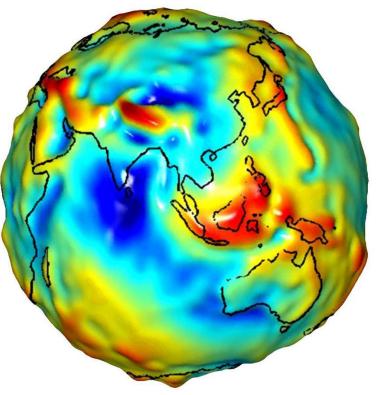
GRAVL

GRAvity observations by Vertical Laser ranging

N. Anthony, M. Archimbaud, S.S. Beeck, I. Bjorge-Engeland, E. Bogacz, V. Camplone, M. Eizinger, V. Galetsky, M. Noeker, L. Salfenmoser, E.A. Savu, M. Stefko, E.F.M. Weterings, J. Woodwark, R. Zeif

Tutors: Q. Chen and J. Praks


marganal .

🖉 Green Team 25th July 2019

The GRAVL mission will measure Earth's gravitational anomalies with unprecedented *accuracy* and coverage to significantly improve our understanding of seismic processes

NASA Earth observatory, NASA, ESA

Presentation overview

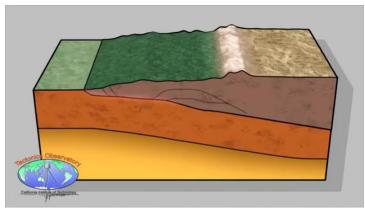
1. Science case

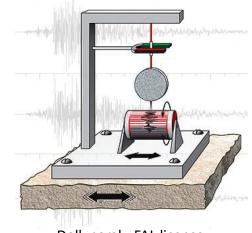
- 2. Mission concept
 - Alternatives
 - Selection

3. Engineering study

- Overview
- Mission profile
- Payload
- Spacecraft design
- 4. Programmatics
 - Technological Readiness Level
 - Schedule
 - Risks
 - Outreach

Science case




Science introduction

Seismology = science of earthquakes and the related vibrations of the earth

- Movement of tectonic plates causes stress accumulation and (sudden) releases: earthquakes
- Surface vibrations measured with **seismographs**
- Investigation enables modelling of tectonic sub-surface processes and helps improve the understanding of plate tectonics

Improve models of tectonic processes

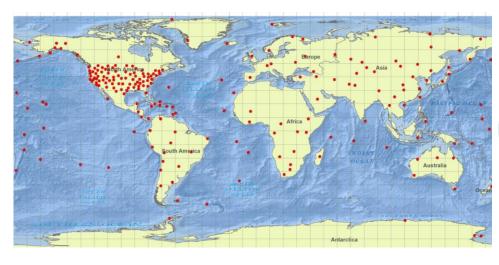
How does the Earth's upper mantle and crust behave before, during, and after earthquakes?

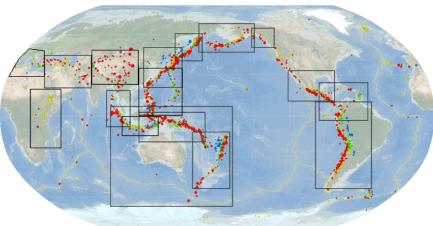
Science requirement: measure pre-, co-, and post- seismic mass movements of earthquakes down to Mw 6.5

Science Objective 2/3

Develop an understanding of silent earthquakes

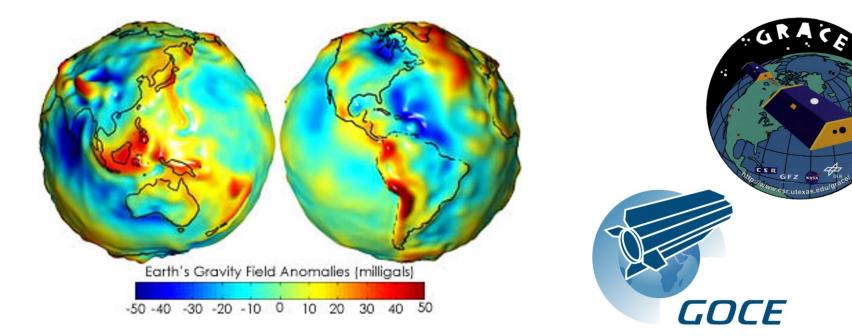
What are the characteristics of "silent" or "slow" earthquakes, and how are they related to tectonic movements and sudden earthquakes?





Science Objective 3

Improve knowledge of mass movement in areas with sparse surface measurement

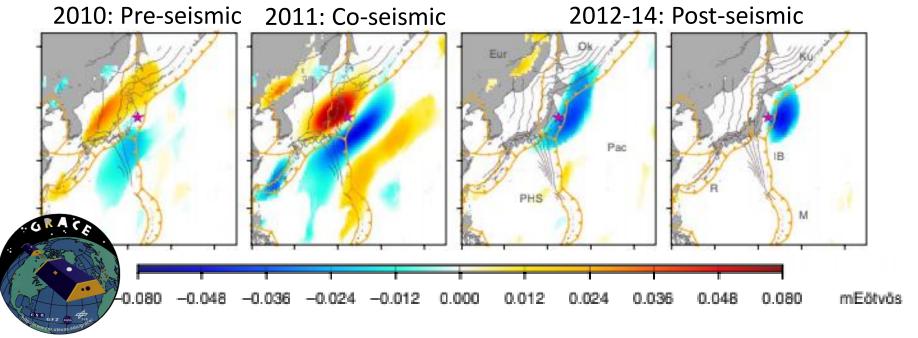

IRIS and the U.S. Geological Survey

Science requirement: measure gravity changes caused by tectonic movements in non-accessible regions

Gravimetry from space

- Gravimetry = measurement of magnitude of gravitational field
- Gravity anomalies of order mGal (static) and μ Gal (temporal)

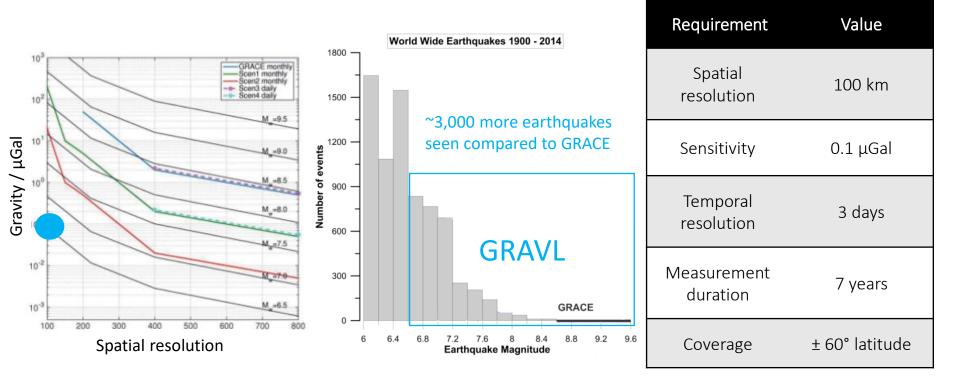
NASA Earth observatory, NASA, ESA



Tectonic processes changes in the gravitational field. This can be observed from space by means of **gravitational seismology**.

- Global coverage with satellite constellations
- Good spatial resolution from space based measurements can outperform unevenly distributed ground-based network
- Less resources required for operations
- Nano- or micro-satellites relatively cost-efficient

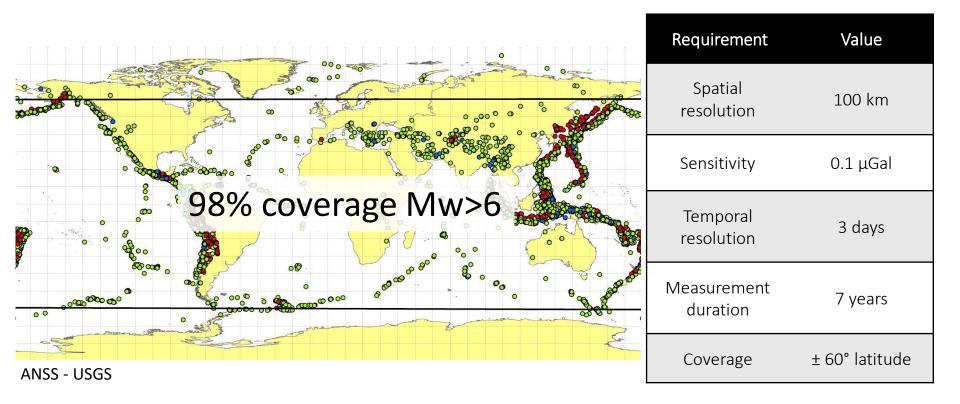
- Gravitational seismology: state-of-the-art
 - GRACE demonstrated feasibility with detection limit > Mw 8.3
 - Constellations: global coverage with resource-efficient operations


Panet et al., Nature Geoscience, 2018

Observation requirements

Importance of sensitivity to lower magnitude events

Pail et al, DGK report 320, 2015


Green Team 25th July 2019

GRAVL

Observation requirements

Importance of latitudinal coverage

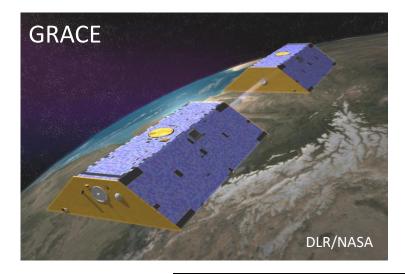
Secondary science objectives

2

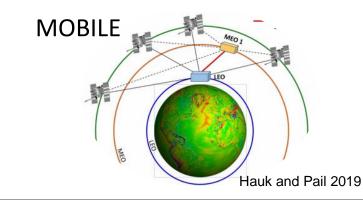
- 1. Improve the understanding of ocean currents
- 2. Improve our ability to monitor the hydrological cycle

Background signals:

- Ocean tides
- Atmospheric air masses
- Glacial Isostatic Adjustment



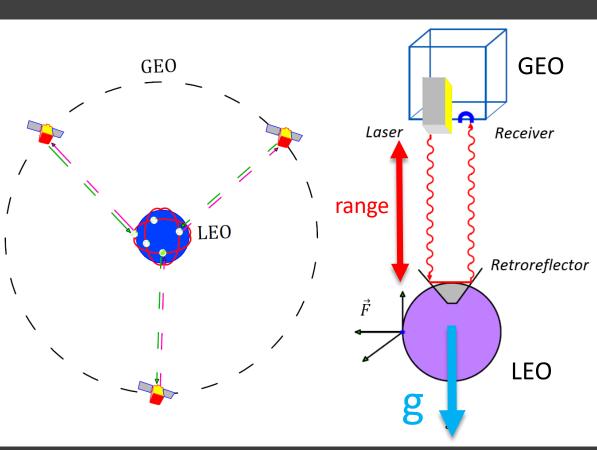
Mission concept


Green Team 25th July 2019

Existing concepts and missions

GRAVL

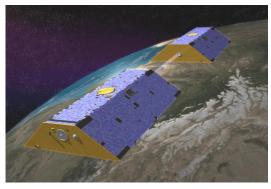
Green Team 25th July 2019


Mission Concept 17

Concept 1/2

Vertical distance ranging

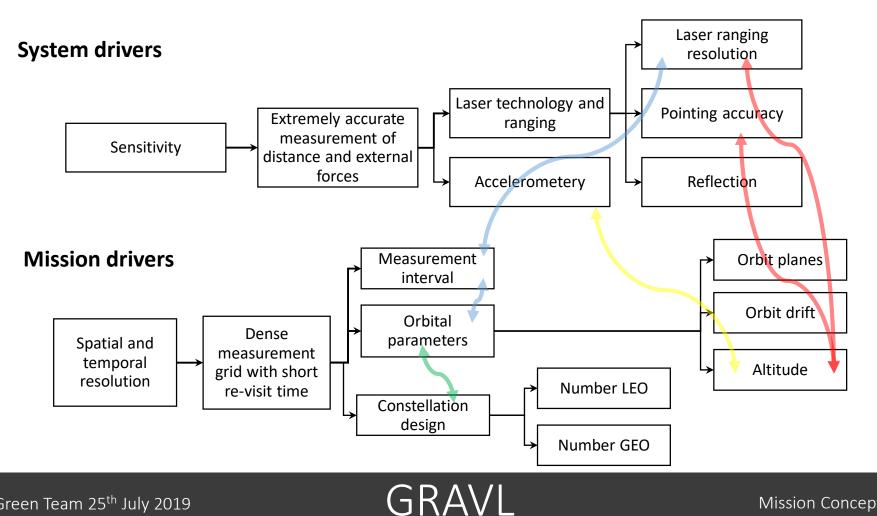
- Radial distance measurements between free-falling test masses
- Non-gravitational forces compensated and/or kept track of
- Measurement of radial component is key advantage
- Improves error profile: isotropic distribution



Concept 2/2

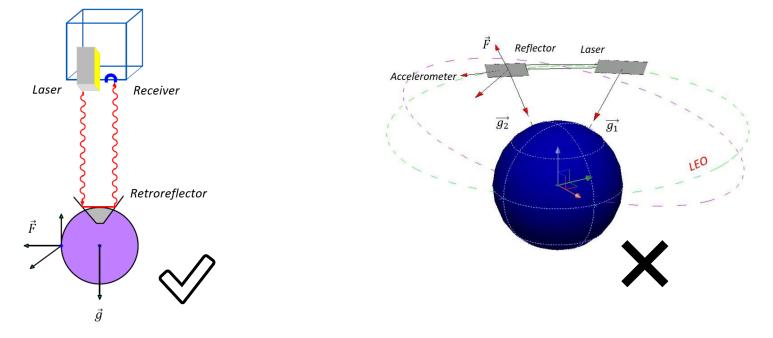
Horizontal distance ranging a la GRACE

- Longitudinal distance measurements between freefalling test masses
- Non-gravitational forces compensated and/ or kept track of



DLR

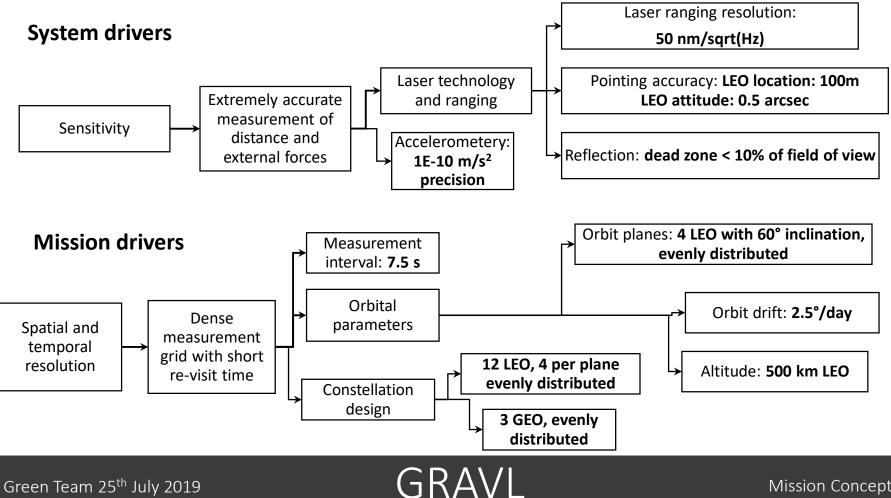
Key system and mission drivers


Mission Concept 20

Mission concept trade-off

Concept 1: Vertical distance ranging

Concept 2: Horizontal distance ranging

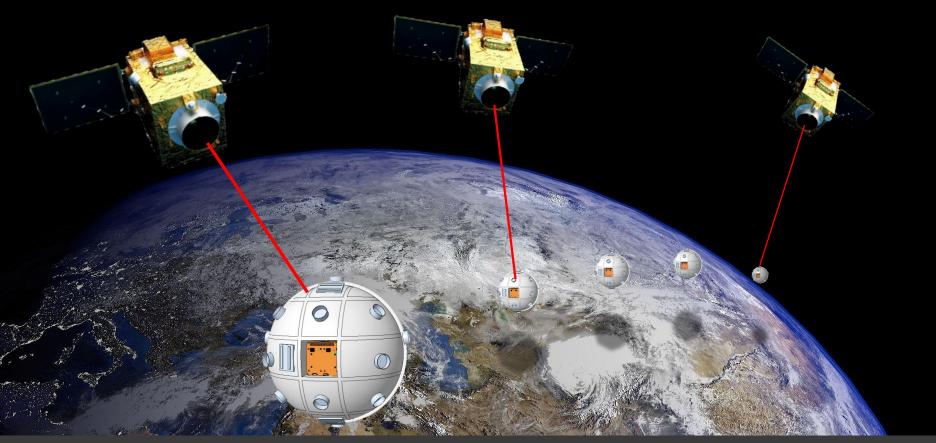

Mission and instrument requirements for orbit design and payload can be derived

Green Team 25th July 2019

Key system and mission drivers

Science Objective	Science Requirement	Observation requirement	Instruments		Mission Requirements	Data products
What do you want to find out?	What phenomena you need to characterize?	What do you need to measure (units, direction etc.)?		What is the instrument or method? What is the needed performance of instrument (with accuracy, resolution, range)?	What does it mean to overall system? Power, pointing, scanning, stability.	
Develop an understanding of silent earthquakes	Measure mass redistribution related to silent earthquakes.	aenalitivity 0.1 µGal	Laser ranger		Prior position knowledge of LEO target shall be known to within 100m. Laser pointing accuracy & divergence need to hit this 100m spot. With spot size 1500m, this means pointing accuracy shall be 6 arcsec to hit within 1000m of target.	Range values be GEO-LEO pairs.
					Targeting mirror shall stabilize after movement within 500ms to a state where the laser ranging distortion by its displacement is less than 100nm.	Y
				Each LEO orbiter's range shall be measured at least once per 7 seconds.	Total time to perform a single acquisition including beam positioning and ranging shall be lower than 1000ms.	
			Retroreflector	Retroreflector fields of view shall not overlap.		
				Retroreflector dead zone shall not exceed 10% of the field of view.		
				Uncertainties in attitude knowledge shall not cause retroreflector displacement correction error of more than 100nm.	Attitude determination accuracy of LEO orbiters shall be 0.5 arcsec.	
			GNSS positioning	Localization precision for GEO and LEO satellites using GNSS shall be 1 cm.		Positions of LEO satellite (knowled within centimeter time). This positioning i processing so ca onboard sat and afterwards
			Accelerometer	Measurable range of accelerations shall be at least up to 5 µm/s2. Precision of acceleration measurements shall be better or equal to 1e-10 m/s2.		Acceleration dat compensation of non-gravitational
		coverage: +-60 degrees latitude			Orbital inclination of LEO orbiters shall be at least 60 degrees.	
		time series length: 7 years for 99% probability of detecting 1 earthquake			Operations and spacecraft design shall ensure lifetime of mission of at least 7 years.	
		spatial resolution 180 km			Mean spacing between acquired data points over one temporal step shall be at most 90km.	
		temporal resolution 3 days			Mean across-track separation of ground tracks over a 3 day period shall be at most half of the spatial resolution.	
		temporal resolution: 1 day sparse even coverage for atmosphere subtraction			All covered area shall be evenly covered by provide tracked	
			Laser ranger	Noise level of laser ranging system shall h mn/sgrt(Hz) at altitude 500	Prior poeting	

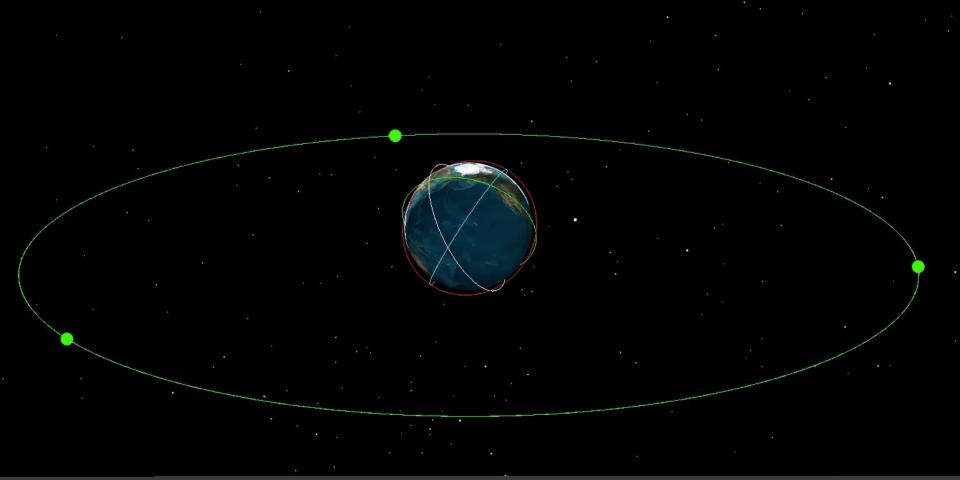
GRAVL


Mission Concept 23

Engineering overview

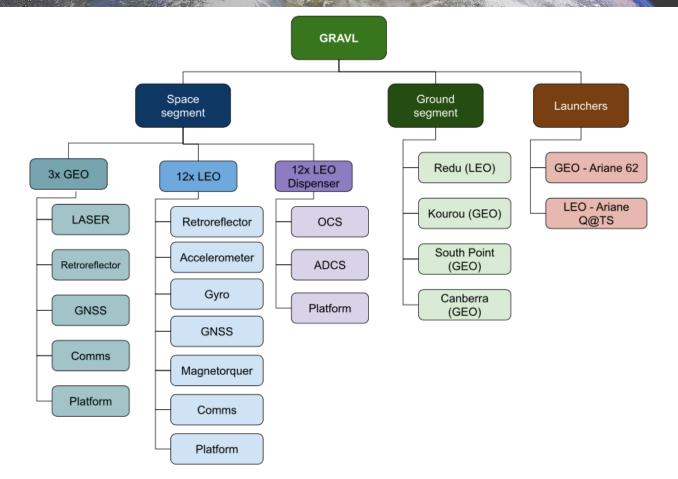
Green Team 25th July 2019

System overview



Green Team 25th July 2019

Overview

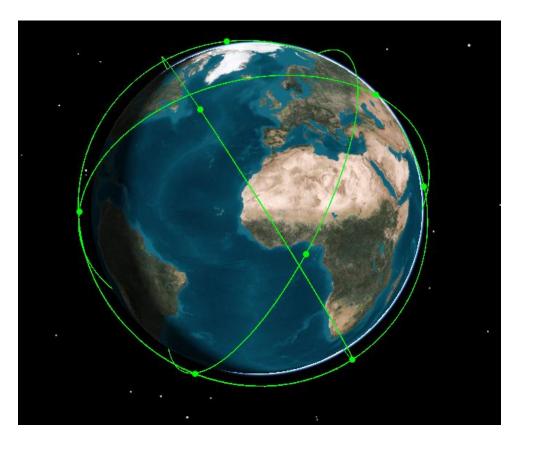

Green Team 25th July 2019

Engineering: mission profile 26

System overview

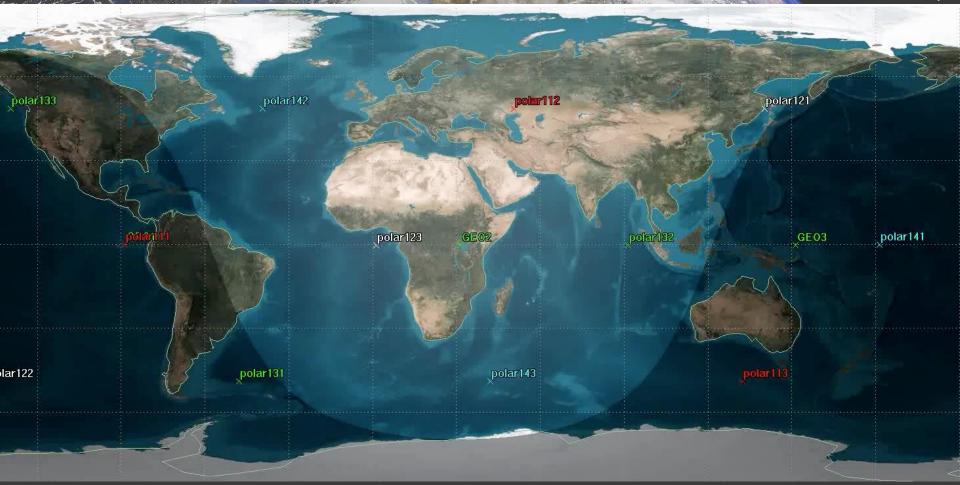
Data products

Level	Description	GRAVL Product		
LO	Unprocessed full-resolution payload & telemetry data	Raw data from laser ranger, attitude sensors, GNSS sensors, S/C telemetry		
L1	Calibrated & processed sensor data	Ranging, positioning, attitude		
L2	Derived geophysical variables at same resolution as L1	MASCONS / Spherical harmonics /		
L3	Geophysical variables mapped on an uniform temporal/spatial grid	Mass grids / gravity anomaly grids /		
L4	Model outputs, analysis results	Earthquake maps, gravity maps,		



Mission Profile

Green Team 25th July 2019



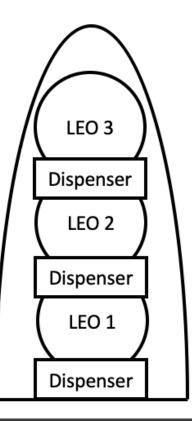
- Four equally-spaced planes
- Three equally-spaced spherical satellites in each plane
- 60° inclination

GRAVL

Launcher

- Q@TS by ArianeSpace:
 2.5M€ per launch
- 4 launches every 2 years
- 16 launches over lifetime
- Launch payload: 350 kg

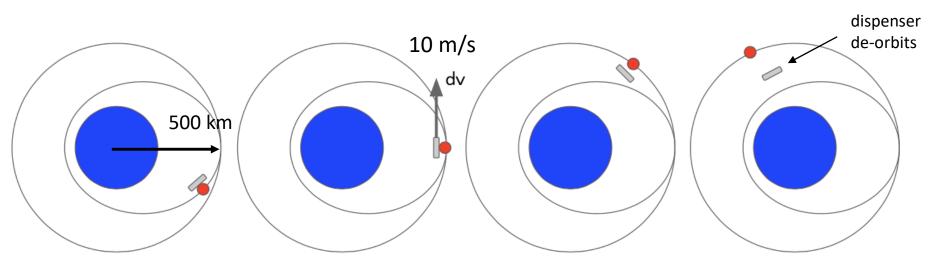
ArianeSpace



Launch configuration

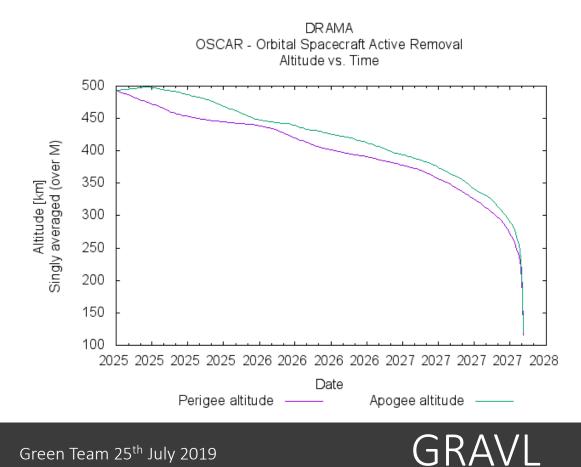
LEO spacecraft with dispensers for successive deployment

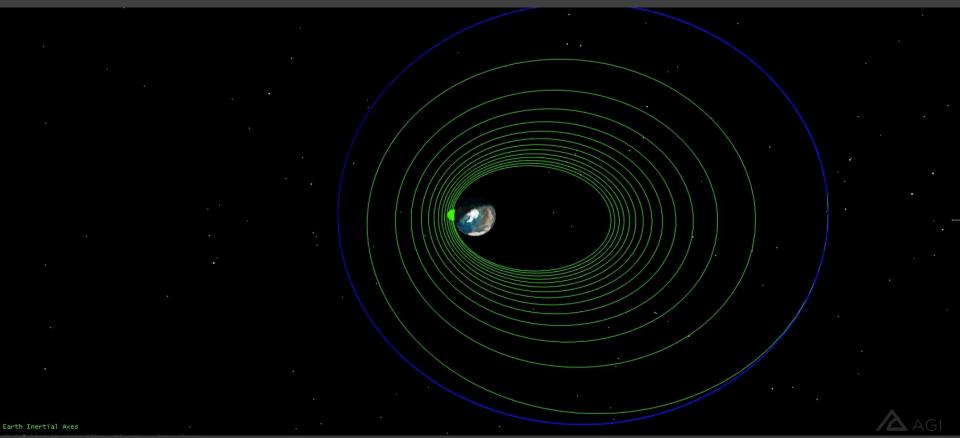
GRAVL



Orbital insertion

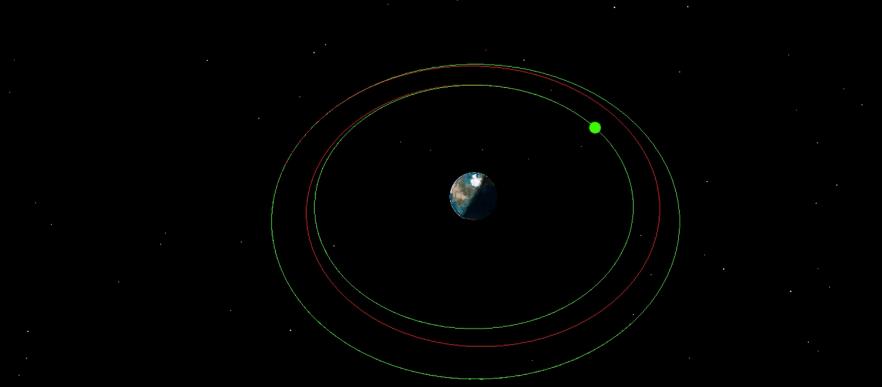
One-time-use dispensers


- Launch into elliptical orbit
- Circularization burn
- Burn delay between satellites to achieve 120° true anomaly separation


De-orbit

- LEO end of life simulation in DRAMA, OSCAR tool
- Three years to deorbit in worst-case

Transfer and insertion



GEO component

End of life

h Inertial Axes

GRAVL

Mission profile 38

Launcher

• Total payload: 849 kg (283 kg per satellite)

GRAVL

Launcher : Ariane 6.2

GEO component

- 1 launch in Kourou, Guyana
- 75 M€
- 5000 kg to GTO capability

Operations and ground segment

- Each LEO sat downlinks 3.5 MB/day
- Each GEO sat downlinks 47.3 MB/day
- GEO gets LEO position update
- Equatorial stations for GEO
 - Kourou
 - South Point
 - Canberra
- Redu ground station for all LEO satellites

ESA Ground Station Network

Payload design

-1-

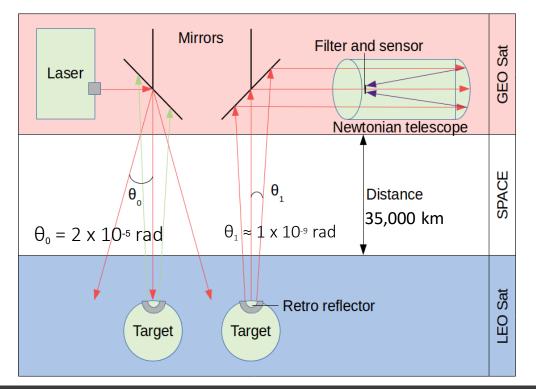
LEO acceleration – accelerometer LEO attitude – star tracker + gyro LEO position – GNSS

GRAVL

Radial position – laser ranging LEO-GEO

Payload components

Laser Ranging System



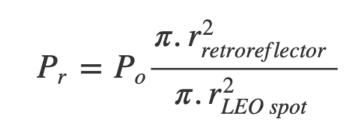
Measurement principle

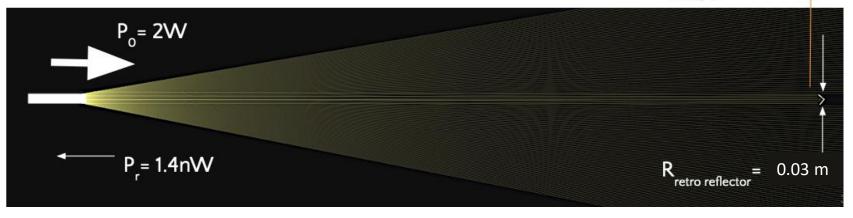
GEO-LEO distance changes \rightarrow **radial** gravity field

GRAVL

- 1. Short laser pulses sent from GEO satellite, clock starts
- 2. Pulses reflected by retro reflector on LEO satellite
- Laser pulses received in GEO by photodiode
- 4. When photodiode charge threshold is reached clock stops and TOF is recorded

Laser ranging system

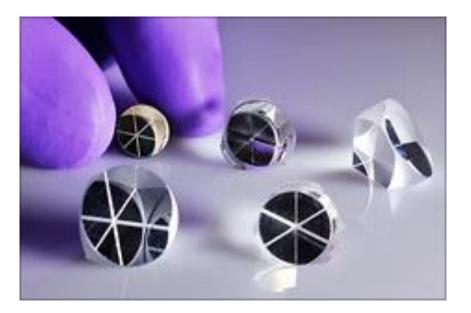



Laser power

• 2W GEO laser (LISA pathfinder):

Power received \approx **74 – 93 nW** depending on retroreflector orientation

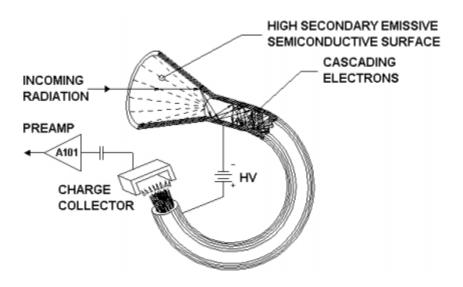
• Laser pointing accuracy: ≤ 6 arcseconds


GRAVL

Laser ranging system

Retroreflector

- Equally distributed on surface of spherical LEO satellite
- Acceptance angle of 20° so only one reflector is seen at each time
- Radius of 30 mm


Laser ranging system

Signal amplification

- 12 cm aperture Newtonian telescope
- Channel electron multiplier amplifies signal
- Clock, CEM and comparator shall be mounted as close as possible to each other and system needs to be calibrated

CEM system

Clock

Ranging precision of 200 nm \rightarrow clock precision of 3.33E-16 s

Device: CSAC GPSDO

- Precision: 1.433E-17 s equivalent of 8.6 nm
- Volume: 64 x 77 x 18 mm³
- **Power:** 1.4 W

LEO accelerometer

- Use SuperStar accelerometer (GRACE/GRACE-FO heritage)
- Sensitive y- and z-axis will be mounted in along-cross-track-plane (strongest influence of perturbations)
- Mount at center of mass (C.O.M.)
- Volume 1 U, mass 3.5 kg, power 19W

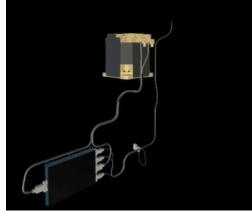


Table 1: Estimated drag perturbing acceleration for spherical LEO s/C (d=0.5 m) at 500 km orbital altitude.

low activity	mid activity	high activity
$1.547 \cdot 10^{-8} \text{ m/s}^2$	$1.788 \cdot 10^{-7} \text{ m/s}^2$	$8.566 \cdot 10^{-7} \text{ m/s}^2$


GRAVL

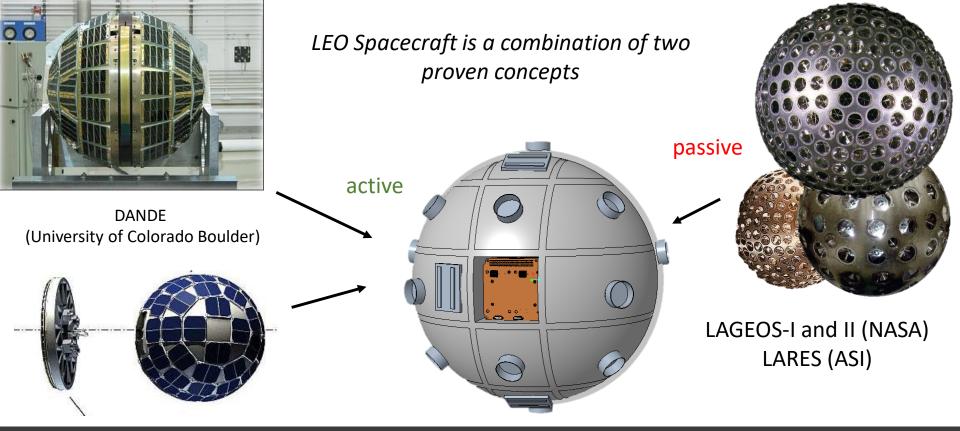
LEO attitude knowledge

- Ring laser gyro: bias stability 0.003°/h, drift 0.0035°/h^{1/2}
- Startracker: 5 arcsec (rms) absolute accuracy (cross bore-sight)

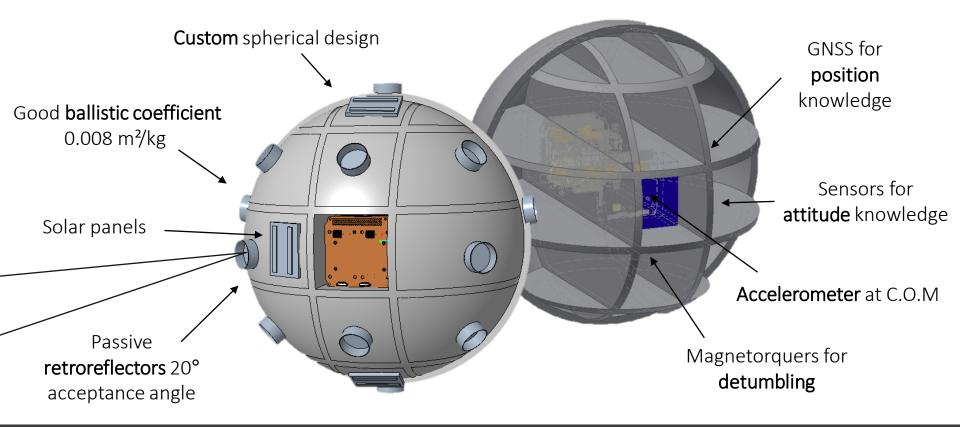
High-Precision Gyroscope

Startracker

- Live on-orbit precision not required (1-2 m)
- Precise orbit determination for post processing/science case to cm precision
- Multichannel GNSS receivers

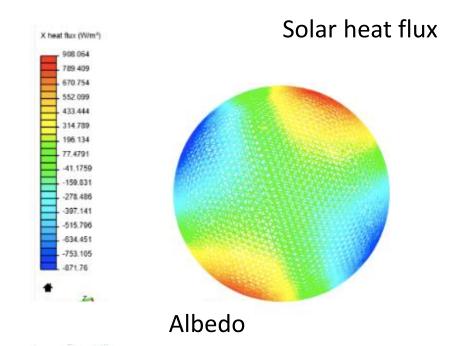


LEO spacecraft design

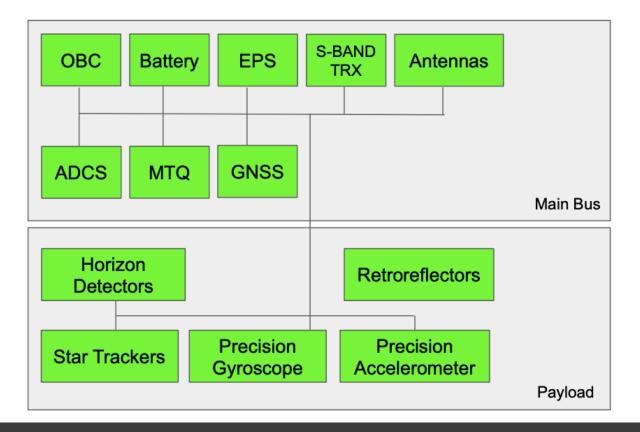

System design concept

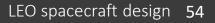
GRAVL

System design concept



Thermal considerations


- Rough simulation in extreme conditions where sphere is not rotating
- With rotational movement we expect a mean thermal equilibrium in the system



System breakdown

GRAVL

Main bus components

Budgets: summary

	Mass / kg	Science Mode Power / W	Safe Mode Power / W	Daily Data Budget / MB	Link Budget Margin / dB
Structure	12				
Main bus	4	6	4	0.5	> 6
Payload	11	27	0	0.5	- 0
Total	27	33	4	0.5	> 6

Green Team 25th July 2019

GEO spacecraft design

System design concept

Airbus Astrium

- AstroBus-S:
 - 100x100x170 cm
 - < 430 kg
 - 7 year design life
 - Power Generation < 4kW

GRAVL

System breakdown

GRAVL

MERLIN mission (CNES, DLR)

Main bus components

- COTS whenever possible designed for GEO environment (radiation, mechanical etc.)
- Many suppliers like Astrium, OHB, ...
- Performance vs. Costs but GEO demands high quality
- Qualified and Flight Proven Microsatellite Components

Thrust


Airbus/Astrium OSCAR on board computer

Airbus/Astrium PCDU

Airbus/Astrium LION

CMCS clock

Transceiver / transmitter

Budgets: summary

	Mass / kg	Science Mode Power / W (avg. per orbit)	Safe Mode Power / W (avg. per orbit)	Daily Data Budget / MB	Link Budget Margin / dB
Structure	65				
Main bus	173	452	396	C	
Payload	45	88	0	6	> 5
Total	283	546	396	6	> 5

GRAVL

Green Team 25th July 2019

Programmatics

TRL, schedule, risks, costs

Critical technology (TRL)

System component	TRL	TRL 4	Component and/or breadboard validation in laboratory environment.
Laser detector	4	TRL 5	Component and/or breadboard validation in relevant
Attitude determination systems	6		environment.
Retroreflectors	8	TRL 6	System/subsystem model or prototype demonstration in a relevant environment (ground or space)
Laser transmitter	8	TRL 7	System prototype demonstration in a space environment
Accelerometer	9		Actual system completed and "flight qualified"
GNSS	9	TRL 8	through test and demonstration (ground or space)
Power, Thermal, TT&C	9	TRL 9	Actual system "flight proven" through successful mission operations

	Project phases	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
0	Mission, Analysis								=	aunch o	f LEO s	atellites	6	
А	Feasibility								=	aunch o	f GEO :	satellite	S	
В	Preliminary definition													
с	Detailed definition						-							
D	Production/ ground testing													
E	Utilization								•		•			
F	Disposal													

Green Team 25th July 2019

Risk	Likelihood /5	Severity /5	Mitigation
Lifetime of the mission not sufficient to capture entire duration of long term seismic events	1	2	Increase lifetime of the mission
Micro launcher technology not available	3	1	Use more expensive launches
Laser ranger receiver technology not available	2	4	Longer development time

	ltem	Cost per item (M€)	Number of items	Total cost (M€)
Development	LEO satellites			10.00
	GEO satellites			8.00
	LEO dispenser			1.00
	LEO satellites	0.51	48	24.48
Industrial	GEO satellites	18.30	3	54.90
	LEO dispenser	0.28	48	13.44
Payload	LEO satellites	0.87	48	41.96
i ayidad	GEO satellites	1.92	3	5.76
Test facilities				5.00
Launch	LEO satellites	3.00	16	48.00
Launch	GEO satellites	75.00	1	75.00
Mission operation		2.20	7	15.40
Science operations and archiving		1.50	7	10.50
Management				30.00
PR and outreach		0.10	7	0.70
Margin				36.47
Total mission cost (M€)				380.61

De-scoping: Decrease lifetime from 7 years to 6 years

Category	Amount	Each (M€)	Total (M€)
Launches	4	3	12
LEO satellites	12	1.38	16.56

Total Saving: 29 M€ Original Mission Cost: 381 M€ Saving in Percent: 8%

De-scoping impacts science: fewer earthquakes observed

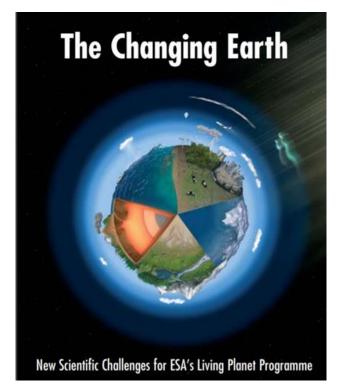
Outreach

Social media:

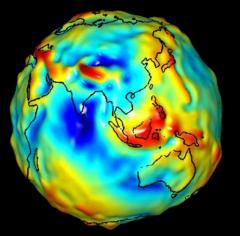
"How attractive are you?"- game on social media page

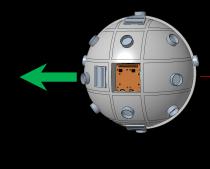
Events:

Earthquake simulators


School tour in Science bus:

- Design your own mission using the GEO platforms
- Lectures on geophysics
- Space footballs





The Changing Earth: New scientific Challenges for ESA's Living Planet Programme

"The Challenges of the Solid Earth: Challenge 1: Identification and quantification of physical signatures associated with volcanic and earthquake processes – from terrestrial and spacebased observations."

GRAVL

GRAVL

Summer School Alpbach 2019

Thank you! Any questions before launch?

TELET

THE REPORT OF THE PARTY OF

TEAM GREEN

Bonus material

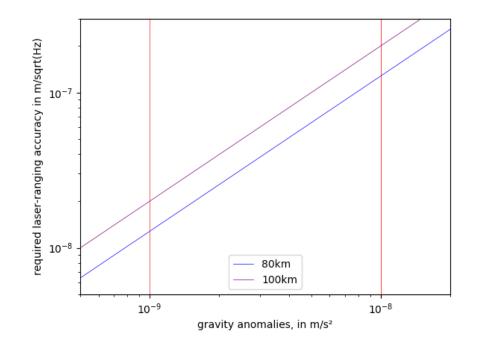
Science

Mission requirements

- Mean spacing between data points is half of the spatial resolution: sampling rate 7s
- Inclination at least 60 deg
- Separation of orbits at least 0.5 * spatial resolution over 3 days
- LEO Orbit drift per day: 2.5°
- LEO ground tracks: daily rough coverage
- LEO orbit altitude 500km
- Operations for whole length of mission time

Derivation of requirements on:

- Laser ranging distance precision: 200 nm
- Laser ranging vector knowledge precision: Ca. one µrad (worst case for reflector in "equatorial" plane, field of view 90°)
- LEO satellite accelerometry: $0-5\mu m/s^2 1E-10 m/s^2$
- LEO satellite position: prior knowledge 100 metres, reconstruction to cm precision

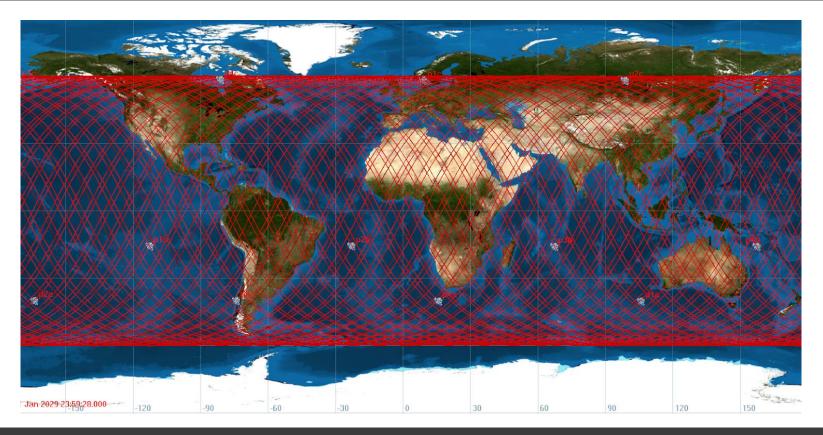

Gravity sensitivity → ranging precision

Laser must resolve $\Delta s = \frac{1}{2} a (1 / f)^2$

a = gravity anomaly at satellite altitudef = sampling frequency (defined by spatial resolution and satellite altitude)

Resolution hardly depends on altitude, @500km:

•0.1 μGal @ 80km: 28.76 nm/Hz^{1/2}
•0.1 μGal @ 100km: 50.23 nm/Hz^{1/2}
•1.0 μGal @ 80km: 287.55 nm/Hz^{1/2}
•1.0 μGal @ 100km: 502.33 nm/Hz^{1/2}

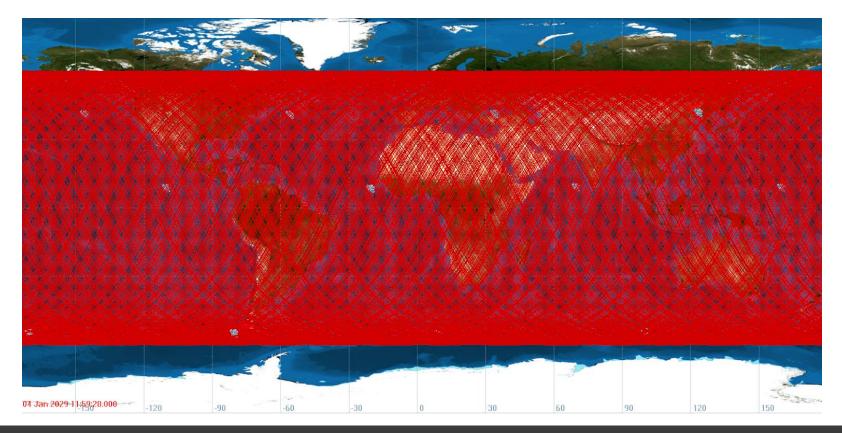


Engineering

LEO component

Half day coverage

Green Team 25th July 2019



Engineering: mission profile 78

LEO component

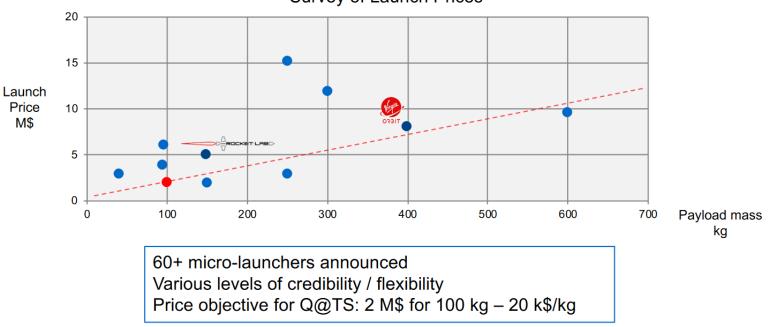
3 day fine coverage

Green Team 25th July 2019

GRAVL

Engineering: mission profile **79**

LEO component



Orbital insertion

- One-time-use insertion boosters orbit
- Insertion at apogee (altitude = 500 km)
- Perigee altitude \approx 470 km => period \approx 5654 s
- After 100 orbits (i.e. approx 6.5 days): 120° true anomaly phase
- For circular-to-elliptical-to-circular: $dv \approx 17 \text{ m/s}$
- For 37 kg dry mass and 250 s lsp: mfuel \approx 0.13 kg
- For 2 N thrust: thrust \approx 315 s

Survey of Launch Prices

THIS DOCUMENT AND ITS CONTENT ARE PROPERTY OF ARIANEGROUP. IT SHALL NOT BE COMMUNICATED TO ANY THIRD PARTY WITHOUT THE OWNER'S WRITTEN CONSENT I ARIANEGROUP INOLDING/SAS/OMBHI – ALL RIGHTS RESERVED.

ESA FLPP WORKSHOP - 06/11/2018

ESA workshop

GRAVL

LEO budgets

А	В	С	D	E	F	G	Н	I	J	К	L	М	N	0	Р	Q	R	S	Т	U
LEO															duty cycle		power consumption		otion	
				Supplier	Name	Dimensions (mm)	Cost/piece [€]	cost margin	Total cost [€]	max. Power [W]	power margin		Margin [%]	Total mass [g]	safety/ commiss.	normal	science	safety/ commiss.	normal	science
Part of System	ID	Pcs.	Subsystem																	
Structure	100	1	Structure	Custom		D=500,d=10	300000	20	360000		20	10000	20	12000	0	0	0	0.00	0.00	0.00
	101	1	OBC/GNSS Mod	GOMSPACE	DMC-3 Nanodock (carrier for OBC, GNSS	86x86x35	3000	5	3150	0.2	5	25	5	26.25	0.50			0.11	0.11	0.21
	102	1	OBC/GNSS Mod	GOMSPACE	A3200 NanoMind	(part of DMC-3)	2000	5	2100	0.35	5	35	5	36.75	0.50	0.50	1.00	0.18	0.18	0.37
	103	1	OBC/GNSS Mod	Novatel	OEM719 GNSS	(part of DMC-3)	1000	5	1050	1.2	5	25	5	26.25	0.00	1.00	1.00	0.00	1.26	1.26
	104	1	OBC/GNSS Mod	GOMSPACE	NanoCom AX-100 UHF TRX	(part of DMC-3)	2000	5	2100	6.5	5	25	5	26.25	0.17	0.17	0.17	1.14	1.14	1.14
	105	1	EPS Modules	GOMSPACE	NanoPower P60 [Dock]	86x86x45	5000	5	5250	0.2	5	80	5	84	1.00	1.00	1.00	0.21	0.21	0.21
	106	1	EPS Modules	GOMSPACE	ACU 200 [Input Module]	(part of P60)	1000	5	1050	0.2	5	55	5	57.75	1.00	1.00	1.00	0.21	0.21	0.21
	107	1	EPS Modules	GOMSPACE	ACU 200 [Input Module]	(part of P60)	1000	5	1050	0.2	5	55	5	57.75	1.00	1.00	1.00	0.21	0.21	0.21
	108	1	EPS Modules	GOMSPACE	PDU 200 (Output Module)	(part of P60)	1000	5	1050	0.2	5	55	5	57.75	1.00	1.00	1.00	0.21	0.21	0.21
[109	1	EPS Modules	GOMSPACE	PDU 200 (Output Module)	(part of P60)	1000	5	1050	0.2	5	55	5	57.75	1.00	1.00	1.00	0.21	0.21	0.21
	110	1	Battery	GOMSPACE	NanoPower BPX 4S-2P	93x86x41	2500	5	2625		5	500	5	525				0.00	0.00	0.00
[111	1	Solar panel	TBC	Body Panel for Spherical Structure	-	100000	5	105000		5	400	20	480				0.00	0.00	0.00
[
	113	- 4	Antenna	GOMSPACE	S-BAND Antenna	200x 100x ?	1000	5	4200	0.3	5	115	5	483	0.00	0.17	0.17	0.00	0.05	0.05
	114	4	Antenna	Novatel	GPS L1/L2 antenna	96x96x20	1000	5	4200	0	5	200	5	840	0.00	1.00	1.00	0.00	0.00	0.00
Main Bus	115	4	ADS	Horizon Detector	Horizon Detector Sensor	20x20x20	3000	5	12600	0.1	5	30	5	126	0.00	0.10	1.00	0.00	0.01	0.11
	201	4	ADS	Sinclair	Startracker	100x 100x 200	130000	5	546000	0.3		400	5	1680	0.00	0.10	1.00	0.00	0.03	0.32
[202	1	Accelerometer	TBC	Precise Accelerator	100x 100x 120	250000	5	262500	20	5	3500	5	3675	0.00	0.10	1.00	0.00	2.10	21.00
[203	150	Reflectors	TBC	Retroreflector / Comer Reflectors 20deg	20x20x20	150	5	23625	0	5	50	5	7875	1.00	1.00	1.00	0.00	0.00	0.00
	204	1	Com module2	Syrlinks	EWC32 S-Band TRX	86x86x32	40000	5	42000	7.5	5	400	5	420	0.00	0.17	0.17	0.00	1.31	1.31
Payload	205	1	Gyro	Honeywell	GG1320AN Digital Laser Gyro	88x88x45	5000	5	5250	1.6	5	454	5	476.7	0.00	1.00	1.00	0.00	1.68	1.68
Total Main bus									146475					2884.5				3.54	5.43	5.98
Total Payload									874125					13650				0.00	4.92	32.33
Total									1385850					28534.5				3.54	10.35	

LEO booster budget

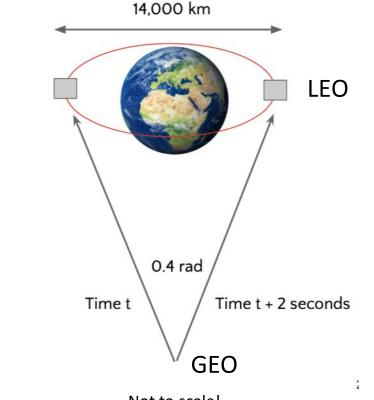
A	B	C	D	E	F	G	н	1	J	K	L	M	N	0	P	
Group	ID	module type	Pcs	cost/piece [k€]	cost margin	total cost [k€]	max power [W]	power margin	mass	mass margin	total mass	safety/commiss.	normal	safety/commiss.	normal	
	10	1 MAI 400	2	2 20.0	5.0	42.0	7.0	5.0	700.0	5.0	1470	0.0	0.8	0.0	11.8	
	102	2 DMC-3 Nanodock	1	3	5.0	3.2	0.2	5.0	25.0	5.0	26.25	0.5	0.5	0.1	0.1	
	103	3 A3200 NanoMind	1	2	5.0	2.1	0.35	5.0	35.0	5.0	36.75	0.5	0.5	0.2	0.2	
	104	4 OEM719 GNSS	1	1	5.0	1.1	1.2	5.0	25.0	5.0	26.25	0.0	1.0	0.0	1.3	
	10	5 NanoCom AX-100 UHF T	1 1	2	5.0	2.1	6.5	5.0	25.0	5.0	26.25	0.2	0.2	1.1	1.1	
	100	6 NanoPower P60 [Dock]	1	5	5.0	5.3	0.2	5.0	80.0	5.0	84	1.0	1.0	0.2	0.2	
	10	7 ACU 200 [Input Module]	1	1	5.0	1.1	0.2	5.0	55.0	5.0	57.75	1.0	1.0	0.2	0.2	
1	108	B ACU 200 [Input Module]	1	1	5.0	1.1	0.2	5.0	55.0	5.0	57.75	1.0	1.0	0.2	0.2	
	109	9 PDU 200 (Output Module	= 1	1	5.0	1.1	0.2	5.0	55.0	5.0	57.75	1.0	1.0	0.2	0.2	
	110	PDU 200 (Output Module	= 1	1	5.0	1.1	0.2	5.0	55.0	5.0	57.75	1.0	1.0	0.2	0.2	
	11	1 NanoPower BPX 4S-2P	1	2.5	5.0	2.6		5.0		5.0	C)		0.0	0.0	
	112	2 Battery	3	5.0	10.0	16.5		10.0	115.0	10.0	379.5	;		0.0	0.0	
Main bus																
Payload	201	1 BGT-X5	4	L .		0.0	20)	1500)	6000	0	1	0.0	80.0	
		Total									8280)	for 70% eff:	3.54	136.42 V	V

LEO data budget								
Component	Packet size [bits]	Sampling rate [Hz]	Data rate [kbits/s]	24h total [MB]	Comment			
Accelerometer	98	1	0.098	0.0084672	3 lin 3 rot			
GNSS	20620	1	20.62	1.781568	5 channels			
Gyroscope	50	1	0.05	0.00432	3 rot			
Star Tracker	200	0.2	0.04	0.003456				
TO TAL			20.718	1.7978112				
				3.23606016	80% overhead			

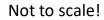
GEO data budget								
Component	Packet size [bits]	Sampling rate [Hz]	Data rate [kbits/s]	24h total [MB]	Comment			
Laser ranging	57	42	2.394	0.2068416	6 sats 7 sec ea			
GNSS	7161	42	300.762	25.9858368	7 channels			
Telemetry	1000	1	1	0.0864				
TOTAL			304.156	26.2790784				
				47.30234112	80% overhead			

Delta-V Budget Sumr	mary
Maneuver Name	Value (m/s)
GTO to GEO	1810
GEO to Grave	11
GEO maintenance	315
GEO total	2136
LEO insert	20
LEO total	20

Space debris mitigation

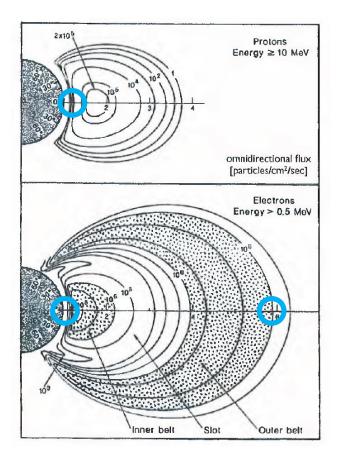


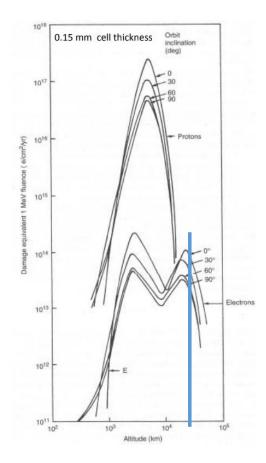
Recognising the responsibility towards future spacefaring generations, this mission will be in compliance with ESA's space debris mitigation guidelines.


- In LEO, the s/c will deorbit 3 5.2 years
- similar but shorter lifetime for upper stage of the Q@TS launcher.
- the satellite dispensers foresee ΔV-budget for active deorbiting
- GEO s/c have a lifetime of 7 years and transfer to graveyard orbit 300 km above GEO
- The upper stage of Ariane 6.2 performs active deorbiting

- First order approximation of laser pointing requirements
- Worst case pointing precision related to divergence of laser
- 2E-5 rad
- Worst case slew speed related to number of satellites to track and their separation
- 0.2 rad/s
- Multiple beam steering and acquisition systems allow simultaneous tracking if needed

GRAVL


$$a_{drag} = -\frac{1}{2}\rho||v - v_{atm}||(v - v_{atm})C_D\frac{A}{m}$$


s/c	low activity	mid activity	high activity
S	$3.867 \cdot 10^{-8} m/s^2$	$4.471 \cdot 10^{-7} m/s^2$	$2.141 \cdot 10^{-6} m/s^2$
6U	$9.059 \cdot 10^{-9} m/s^2$	$1.047 \cdot 10^{-9} m/s^2$	$5.017 \cdot 10^{-7} m/s^2$

GRAVL

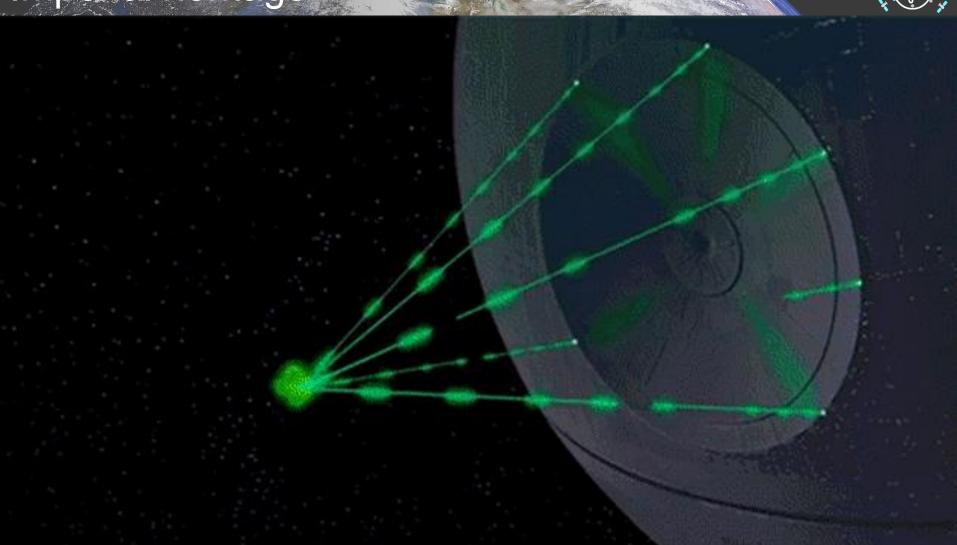
Space environment: radiation

coltitle: ACP detected population coltitle: ACP whole population coltitle: Flux due to the detected population [1/km^2/yr] coltitle: Flux due to the whole population [1/km^2/yr]

ACP_d	ACP_w	Flux_d	Flux_w	•
0.1982E-05	0.8661E-05	0.6174E+01	0.3827E+02	

Simulation done with Master statistical data, and with ARES tool from DRAMA, for 1 satellite in LEO.

Programmatics


Science: L. Salfenmoser, S.S. Beeck, I. Bjorge-Engeland, E. Bogacz, V. Camplone
Payload: E.F.M. Weterings, V. Galetsky, M. Noeker
System: N. Anthony, R. Zeif, E.A. Savu, M. Eizinger, M. Archimbaud

Systems coordinator: J. Woodwark Team leader: M. Stefko

Tutors: Q. Chen and J. Praks

Imperial heritage

