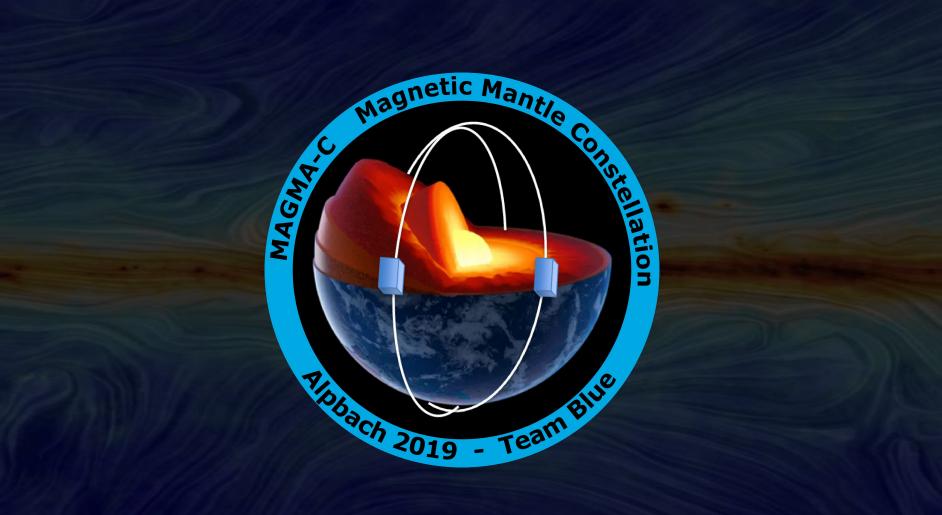
Comparable to similar missions like NASA CYGNSS Mission (same number of satellites, mass per satellite and mission lifetime)

Outreach

• Social Media:

- School / Educational Events
- Mission Explanation Video/Animation

Conclusion

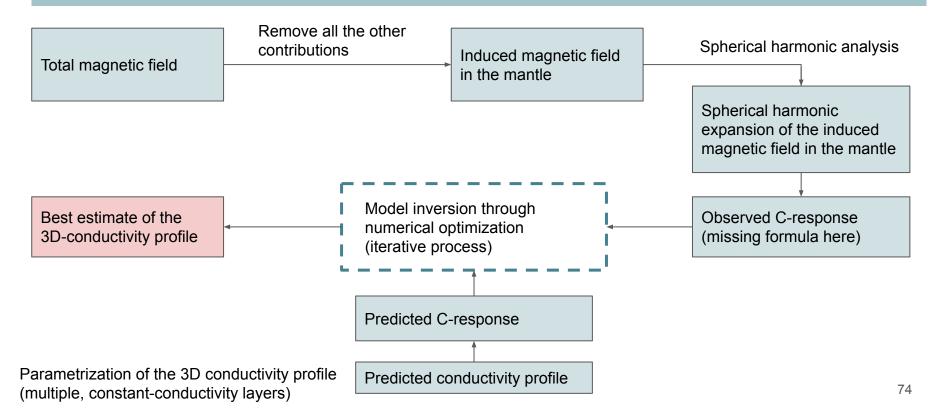

Unprecedented Science

Ionosphere: improve existing models

First mantle 3D conductivity mapping

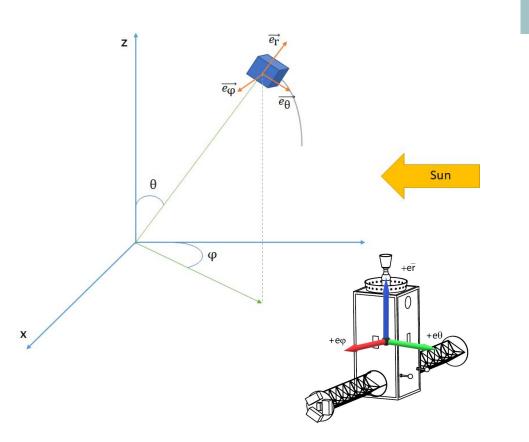
Mantle water content \rightarrow insight to other planets \rightarrow earthquake modelling 8 Satellites for high spatial and temporal resolution

Feasible & Low-cost mission COTS components: Low Risk Only 2 Launches - 8 Local times



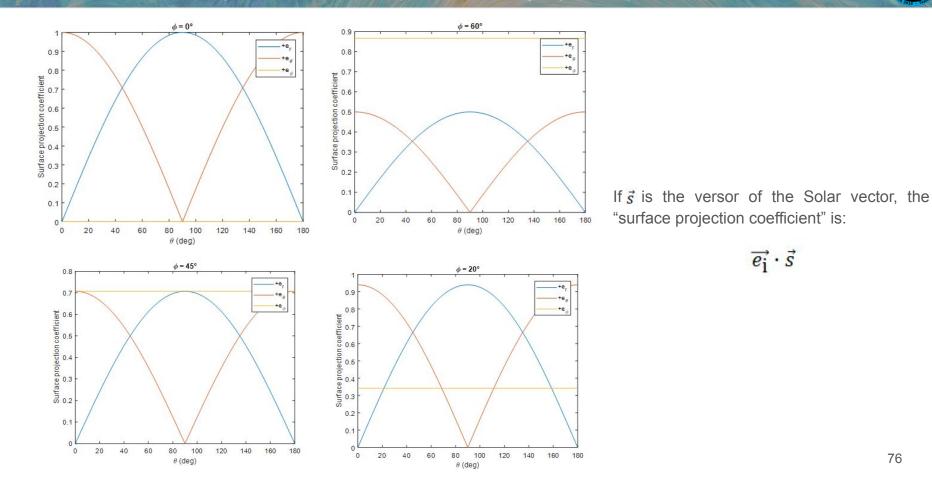
Backup Slides

Backup: Data products



From magnetic field to 3D conductivity profile

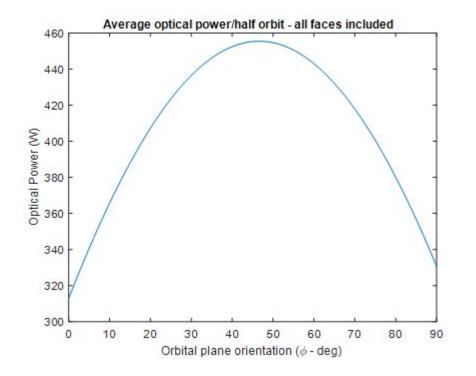
EPS: BOL power capability (1/3)



Assumptions

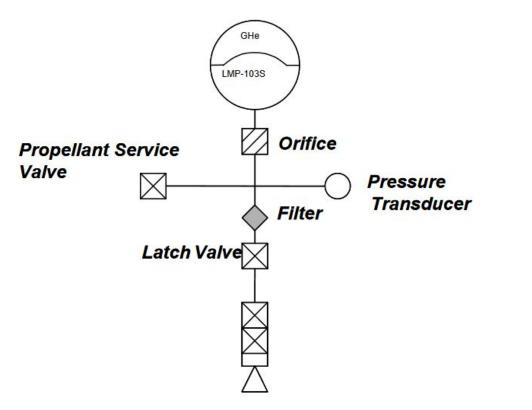
- Reference Frame:
 - Φ =Longitude of the orbit respect to y axis
 - Θ = Angular position of the S/C
- Sun vector // y axis
- Eclipse is not considered
- S/C in nadir pointing
- Name of the faces considered:
 - $e_{\theta} = face with normal \vec{e_{\theta}}$
 - e_r = face with normal $\vec{e_r}$
 - e_{ϕ} = face with normal $\vec{e_{\phi}}$

EPS: BOL power capability (2/3)



76

EPS: BOL power capability (3/3)



With the surface projection aera, it is possible to compute the Power

$$\frac{P_{BOL}}{I_d} = P_s \left(\vec{e_i} \cdot \vec{s} \right) A_i$$

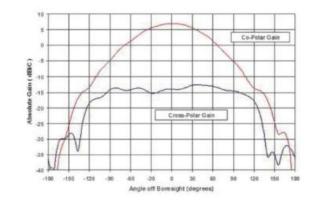
Backup: Propulsion System

- Blow-down pressure system
- LMP-103S
- 22 N
- TRL 5/6

Thruster

Backup: Communication and down/up link

S-band receiver


mass 0.325 kg, maximum output RF power 2 W power consumption 8 W, 2 W when receiving only Temperature rate from -40 to 50 Celsius

Antenna

temperature range from -105 to 105 Celsius gain at boresight 6 dB, 0 dB at 60 degrees, and -5 at 90 degrees.

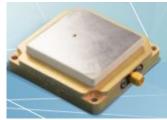
Why needed:

To maintain housekeeping and down/up link of data

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5054816/

Backup: Orbit determination - GNSS

GPS receiver:


Capability of the device:

Accurate determination of orbital position and times of the satellites. -Mass: < 110 g. Size: 96 mm x 96 mm x 15 mm -Power: 1 W -GPS frequency: L1 (1575.42 MHz). Single frequency -TRL 9 \rightarrow 15 different mission since 2017

Patch antenna:

Mass: <80 g. Size: 54 mm x 54 mm x 14.1 mm Power: < 80 mW TRL 9 \rightarrow 15 different mission since 2017

Reference: NewSpace Systems (NSS) GPS Receiver and Patch antenna for small satellites.

Backup: Attitude determination

Capability of the device:

Earth sensor: view the Earth, Space, and Earth limb and measure the dip angle with respect to the horizon

Inertial Measurement Unit: for redundancy of the Earth sensor Characteristics of the instrument:

Two Earth sensor: Mass: 33 g for both sensors Size: 43 x 32 x 32 mm Power: 0.132 W

Inertial Measurement Unit Mass: 16 g Size: 23 x 23 x 23 mm Power: 0.225 W

Reference: MAI-SES Earth Sensor. Maryland Aerospace.

Backup: Attitude control

Capability of the device:

<u>Reaction wheel</u> provides high torque and momentum storage capability

Magnetorquer

system for attitude control, detumbling, and stabilization built from electromagnetic coils

Characteristics of the instrument:

Reaction wheel Four reaction wheel Pyramid configuration Mass: 940 g Size: 95 x 95 x 95 mm Power: 2 W per wheel

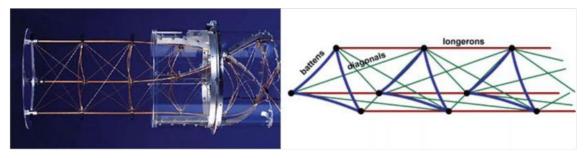
<u>3 x Magnetorquer:</u> Mass: 30 g Size: 70 x 15 x 13 mm Power: 0.2 mW

Reference 1: GOMSPACE NanoTorque GSW-600, four reaction wheel. Reference 2: NewSpace Magnetorquer NCTR-M002.

Backup: Thruster

Heerle, The Netherlands - San Jose, California U.S.A. - Luxembourg

Thruster Type	HPGP
Propellant	LMP-103S
Thrust Class	22 N
Thrust Range	5.5 - 22 N


Bradford ECAPS's 22N HPGP Thruster is designed for attitude, trajectory and orbit control

Nozzle Expansion Ratio	150:1
Steady State ISP (vacuum) Typical	2385 - 2500 Ns/Kg (243 -255 s)
Density Impulse (vacuum)	2957 - 3100 Ns/L
Minimum Impulse Bit	≤0.44 Ns
Overall Length	260 mm
Mass	1.1 kg

Backup: Boom

- Extremely mass efficient (<35 g/m)
- Magnetically clean
- Compact mast stowage (2% of deployed length typical; <0.7% for lightweight variants)
- Tailorable for stiffness, strength, stability and/or low mass
- High reliability, heritage deployment system

Reference: Northrop Grumman Corporation.

Program	Customer	Launch Date	Length each (m)	Diameter (in)	El (Ib*in2) 1.79E+06	
SAFE	Lockheed/NASA	3-Feb-84	32	14.4		
Galileo	JPL	18-Oct-89	3.5	12.5	1.34E+07	
Galleo	Univ. of Iowa/JPL	18-0ct-89	6.45	12.5	1.34E+07	
ACE	NRL	14-Feb-90	44.5	10	4.97E+06	
UARS	GE Astro	15-Sep-91	4.9	12.5	1.41E+07	
EUVE	Fairchild Space	7-Jun-92	1.6	17.64	5.01E+07	
GGS WIND	Martin Marietta	1-Nov-94	12.4	12.5	1.34E+07	
GGS POLAR	Martin Marietta	24-Feb-96	6.2	12.5	1.34E+07	
Mars Pathfinder	JPL	4-Dec-96	0.8	7.2	1.79E+06	
Cassini	JPL	15-Oct-97	4.8	12.5	1.75E+07	
Lunar Prospector	Lockheed Martin	7-Jan-98	2.6	8	2.20E+06	
EOS-AM (Terra)	Lockheed Martin	18-Dec-99	9	13.75	1.34E+07	
MIDEX IMAGE	U. Mass Lowell	25-Mar-00	9.9	7.2	9.00E+05	
Classified	Lockheed Martin	1-Jun-03				
GDES N/O/P	Boeing	4-Mar-10	8.4	10	6.39E+06	
Orbcomm	Argon ST	14-Jul-14	8	10		
DSX Z-Axis	AFRL	delivered	8	10	4.97E+06	
DSX Y-Axis	JPL/ AFRL	delivered	40	9.5	2.40E+06	
LADD	N-G/NASA/SIDD	delivered	8	16.67	4.45E+07	
Triana/ DSCOVR	Northrop Grumman	delivered	3.5	10	4.97E+06	
Mars Polar Lander	NASA JPL	21-Jun-05	0.8	7.2	1.80E+06	
MMS	LASP	delivered	12	10.24	4.56E+06	
GEMS	NASA-GSFC	cancelled	3.8	34	2.72E+08	
GDES R/S/T/U	Lockheed Martin	delivered	8.5	12.5	1.34E+07	

Backup: Thermal Ranges - subsystems

Include	Contie
A	1
1 201	- 1000

Temperature Ranges for each operating mode										
Subsystem	Safe I	Mode	de Orbital Control Mode		Normal / Burst Mode		Commissioning Mode		Downlink Mode	
Science Instruments	-	-	-	-	-40 °C	60 °C	-	-	-	-
Telecommunication	-40 °C	50 °C	-40 °C	$50 \ ^{\circ}\mathrm{C}$	-40 °C	$50 \ ^{\circ}\mathrm{C}$	-40 °C	$50 \ ^{\circ}\mathrm{C}$	-40 °C	$50 \ ^{\circ}\mathrm{C}$
Propulsion	-	-	-	-	-40 °C	$60 \ ^{\circ}\mathrm{C}$	-	-	-	-
C&DH	-30 °C	60 °C	-30 °C	60 °C	-30 °C	$60 \ ^{\circ}\mathrm{C}$	-30 °C	$60 \ ^{\circ}\mathrm{C}$	-30 °C	$60 \ ^{\circ}\mathrm{C}$
ADCS	-	-	-40 °C	40 °C	-40 °C	$40 \ ^{\circ}\mathrm{C}$	-40 °C	40 °C	-40 °C	$40 \ ^{\circ}\mathrm{C}$
Battery	-40 °C	85 °C	-40 °C	$85 \ ^{\circ}\mathrm{C}$	-40 °C	$85 \ ^{\circ}\mathrm{C}$	-40 °C	$85 \ ^{\circ}\mathrm{C}$	-40 °C	$85 \ ^{\circ}\mathrm{C}$