

Science Motivation
 Science Case

Sara Östman
Leonard Schulz

Our target

The Martian Magnetosphere

Mars magnetic reconnection:
Harada Y., et. al.. (2018)

Figure: Grandin,
Maxime. (2017)

We are not the first


```
Looking for water
```

Atmospheric escape

Surface study for human space exploration

Communication relays
Looking for bio-signatures
Plasma

MAVEN \& EscaPADE Missions

Cesa

MAVEN

- Atmospheric loss
- Single S/C

EscaPADE:

- Hybrid magnetosphere, collisional atmosphere, and energy transport.
- Double S/C

What we Don't Know and why it's Important

How does the magnetosphere change with solar wind conditions?

- To know how the atmosphere evolves over time, we need to know how it changes with changing solar wind conditions
- To protect people and technology, we need to know how the system responds to different conditions

What is the energy transport across different scales in the Martian environment?

What we Don't Know and why it's Important

How does the magnetosphere change with solar wind conditions?

What is the energy transport across different scales in the Martian environment?

- Energy transport processes in space plasmas span different spatial and temporal scales, and are vital to understanding the dynamics of the complete system

What does the Martian magnetotail region look like?

What does the Martian magnetotail region look like?

- The solar wind transports energy to the magnetosphere in the tail region
- Mass is transported away from the Martian system at the tail
- We don't know whether magnetic reconnection occurs in the magnetotail, which would vastly change the dynamics of the tail and the whole system

... and we are not the Only Ones who Think so

Voyage 2050
Final recommendations from the Voyage 2050 Senior Committee

- "The key difficulty in understanding the plasma energization lies in the two-way nature of the intrinsic multiscale physics of plasmas: processes on the large scales affect the small-scale physics and processes on the small scales affect the large-scale evolution of plasmas."
- "[...] planetary objects such as Mars, Jupiter, and comets enable the study of different types of magnetospheric interaction, including interactions with induced magnetospheres. It further addresses fundamental questions of planetary evolution such as atmospheric escape over geological time scales."
- "[...] relevant to Mars' environment in the Voyage 2050 era in relation to astronaut safety and the protection of space infrastructure in
 Mars orbit."
"Understand how the variable solar wind conditions influence the dynamics and energy transport of the Martian induced magnetosphere."

Q1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

Q2: How is energy transported within the Martian magnetospheric system on ion scales and above?

Science Motivation
 Sara Östman

Science Case Systems

Programmatics

Leonard Schulz
Ville Lundén
Cormac Larkin

Science Questions and Objectives

Science Objectives

- O1.1: What are the dynamics and orientation of boundary regions, with particular interest for their dependence upon solar wind conditions?
- O1.2: What is the structure of the Martian magnetotail on different scales, with particular interest for its dependence upon solar wind conditions?
- 01.3: What is the dynamical structure of the current system in the Martian magnetosphere, with particular interest for its dependence upon solar wind conditions?

Q2: How is energy transported within the Martian magnetospheric system on ion scales and above?

- O2.1: Is magnetic reconnection observed in the magnetosphere tail, and if so, where and how?
- O2.2: What are the direction and temporal evolution of low frequency plasma waves?

Structure of Martian Induced Magnetosphere

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

O1.1: What is the structure of the Martian magnetotail on different scales, with particular interest for its dependence upon solar wind conditions?

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

3D observations needed!

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

Cesa

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

Cesa

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

O1.3: What is the dynamical structure of the current system in the Martian magnetosphere, with particular interest for its dependence upon solar wind conditions?

Ramstad, 2019

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

4 S/C observations needed for Curlometer method!

SQ2: How is energy transported within the Martian magnetospheric system on ion and above scales?

O2.1: Is magnetic reconnection observed in the magnetosphere tail, and if so, where and how?

SQ2: How is energy transported within the Martian magnetospheric system on ion and above scales?

Cesa
O2.1: Is magnetic reconnection observed in the magnetosphere tail, and if so, where and how?

SQ2: How is energy transported within the Martian magnetospheric system on ion and above scales?

Cesa
O2.3: What are the direction and temporal evolution of low frequency plasma waves?

Brain et al., 2002

SQ2: How is energy transported within the Martian magnetospheric system on ion and above scales?

O2.3: What are the direction and temporal evolution of low frequency plasma waves?

4 S/C observations needed for wave telescope technique!

Secondary Science Questions and Objectives

Secondary Science Questions
Q3: How does the solar wind propagate through the solar system?

Q4: Excluding magnetic reconnection, are there other processes driving the energy transport at the Martian magnetotail?

Secondary Science Objectives

- O3.1: What are the temporal variations of the upstream solar wind conditions at Mars?
- O4.1: Are other energy transport processes observed at the Martian magnetotail that exhibit signatures different to magnetic reconnection?

1 Spacecraft

There is a boundary

Where is the boundary in 2D?

Where is the boundary in 3D, what is its orientation?

- Three dimensional mapping of magnetosphere currents (Curlometer)

Solving Ampere's Law to get currents requires 3D gradients

$$
\Rightarrow \nabla \times \vec{B}=\mu_{0} \vec{J}
$$

- Separation of wave direction and time dependence (Wave telescope)

Fourier transform estimation: Get wave vectors and time dependency of waves

- Tetrahedron
- MFO will fly in a Cartwheel-Helix formation
- Distance between spacecraft: ~100 km (H^{+}gyroradius)

Solar Wind Observatory (SWO)

Magnetospheric Formation Orbiters (MFO)

Mission Outline: 4 + 1 Spacecraft
orbit movement $4 \times$ MFO

- 1 Solar Wind Observatory (SWO)
- Solar wind probe
- Data relay to Earth
- Circular orbit for similar upstream solar wind coverage during the whole Martian year
- 4 Magnetospheric Formation Orbiters (MFO)
- Tetrahedral formation with base length of $\sim 100 \mathrm{~km}$
- Elliptical orbit to probe both the magnetotail and frontal boundary regions (BS, MPB) during a Martian year and satisfy timing requirements
- Physical observables
- Solar wind monitor: B, lons, Electrons
- Tetrahedron: B, E, lons, Electrons

What do we Require to Measure This?

Cesa

Science questions	Science objectives	Magnetometer	Ion spectrometer	Electron spectrometer	Langmuir probe	Dipolar antennas
		DC Vector magnetic field	Ion distribution functions	Electron distribution functions	Density, temperature	DC Vector electric field
SQ1: Dynamics, solar wind	SO1.1: Boundaries	- -•••	- -			
	SO1.2: Tail structure	- ••••	- -	-	$\bullet \bullet \bullet \bullet$	
	SO1.3: Current system	- ••••	-	-		
SQ2: Energy transport	SO2.1: Reconnection	-	$\bullet \bullet$			
	SO2.2: Waves	-*••			- $\bullet \bullet$	- $\bullet \bullet$ •
Second. SQ3	SO3.1: Solar wind	-	-	-		
Second. SQ4	SO4.1: Other processes	-	$\bullet \bullet$	-		$\bullet \bullet$

[^0]Fluxgate Magnetometer
b)

Instrument Requirement

- Range: $3000 n T$

Measurement Requirement

- Absolute range:

3000 nT

- Absolute accuracy: $0.5 n T$
- Temporal resolution: 128 samples/sec
- Offset stability: 0.5 nT / 12h
- Absolute vector accuracy: 0.05\%
- Resolution: 20 pT
- 128 vectors $/ \mathrm{s}$
- Attitude knowledge: $<0.05^{\circ}$

Credit: THEMIS instrument team

Instruments on Solar Wind Observatory (SWO)

Cesa

Fluxgate magnetometer (FGM 2)
Fluxgate magnetometer

Magnetometer boom (FGM
boom

Instruments on Magnetospheric Formation Orbiter (MFO)•eesa

Ion spectrometer

Orbital Timeline

Orbit throughout the Martian year:

- Martian year: 687 sidereal days
- Time for apogee within tail boundaries very limited: only 49 days

Orbit w/o precession

Orbit Precession in Martian Year

Orbit throughout the Martian year:

- Martian year: 687 sidereal days
- Time for apogee within tail boundaries very limited: only 49 days

Extend time in tail?
\rightarrow J2 perturbation
(due to Mars oblateness)

- Const. Ω (RAAN) change over time

1: Deep Space

 Correction Maneuver Spacecraft: SWO+MFOsInsertion Orbit

3: MFOs separation from the SWO

Cesa

4: Circularization maneuver

Phobos

Delta-V Budget

Spacecraft	Maneuver	Delta-V [m/s]	Propellant Mass [kg]
SWO $+4 \times$ MFOs	Deep Space Correction Maneuver	$(3,2) 30$	6,4
SWO $+4 \times$ MFOs	Orbital Insertion	2668	3552
SWO	Circularization	75	21
$4 \times$ MFO	Lower Periapsis	1596	50
$4 \times$ MFO	Formation	1600	43

Martian Orbit

Inclination SWO: 30° MFO: 30°

Inclination
SWO: 30°
MFO: 30°

Science Motivation

Science Case

Systems Engineering

Leonard Schulz
Cormac Larkin

System Overview

Cesa

Solar Wind Observatory

High Gain Antenna

Batteries

Magnetospheric Formation Orbiter

Low Gain Antenna

Propulsion

State Mode Diagram

Cesa

SUN SAFE MODE

SAFE MODE

DOWNLINK MODE

Solar Wind
Observatory
7.3 kbps

Magnetospheric Formation Orbiter 24 kbps

Maximum 105 kbps

- 150 Gbit on-board memory

SWO Data Rate		
Instrument	Data rate [kbps]	Measurement time [\% of orbit]
Solar Wind Electron Analyzer	1.5	65
Solar Wind lon Analyser	2.0	65
Fluxgate magnetomet er (2 per s/c)	3.8	65
TOTAL:	7.3	

MFO Data Rate		
Instrument	Data rate [kbps]	Measurement time [\% of orbit]
Solar Wind Electron Analyzer	1.5	50
Solar Wind lon Analyser	2.0	50
Fluxgate magnetometer (2 per s/c)	1.9	50
Suprathermal and Thermal lon	10.0	50
Composition instrument	6.0	50
Electric Field Instrument	3.0	50
Langmuir probe	$\mathbf{2 4 . 4}$	
TOTAL:		

Ground Segment

Cesa

- ESA Deep Space Antennas:
- Cebreros (Spain)
- Malargüe (Argentina)
- New Norcia (Australia)
- Downlink 3-5 times a week

Downlink Times for 24 h Data

 onboard \rightarrow reduced downlink time

Orbit \& Attitude Control - SWO

- 12 thrusters in total using MMH/N204 or Hydrazine monopropellant.
- 4 reaction wheels $(3+1$ spare) for standard pointing and attitude control (heritage: Cluster)
- 2 star trackers (heritage: Cluster)

Orbit \& Attitude Control - MFO

- 12 thrusters in total using MMH/N204 or Hydrazine monopropellant.
- Spin stabilized
- 2 star trackers (heritage: Cluster)

1 x
200N Bipropellant
Image: Orbital Control System

$3 \times \begin{aligned} & \text { 20N Hydrazine Thruster } \\ & \text { Image: Orbital Propulsion Center }\end{aligned}$

8 x
1N Hydrazine Thruster
Image: Orbital Propulsion Center

SWO: Solar wind instruments during science mode

SWO: HGA pointing error to Earth

LGA (dipole) requires alignment with orbital plane normal

Power Budget - SWO

- 3000 Wh Silver-Cadmium batteries (heritage: Cluster)
- Total power consumption range: 240 W to 440 W
- Total power generation in Sun: 400 W
- Maximum eclipse time 9% of orbit
- Batteries fully charged between eclipses
- Degrading of components over lifetime has been considered

	EPS	OBC	COMMS	PAYLOAD	ADCS	PROPULSION	HEATER	TOTAL	MARGINS
CONSUMPTION (W)	5	10	$0-400$	$1-35$	$24-44$	$0-30$	$0-200$	$240-440$	$35-82$
MARGINS	10%	10%	20%	10%	20%	10%	20%		

Power Budget - MFO

- 1500 Wh Silver-Cadmium batteries (heritage: Cluster)
- Total power consumption range: 150W to 250 W
- Total power generation in Sun: 250 W
- Maximum eclipse time 14 \% of orbit
- Batteries fully charged between eclipses
- Degrading of components over lifetime has been considered

	EPS	OBC	COMMS	PAYLOAD	ADCS	PROPULSION	HEATER	TOTAL	MARGINS
CONSUMPTION (W)	5	10	$0-200$	$1-26$	$0-10$	$0-30$	$24-134$	$\mathbf{1 5 0 - 2 4 0}$	$6.4-44$
MARGINS	10%	10%	20%	10%	20%	10%	20%		

Thermal Control Analysis - SWO

Heat Inputs

Power Dissipation: 240 W

Science Mode
Downlink Mode

Thermal Control Analysis - MFO

Heat Inputs

TEMPERATURE				
Hot Case $\left({ }^{\circ} \mathrm{C}\right)$	32			
Cold Case $\left({ }^{\circ} \mathrm{C}\right)$	-14		ORBITAL INPUTS	
:---	---:			
Eclipse time (min)	112			
Max. orbital altitude (km)	20337			
Min. orbital altitude	5762			

Thermal Budget - MFO
Power Dissipation: 150 W

Science Mode
Downlink Mode

Mass Budget

Subsystem	SWO [kg]	1 MFO [kg]	Margin
Main Structure + Adapter	340	35	$20,00 \%$
Batteries + Solar Panels	56	74	$5,00 \%$
Payload (Instruments)	20	22	$5,00 \%$
Antenna	12	10	$5,00 \%$
On-board Computer	6,5	6,5	$5,00 \%$
Attitude \& Orbit Control	30	17	$10,00 \%$
Thermal	23	8	$20,00 \%$
Dry mass (without margins)	465	164	$20,00 \%$
Dry mass (inc.margins)	558	197	
Propellant (inc. margin)	3711	103	$10,00 \%$
TOTAL (kg):	$\mathbf{4 5 4 9}$	$\mathbf{3 0 0}$	

Direction	Frequency band (Hz)	Sine amplitude (g)
Longitudinal	$2-50$	1.0
	$50-100$	0.8
	$2-25$	0.8
	$25-100$	0.6

Lateral Frequency: 79.905 Hz

Longitudinal Frequency: 217.88 Hz

- Both lateral and longitudinal frequencies satisfy the launch requirements

Technology Readiness Level - System

System Component (SWO)	TRL
Reaction wheel system	9
Propulsion system	6
Star tracker	6
System Component (MFO)	TRL
Reaction wheel system	9
Propulsion system	6
Star tracker	6

Technology Readiness Level - Instruments

Technology Readiness

System Component (SWO)	TRL
3-axis fluxgate magnetometer	6
Electron electrostatic analyzer	6
Ion energy spectrometer	6
System Component (MFO)	TRL
3-axis fluxgate magnetometer	6
Electron electrostatic analyzer	6
Ion electrostatic and TOF velocity analyzer	6
Electric dipole antennas	6
Langmuir probes	6

Component and/or breadboard functional
TRL 4 verification in laboratory environment. Component and/or breadboard critical functional TRL 5 verification in laboratory environment. Model demonstrating the critical functions of the TRL 6 element in a relevant environment Model demonstrating the element performance

TRL 7 for the operational environment

 Actual system completed and accepted for flight TRL 8 ("Flight Qualified") Actual system "flight proven" through successful TRL 9 mission operations
Science Motivation

Science Case

Systems Engineering

- Science data transmitted from ground stations to ESAC in Madrid
- Science data can be reduced at ESAC and shared with partners

Level	Description	Data Product
Raw	Raw telemetry data	
L0	Unprocessed instrument \& payload data	CCSDS packets
L1	Lartly or uncalibrated time-series data calibrations	L2 with spatial and temporal resampling
L2	Merged open-source database	Research-grade data
L3	L4	Mission-Level Data Product

Risk Assessment

	Low	Medium	C5-Loss of SWO C5 - SWO orbit insertion High failure	Very high	Very high
	Low	B4 - Loss of MFO Low	Medium	High	Very high
	Very low	Low	C3-(Partial) misalignment of formation	Medium	High
	Very low	Very low	Low	Low	Medium
	Very low	B2 - Launcher Unavailable Very low	Very low	Low	Low
	A - Remote	B - Unlikely	C - Possible	D - Likely	E - Near Certain

Likelihood

Code	Risk	Mitigation
C5	Loss of SWO	Possibly use MRO for communication between MFO and Earth, but lose solar wind monitoring
C5	SWO orbit insertion failure	Total Mission Loss
B4	Loss of MFO	Add fifth MFO for redundancy or lose some science
C3	(Partial) misalignment of formation	Use more propellant at expense of mission lifetime
B2	Launcher not available	Use alternative launcher or delay launch

Space Debris Mitigation

Cesa

- Compliance with ESSB-HB-U-002, ESA Space Debris Mitigation Compliance Verification Guidelines
- Compatible with planned orbital insertion
- No debris left in protected orbits

ECSS-U-ST-20C standard - Mission as proposed is
Category III and all requirements given in 5.3.2.1 are feasible

4.2.4 Category III

4.2.4.1 Description

Fly-by and orbital missions to a target body for which there is significant scientific interest relative to the process of chemical evolution and the origins of life and for which scientific opinion provides a significant chance that contamination by a spacecraft can compromise future investigations.

4.2.4.2 Applicability

Mars, Europa, Enceladus.

Cesa

Instruments contributed by member states (also possibly international partners)

Element	\% of total Cost at Completion	Amount in M€
ESA Space Segment	47%	700
A64 Launcher	10%	150
Mission \& Science Ops	15%	225
ESA Project	11.5%	175
Margin	16.5%	250
	Total	1500

Element	Request	Comments	Status
ESA Cost at Completion	≤ 550 M€ - M-Class $\sim 1500 \mathrm{ME}-$--Class	Includes all elements to be funded by ESA	Not Anticipated Expected
Science objectives and instruments	Any science objective can be proposed - M-Class Specific themes - L-Class	The science instruments must be defined in relation with the science objectives.	Objectives well aligned with Voyage 2050 Senior Committee Report
Launcher	Ariane 62 (M) Ariane 64 (L)	Non European launcher excluded.	Ariane 64 probably required
Spacecraft dry mass	S1500 kg - M-Class $\sim 6000 \mathrm{~kg}-$ L-Class	Recommended upper limit in view of the cost target	Not Anticipated Expected
Platform and Science Payload TRL	TRL 5-6 by mission adoption		Yes, all TRL ≥ 6
International collaboration	Can be envisaged	Possible, not required	
Spacecraft and science operations	Nominal duration of science operations typically <3 years	Other schemes may be considered subject to feasibility.	Yes for primary science objectives
	L-Class Plus required due to mass and complexity		

cesa

Space Safety for Astronauts on Mars

Encourage interest in STEM

OUTREACH OBJECTIVES

Value for money

Outreach

Cesa

Public lectures

Social Media

School activities

Build your own M5
m5_space_mission Follow

Mars Magnetospheric Multipoint Measurement Mission 2030 合
First Multipoint Mars Space mission

囲 POSTS
(8) TAGGED

Our team

Science: Leonard Schulz (Lead), Pietro Dazzi, Sara Östman, Daniel Teubenbacher

Payload: Markus Baumgarther-Steinleitner (Lead), Marianne Brekkum, Adam Cegla, Sofia Lénnerstrand

System Engineering: Ville Lundén (Lead), Vasco Castro Pires, Alessia De luliis, Jonas Gesch, Inés Terraza Palanca

Mission Lead: Cormac Larkin
Tutors: Florine Enengl and Markus with a c Hallmann

Backup Slides - Science

Orbit Time in Tail

Cesa

	Magnetic field	Energy	Gyroradius
Solar Wind	3 nT	1 keV	2400 km
Magnetosheath	10 nT	$50-500 \mathrm{eV}$	$160-500 \mathrm{~km}$
Near tail	20 nT	10 eV	30 km

$r_{g}=\frac{\sqrt{2 E m}}{|q| B}$
m is the mass, E is the energy, q is the electric charge, and B is the strength of the magnetic field
Additional source $r_{\text {gi,tail: }}$ Harada, Y., et al. (2015)
Source Magnetosheath $E_{H_{+}}$; Nilsson, H., Stenberg, G., Futaana, Y. et al. (2012)

Bow Shock

Backup Slides - Engineering

M5

Structure - Details and General Dimensions

Cesa

- Safe Mode: Used to travel to Mars to ensure the power for different subsystems is off and power is saved.
- Commissioning Mode: Turn on instruments and payloads to perform testing and health check.
- Orbital control Mode: Maneuvering with thrusters.
- Science Mode: Instruments are on and measuring.
- Burst Mode: Science Mode with increased data rate (only MFO).
- Sun Safe Mode: Entered automatically when battery voltage drops below the setted voltage threshold. Several high-consuming energy functions cannot be performed, such as payload and downlink execution, in order to extend operating life.
- Downlink Mode: Transmit data.
- Strict magnetic cleanliness required to comply with magnetic field accuracy and resolution requirements
- All fluxgate magnetometers on 5 m long booms
- All soft magnetic materials should be avoided on the spacecraft, in particular close to the magnetometers
- All current loops should be minimized and compensated for where possible
- Magnetic dipole moments of the spacecraft should be compensated for

Link Budget SWO

Cesa

BEST CASE: Closest position
WORST CASE: Furthest position

LINK BUDGET	[dB]	LINK BUDGET	[dB]
EIRP	21,7	EIRP	66,8
Antenna Pointing Loss	-1,1	Antenna Pointing Loss	-1,1
Transmission Loss	-165,8	Transmission Loss	-284,8
RxG/T	13	RxGT	50,3
Boltzmann's constant (k)	228,6	Boltzmann's constant (k)	228,6
Data Rate	-53	Data Rate	-53
Final EB/EN	18,5	Final EB/EN	6,8
LINK BUDGET (Mbps)	25,15	LINK BUDGET (Mbps)	0,48

TRANSMISSION LOSS	
Range (km)	55000000
Transmission	$\mathbf{0 , 6 5}$
Spaceloss (dB)	$\mathbf{- 2 8 4 , 8}$

Mass Budget

Subsystem	SWO [kg] $\mathbf{1}$ MFO [kg]	Margin	
Main Structure	288,0	35,0	1,20
Battery x 2	37,8	18,9	1,05
Payload (Instruments)	21,0	22,0	1,05
Antenna	12,7	10,5	1,05
On-board Computer	6,8	6,5	1,05
Attitude \& Orbit Control (thrusters, star tracker, reaction wheels)	33,0	18,3	1,10
Thermal	32,8	10,8	1,20
Solar panels (panels + power system)	47,3	68,3	1,05

Subsystem	SWO [kg] $\mathbf{1}$ MFO [kg]	Margin	
Rail Structure (we can delete this)	0,0	0,0	1,20
Launcher Adapter	100,0	0,0	
Overall Margins (20\%)			1,20
Final mass budget	SWO [kg]	1 MFO [kg]	Margin
Dry mass (without margins)	546,6	179,5	
Dry mass (with margins)	695,3	228,3	
Propellant	764,8	251,2	1,10
TOTAL (kg):	$\mathbf{1 4 5 3 , 7}$	$\mathbf{5 2 9 , 7}$	

- ~3000 Wh Silver-Cadmium batteries (heritage from Cluster)
- Large capacity to ensure batteries are not depleted over 15% per charge cycle to increase battery lifetime

MODE	CONSUMPTION (W)							Total production: 700 W	
	EPS (TBC)	OBC (RAD-750)	COMMS	PAYLOAD	ADCS (TBC)	PROPULSION	HEATER	TOTAL CONSUMPTION (W)	MARGINS (W)
Safe Mode	5	10	0	1	24	0	200,0	240	41,98
Science Mode	5	10	0	35	44	0	146,0	240	61,5
Commissioning Mode	5	10	0	1	24	0	200,0	240	41,98
Downlink mode	5	10	400	1	24	0	0,0	440	81,98
Sun Safe mode	5	10	0	1	24	0	200,0	240	41,98
Orbital control mode	5	10	0	1	44	30	150,0	240	35,38
MARGINS	10\%	10\%	20\%	10\%	20\%	10\%	20\%		

- ~1500 Wh Silver-Cadium batteries (heritage from Cluster)
- Large capacity to ensure batteries are not depleted over 15% per charge cycle to increase battery lifetime

MODE	CONSUMPTION (W)							Total production: 250 W	
	EPS	OBC	COMMS	PAYLOAD	ADCS	HEATERS	PROPULSION	POWER BUDGET (W)	MARGINS (W)
Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Science Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Burst Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Downlink mode	5,0	10,0	200,0	1,0	10,0	24,0	0,0	250,0	44,1
Orbital control mode	5,0	10,0	0,0	1,0	10,0	74,0	50,0	150,0	14,1
Commissioning Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Sun Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	1,5
MARGINS	0,1	0,1	0,2	0,1	0,2	0,1	0,1		

Thermal budget - SWO

MODE	HEAT DISSIPATION (W)							Allowed range: 80 W to 280 W	
	EPS (TBC)	OBC (RAD-750)	COMMS	PAYLOAD	ADCS (TBC)	PROPULSION	HEATER	TOTAL DISSIPATION (W)	MARGINS (W)
Safe Mode	5,0	10,0	0,0	1,0	24,0	0,0	200,0	240,0	42,0
Science Mode	5,0	10,0	0,0	35,0	44,0	0,0	146,0	240,0	61,5
Commissioning Mode	5,0	10,0	0,0	1,0	24,0	0,0	200,0	240,0	42,0
Downlink mode	5,0	10,0	200,0	1,0	24,0	0,0	0,0	240,0	42,0
Sun Safe mode	5,0	10,0	0,0	1,0	24,0	0,0	200,0	240,0	42,0
Orbital control mode	5,0	10,0	0,0	1,0	44,0	30,0	150,0	240,0	35,4
MARGINS	0,1	0,1	0,2	0,1	0,2	0,1	0,2		

MODE	DISSIPATION							Allowed range: 80 W to 280 W	
	EPS	OBC	COMMS	PAYLOAD	ADCS	HEATERS	PROPULSI ON	TOTAL DISSIPATION (W)	MARGINS (W)
Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Science Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Burst Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Downlink mode	5,0	10,0	100,0	1,0	10,0	24,0	0,0	150,0	24,1
Orbital control mode	5,0	10,0	0,0	1,0	10,0	74,0	50,0	150,0	14,1
Commissioning Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Sun Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	1,5
MARGINS	0,1	0,1	0,2	0,1	0,2	0,1	0,1		

Alternative launch schedule
Phases

MMMMM (M5) Science Traceability Matrix

| Primary
 Science
 Questions | Tier 1
 Science
 Objectives | Measurement |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

A four spacecraft formation orbiting
Mars as a 3D constellation of separations in the order of 100 km .

O1.1.4. The vector magnetic field, in the upstream solar wind.	- Measure upstream of the solar wind: - Absolute range: 500 nT - Absolute accuracy: $0.5 n T$ - Temporal resolution: 32 samples/sec	$1 S / C$	3-axis fluxgate magnetomet er	- Range: 500 nT - Offset stability: 0.5 nT / 12h - Absolute vector accuracy: 0.05\% - Resolution: 20 pT - 32 vectors/s - Attitude knowledge: $<0.05^{\circ}$	The measurements shall be made with a distance to the boundary measuring spacecraft constellation of at least 4 RM. The measurements in the solar wind shall be taken at least 50\% of the time.	A single spacecraft with a circular orbit around Mars of at least 5 RM, with instruments pointed at the solar wind, if applicable.
O1.1.6. The ion density and bulk velocity of different mass species (to detect higher mass ions in CME events), in the upstream solar wind.	Measure upstream of the solar wind: - Energy range: $10 \mathrm{eV} / \mathrm{q}$ to 25 keV/q. - Energy resolution (DeltaE/E): 25\% - Temporal resolution: $5 s$ - FOV: $180^{\circ} x$ 40° - Detect H+, He++, higher mass	$1 S / C$	Ion energy spectromete r	Electrostatic analyzer: - Energy range: 10 eV/q to $25 \mathrm{keV} / \mathrm{q}$. - Energy resolution (DeltaE/E): 25\% - Temporal resolution: 5s - Angle coverage: $180^{\circ} \times 40^{\circ}$ Differentiation between $\mathrm{H}+$ and He++ by E/q	The measurements shall be made with a distance to the boundary measuring spacecraft constellation of at least 4 RM. The measurements in the solar wind shall be taken at least 50% of the time.	A single spacecraft with a circular orbit around Mars of at least 5 RM, with instruments pointed at the solar wind, if applicable.

O1.1.6. The ion density and bulk velocity of different mass species (to detect higher mass ions in CME events), in the upstream solar wind.	Measure upstream of the solar wind: - Energy range: 10 eV/q to $25 \mathrm{keV} / q$. - Energy resolution (DeltaE/E): 25\% - Temporal resolution: 5 s - FOV: $180^{\circ} \times 40^{\circ}$ - Detect H+, He++, higher mass	1 S/C	Ion energy spectrome ter	Electrostatic analyzer: - Energy range: $10 \mathrm{eV} / \mathrm{q}$ to 25 keV/q. - Energy resolution (DeltaE/E): 25\% - Temporal resolution: $5 s$ - Angle coverage: $180^{\circ} \times 40^{\circ}$ Differentiation between H+ and He++ by E/q

The measurements shall be made with a distance to the boundary measuring spacecraft constellation of at least 4 RM. The measurements in the solar wind shall be taken at least 50\% of the time.

A single spacecraft with a circular orbit around Mars of at least 5 RM, with instruments
pointed at the solar wind, if applicable.
01.2. What is the structure of the Martian magnetotail on different scales, with particular interest for its dependence upon solar wind conditions?
01.2.1 The vector Measure in the tail magnetic field at region: multiple points, separated at ion kinetic scales, measured at different positions in the tail region.

- Absolute range: 3000 nT
- Absolute accuracy: $0.5 n T$ - Temporal resolution: 32 samples/sec
4 S/C. Measure
with a distance of
$\sim 100 \mathrm{~km}$. Also take
different
maesurements in
the whole of the
tail.
- Range: 3000 nT Measurements shall be made when the solar wind observatory is in the upstream solar wind. The measurements shall be made inside the outer boundary regions of the magnetotail. The spacecraft shall be in a tetrahedron configuration with separations in the order of 100km. The S/C constellation shall stay in the tail for at least $1 h$.

A four spacecraft formation orbiting Mars as a tetrahedron configuration of separations in the order of 100 km .

	01.2.2. The electron density and temperature, measured at different positions in the tail region.	Measure in the tail region:	4 S/C. Measure with a distance of $\sim 100 \mathrm{~km}$. Also take different maesurements in the wohle of the tail ($\sim 1000 \mathrm{~km}$ scale).	Langmuir probe	Measurements shall be made when the solar wind observatory is in the upstream solar wind. The measurements shall be made inside the outer boundary regions of the magnetotail. The spacecraft shall be in a tetrahedron configuration with separations in the order of 100 km . The S/C constellation shall stay in the tail for at least 1h.	A four spacecraft formation orbiting Mars as a tetrahedron configuration of separations in the order of 100 km order of 100 km .
				40		111

O1.2.3. The ion
density, bulk velocity,
temperature,
measured at different positions in the tail region.

Measure in the tail region: - Energy range: 1 eV to 30 keV . - Energy resolution (DeltaE/E): 25\% - Temporal resolution: 5 s - FOV: $360^{\circ} \times 90^{\circ}$ - Detect H+, O+, $\mathrm{O} 2+, \mathrm{CO}+$	1 S/C. Also take different maesurements in the wohle of the tail (~1000km scale).	Ion electrostati c and TOF velocity analyzer	Electrostatic analyzer: - Energy range: 1 eV to 30 keV . - Energy resolution (DeltaE/E): 25\% - Temporal resolution: $5 s$ - Angle coverage: $360^{\circ} \times 90^{\circ}$ Carbon foil TOF analyzer: - Proton flight of time 12 to 7 ns - Anode detection resolution: 22.5°	Measurements shall be made when the solar wind observatory is in the upstream solar wind. The measurements shall be made inside the outer boundary regions of the magnetotail. The spacecraft shall be in a tetrahedron configuration with separations in the order of 100 km . The S/C constellation shall stay in the tail for at least $1 h$.

A four spacecraft formation orbiting
Mars as a
tetrahedron
configuration of
separations in the
order of 100 km .

[^0]: Science Objectives \rightarrow Measurement Requirements \rightarrow Instrument Requirements \rightarrow Orbit Requirements \rightarrow Functional Requirements

