

Red Team: M⁵ Mars **M**agnetospheric **M**ultipoint **M**easurement **M**ission

ESA Summer School, Alpbach 2022

Our target

The Martian Magnetosphere

Mars magnetic reconnection: Harada Y., et. al.. (2018)

Figure: Grandin, Maxime. (2017)

MAVEN & EscaPADE Missions

MAVEN

- Atmospheric loss
- Single S/C

EscaPADE:

- Hybrid magnetosphere, collisional atmosphere, and energy transport.
- Double S/C

Images: NASA

What we Don't Know and why it's Important

How does the magnetosphere change with solar wind conditions?

- To know how the atmosphere evolves over time, we need to know how it changes with changing solar wind conditions
- To protect people and technology, we need to know how the system responds to different conditions

What is the energy transport across different scales in the Martian environment?

What does the Martian magnetotail region look like?

What we Don't Know and why it's Important

How does the magnetosphere change with solar wind conditions?

What is the energy transport across **different scales** in the Martian environment?

• Energy transport processes in space plasmas span different spatial and temporal scales, and are vital to understanding the dynamics of the complete system

What does the Martian magnetotail region look like?

What we Don't Know and why it's Important

How does the magnetosphere change with solar wind conditions?

What is the energy transport across **different scales** in the Martian environment?

- What does the Martian magnetotail region look like?
 - The solar wind transports energy to the magnetosphere in the tail region
 - Mass is transported away from the Martian system at the tail
 - We don't know whether magnetic reconnection occurs in the magnetotail, which would vastly change the dynamics of the tail and the whole system

... and we are not the Only Ones who Think so

ESA Voyage 2050 Senior Committee Report:

- "The key difficulty in understanding the plasma energization lies in the two-way nature of the intrinsic multiscale physics of plasmas: processes on the large scales affect the small-scale physics and processes on the small scales affect the large-scale evolution of plasmas."
- "[...] planetary objects such as **Mars**, Jupiter, and comets enable the study of different types of magnetospheric interaction, including interactions with induced magnetospheres. It further addresses fundamental questions of **planetary evolution** such as atmospheric escape over geological time scales."
- "[...] relevant to Mars' environment in the Voyage 2050 era in relation to astronaut safety and the protection of space infrastructure in Mars orbit."

Voyage 2050

Final recommendations from the Voyage 2050 Senior Committee

koyage 2050 Senior Committee: Linds J. Tacconi (*chair*), Christopher S. Arridge (*co-chair*), lessandra Buonanno, Mike Cruise, Olivier Grasset, Amina Helmi, Luciano Iess, Elichiro Komatsu, efemy Leconte, Jorit Leenastro, Jesús Martín-Pintado, Rumi Nakamura, Darach Watson. May

Scientific Theme

"Understand how the variable solar wind conditions influence the dynamics and energy transport of the Martian induced magnetosphere."

Q1: How do the Martian magnetospheric system's **structure** and **dynamics** depend on **solar wind** conditions? Q2: How is **energy transported** within the Martian magnetospheric system on ion scales and above?

Science Questions and Objectives

Primary Science Questions	Science Objectives			
Q1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?	 O1.1: What are the dynamics and orientation of boundary regions, with particular interest for their dependence upon solar wind conditions? O1.2: What is the structure of the Martian magnetotail on different scales, with particular interest for its dependence upon solar wind conditions? O1.3: What is the dynamical structure of the current system in the Martian magnetosphere, with particular interest for its dependence upon solar wind conditions? 			
Q2: How is energy transported within the Martian magnetospheric system on ion scales and above?	 O2.1: Is magnetic reconnection observed in the magnetosphere tail, and if so, where and how? O2.2: What are the direction and temporal evolution of low frequency plasma waves? 			

Structure of Martian Induced Magnetosphere

·eesa

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

Sánchez-Cano et al., 2020

· eesa

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

Sánchez-Cano et al., 2020

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

Sánchez-Cano et al., 2020

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar veecesa wind conditions?

O1.2: What are the dynamics and orientation of **boundary regions**, with particular interest for their dependence upon solar wind conditions?

Sánchez-Cano et al., 2020

Matsunaga, 2017

SQ1: How do the Martian magnetospheric system's structure and dynamics depend on solar wind conditions?

O1.3: What is the dynamical structure of the **current system** in the Martian magnetosphere, with particular interest for its dependence upon solar wind conditions?

Ramstad, 2019

O1.3: What is the dynamical structure of the **current system** in the Martian magnetosphere, with particular interest for its dependence upon solar wind conditions?

Ramstad, 2019

4 S/C observations needed for Curlometer method!

O2.1: Is **magnetic reconnection** observed in the magnetosphere tail, and if so, where and how?

Ma et al., 2017

Sánchez-Cano et al., 2020

SQ2: How is energy transported within the Martian magnetospheric system on ion and above scales?

4 S/C observations needed for wave telescope technique!

nT²/Hz)

-1.0

-1.5

-2.0

-2.5

Secondary Science Questions	Secondary Science Objectives			
Q3: How does the solar wind propagate through the solar system?	 O3.1: What are the temporal variations of the upstream solar wind conditions at Mars? 			
Q4: Excluding magnetic reconnection, are there other processes driving the energy transport at the Martian magnetotail?	 O4.1: Are other energy transport processes observed at the Martian magnetotail that exhibit signatures different to magnetic reconnection? 			

3D Picture is Needed \rightarrow 4 Spacecraft

• Three dimensional mapping of magnetosphere currents (Curlometer)

Solving Ampere's Law to get currents requires 3D gradients

$$\implies \nabla \times \vec{B} = \mu_0 \vec{J}$$

• Separation of wave direction and time dependence (Wave telescope)

Fourier transform estimation: Get wave vectors and time dependency of waves

- Tetrahedron
- MFO will fly in a Cartwheel-Helix formation
- Distance between spacecraft: ~100 km (H⁺ gyroradius)

Mission Outline: 4 + 1 Spacecraft

- 1 Solar Wind Observatory (SWO)
 - Solar wind probe
 - Data relay to Earth
 - Circular orbit for similar upstream solar wind coverage during the whole Martian year
- 4 Magnetospheric Formation Orbiters (MFO)
 - Tetrahedral formation with base length of ~100 km
 - Elliptical orbit to probe both the magnetotail and frontal boundary regions (BS, MPB) during a Martian year and satisfy timing requirements
- Physical observables
 - Solar wind monitor: B, Ions, Electrons
 - Tetrahedron: B, E, Ions, Electrons

What do we Require to Measure This?

Science questions	Science objectives	Magnetometer	lon spectrometer	Electron spectrometer	Langmuir probe	Dipolar antennas
		DC Vector magnetic field	lon distribution functions	Electron distribution functions	Density, temperature	DC Vector electric field
SQ1: Dynamics, solar wind	SO1.1: Boundaries	•••••	••			
	SO1.2: Tail structure	•••••	••	٠	••••	
	SO1.3: Current system	••••	•	٠		
SQ2: Energy transport	SO2.1: Reconnection	••	••			
	SO2.2: Waves	••••			••••	••••
Second. SQ3	SO3.1: Solar wind	٠	•	٠		
Second. SQ4	SO4.1: Other processes	••	••	••		••

 ${\tt Science\ Objectives} \rightarrow {\tt Measurement\ Requirements} \rightarrow {\tt Instrument\ Requirements} \rightarrow {\tt Orbit\ Requirements} \rightarrow {\tt Functional\ Requirements} \rightarrow {\tt Science\ Objectives} \rightarrow {\tt Measurement\ Requirements} \rightarrow {\tt Instrument\ Requirements} \rightarrow {\tt Orbit\ Requirements} \rightarrow {\tt Functional\ Requirements} \rightarrow {\tt Science\ Objectives} \rightarrow {\tt Measurement\ Requirements} \rightarrow {\tt Science\ Objectives} \rightarrow {\tt Measurement\ Requirements} \rightarrow {\tt Science\ Objectives} \rightarrow {\tt Measurement\ Requirement\ Requirem$

Measuring Magnetic Fields

Fluxgate Magnetometer

Credit: THEMIS instrument team

Measurement Requirement

- Absolute range: 3000 nT
- Absolute accuracy: 0.5 nT
- Temporal resolution: 128 samples/sec

Instrument Requirement

- Range: 3000 nT
- Offset stability: 0.5 nT / 12h
- Absolute vector accuracy: 0.05%
- Resolution: 20 pT
- 128 vectors/s
- Attitude knowledge: <0.05°

Mo

Instruments on Solar Wind Observatory (SWO)

Instruments on Magnetospheric Formation Orbiter (MFO) esa

Instrumental Heritage for MFOs

Orbital Timeline

Orbital Timeline

Orbit Precession in Martian Year

Orbit throughout the Martian year:

- Martian year: 687 sidereal days
- Time for apogee within tail boundaries very limited: only 49 days

Orbit Precession in Martian Year

Orbit with precession: Orbit throughout the Martian year: Martian year: 687 sidereal 280 days in the days tail region Time for apogee within tail boundaries very limited: only 49 days SUN MARS Extend time in tail? \rightarrow J2 perturbation (due to Mars oblateness) Const. Ω (RAAN) change MARS over time 41

Earth Mars 2000ICRF Axes 1 02:39:13.672 Time Step: 10.00 sec

Deimos

Phobos

EMOs

1: Deep Space Correction Maneuver **Spacecraft:** SWO+MFOs DeltaV=3.00 m/s

Deimos

MOs

Phobos

2: Orbit Insertion Maneuver Spacecraft: SWO+MFOs DeltaV=2540.64 m/s

Insertion Orbit

Deimos

EMOs

Phobos 5. Lower Periapsis Spacecraft:MFOs DeltaV=380.03 m/s

Delta-V Budget

Spacecraft	Maneuver	Delta-V [m/s]	Propellant Mass [kg]
SWO + 4 \times MFOs	Deep Space Correction Maneuver	(3,2) 30	6,4
SWO + 4 \times MFOs	Orbital Insertion	2668	3552
SWO	Circularization	75	21
4 imes MFO	Lower Periapsis	1596	50
4 imes MFO	Formation	1600	43
		TOTAL: 5969	3672,8

001CRF Axes

System Overview

Solar Wind Observatory

Magnetospheric Formation Orbiter

Key System Drivers

Instrument Data Rates

	SV	VO Data R	ate	MFO Data Rate			
Solar Wind Magnetospheric Observatory Formation Orbiter		Instrument	Data rate [kbps]	Measurement time [% of orbit]	Instrument	Data rate [kbps]	Measurement time [% of orbit]
7.3 kbps	24 kbps	Solar Wind Electron			Solar Wind Electron Analyzer	1.5	50
x1 +4		Analyzer		65	Solar Wind Ion Analyser	2.0	50
		Solar Wind Ion Analyser	2.0	65	Fluxgate magnetometer (2 per s/c)	1.9	50
Max 105	Fluxgate magnetomet er (2 per s/c)	3.8	65	Suprathermal and Thermal Ion Composition instrument	10.0	50	
	TOTAL:	7.3		Electric Field Instrument	6.0	50	
• 150 Gbit o	n-board memory				Langmuir probe	3.0	50

TOTAL:

24.4

• ESA Deep Space Antennas:

- Cebreros (Spain)
- Malargüe (Argentina)
- New Norcia (Australia)
- Downlink 3–5 times a week

Downlink Times for 24 h Data

 Data can be automatically prioritized and compressed onboard → reduced downlink time

Orbit & Attitude Control – SWO

- **12 thrusters** in total using MMH/N204 or Hydrazine monopropellant.
- **4 reaction wheels** (3 + 1 spare) for standard pointing and attitude control (heritage: Cluster)
- 2 star trackers (heritage: Cluster)

1 x 400N Bipropellant Thruster Image: Orbital Propulsion center

Heritage: THEOS

1N Hydrazine Thruster Image: Orbital Propulsion Center

Orbit & Attitude Control – MFO

- 12 thrusters in total using MMH/N204 or Hydrazine monopropellant.
- Spin stabilized
- 2 star trackers (heritage: Cluster)

Pointing Stability

SWO: Solar wind instruments during science mode

SWO: HGA pointing error to Earth

LGA (dipole) requires alignment with orbital plane normal

· eesa

- 3000 Wh Silver-Cadmium batteries (heritage: Cluster)
- Total power consumption range: 240 W to 440 W
- Total power generation in Sun: 400 W
- Maximum eclipse time 9 % of orbit
- Batteries fully charged between eclipses
- Degrading of components over lifetime has been considered

	EPS	ОВС	COMMS	PAYLOAD	ADCS	PROPULSION	HEATER	TOTAL	MARGINS
CONSUMPTION (W)	5	10	0–400	1–35	24–44	0–30	0–200	240–440	35–82
MARGINS	10%	10%	20%	10%	20%	10%	20%		

- 1500 Wh Silver-Cadmium batteries (heritage: Cluster)
- Total power consumption range: 150W to 250W
- Total power generation in Sun: 250 W
- Maximum eclipse time 14 % of orbit
- Batteries fully charged between eclipses
- Degrading of components over lifetime has been considered

	EPS	ОВС	COMMS	PAYLOAD	ADCS	PROPULSION	HEATER	TOTAL	MARGINS
CONSUMPTION (W)	5	10	0–200	1–26	0–10	0–30	24–134	150–240	6.4–44
MARGINS	10%	10%	20%	10%	20%	10%	20%		

Thermal Control Analysis – SWO

HEAT INPUTS	
Hot Case (°C)	58
Cold Case (°C)	-6

ORBITAL INPUTS	
Eclipse time (min)	70
Max. orbital altitude (km)	16948

Power Dissipation: 240 W

Science Mode

Downlink Mode

Thermal Control Analysis – MFO

Power Dissipation: 150 W

Science Mode

Downlink Mode

Mass Budget

Solar Wind Observatory 4549 kg

 \uparrow^{Λ}

Magnetospheric Formation Orbiter 300 kg

44

Total 5749 kg

Subsystem	SWO [kg]	1 MFO [kg]	Margin
Main Structure + Adapter	340	35	20,00%
Batteries + Solar Panels	56	74	5,00%
Payload (Instruments)	20	22	5,00%
Antenna	12	10	5,00%
On-board Computer	6,5	6,5	5,00%
Attitude & Orbit Control	30	17	10,00%
Thermal	23	8	20,00%
Dry mass (without margins)	465	164	20,00%
Dry mass (inc.margins)	558	197	
Propellant (inc. margin)	3711	103	10,00%
TOTAL (kg):	4549	300	

Structure - Modal Analysis

Lateral Frequency: 79.905 Hz Longitudinal Frequency: 217.88 Hz

• Both lateral and longitudinal frequencies satisfy the launch requirements

U, Magnitude

V

7.827e-01 6.522e-01

5.218e-01

3.913e-01

2.980e-08

304e-01

609e-0

Direction	Frequency band (Hz)	Sine amplitude (g)
Longitudinal	2-50	1.0
	50-100	0.8
Lateral	2-25	0.8
	25-100	0.6

System Component (SWO)	TRL		
Reaction wheel system	9		Component and/or breadboard functional
	<u>^</u>	TRL 4	verification in laboratory environment.
Propulsion system	6		Component and/or breadboard critical
		TRL 5	functional verification in laboratory environment.
Star tracker	6		Model demonstrating the critical functions of the
		TRL 6	element in a relevant environment
System Component (MFO)	TRL	TRL 7	Model demonstrating the element performance for the operational environment
Reaction wheel system	9		Actual system completed and accepted for flight
		TRL 8	("Flight Qualified")
Propulsion system	6		Actual system "flight proven" through successful
		TRL 9	mission operations
Star tracker	6		

Technology Readiness Level – Instruments

System Component (SWO)	TRL	Technology Readiness	
3-axis fluxgate magnetometer	6		57
Electron electrostatic analyzer	6		Component and/or breadboard functional verification in laboratory environment.
Ion energy spectrometer	6		Component and/or breadboard critical functional verification in laboratory environment.
System Component (MFO)	TRL		Model demonstrating the critical functions of the element in a relevant environment
3-axis fluxgate magnetometer	6	2003	Model demonstrating the element performance
Electron electrostatic analyzer	6		for the operational environment Actual system completed and accepted for flight
Ion electrostatic and TOF velocity analyzer	6	TRL 8	("Flight Qualified")
Electric dipole antennas	6	2313	Actual system "flight proven" through successful mission operations
Langmuir probes	6		

Activities			Phases																				
		P	hase	0	Pha	se A	F	ha	se B	P	has	se C		Pha	ise D			Phase	E		Pha	se F	
	Function																						
	Requirements																						
	Definition																						
	Verification															_							
	Production																						
	Utilisation																				_		
	Disposal										_		_						_				
-	Task		22	202		2024	202		2026	202		2028		029	2030		31	2032		2033			035
		H1	H2	H1 F	12 H	1 H2	H1	H2	H1 H2	H1 H	2	H1 H2	2 H1	. H2	H1 H2	2 H1	H2	H1 H	2	H1 H2	H1 H	2 H1	H2
	Mission Design																						
	Preliminary Requirements																						
	System Requirements																						
	Preliminary Design																						
	Critical Design																						
QR	Qualification																						
-	Acceptance																						
ORR	Operational Readiness																						
-	Flight Acceptance																						
LRR	Launch Readiness											Pl	anne	d laun	ich ->				<	<- Next l	aunch w	indow	
CRR	Commissioning Result																	_					
SO	Science operations																						
POE	Possibility of Extension																						
ELR	End of Life																						
MCR	Mission Close-out																						

- Science data transmitted from ground stations to ESAC in Madrid
- Science data can be reduced at ESAC and shared with partners

Image credit: ESA

Data Products

Level	Description	Data Product
Raw	Raw telemetry data	
LO	Unprocessed instrument & payload data	CCSDS packets
L1	Partly or uncalibrated time-series data	
L2	L1 with derived parameters and full science calibrations	Research-grade data
L3	L2 with spatial and temporal resampling	
L4	Merged open-source database	Mission-Level Data Product

Risk Assessment

	5	_ow		C5 - Loss of SWO C5 - SWO orbit insertion failure High	Very high	Very high
	4	Low	B4 - Loss of MFO Low	Medium	High	Very high
Severity	3 '	/ery low	Low	C3 - (Partial) misalignment Low of formation	Medium	High
	2	Very low	Very low	Low	Low	Medium
	1	Very low	B2 - Launcher Unavailable Very low	Very low	Low	Low
	1	A - Remote	B - Unlikely	C - Possible Likelihood	D - Likely	E - Near Certain

Code	Risk	Mitigation
C5	Loss of SWO	Possibly use MRO for communication between MFO and Earth, but lose solar wind monitoring
C5	SWO orbit insertion failure	Total Mission Loss
B4	Loss of MFO	Add fifth MFO for redundancy or lose some science objectives
C3	(Partial) misalignment of formation	Use more propellant at expense of mission lifetime
B2	Launcher not available	Use alternative launcher or delay launch

- Compliance with ESSB-HB-U-002, ESA Space Debris Mitigation Compliance Verification Guidelines
- Compatible with planned orbital insertion
 - No debris left in protected orbits

ECSS-U-ST-20C standard - Mission as proposed is Category III and all requirements given in 5.3.2.1 are feasible

4.2.4 Category III

4.2.4.1 Description

Fly-by and orbital missions to a target body for which there is significant scientific interest relative to the process of chemical evolution and the origins of life and for which scientific opinion provides a significant chance that contamination by a spacecraft can compromise future investigations.

4.2.4.2 Applicability

Mars, Europa, Enceladus.

Instruments contributed by member states (also possibly international partners)

Element	% of total Cost at Completion	Amount in M€
ESA Space Segment	47%	700
A64 Launcher	10%	150
Mission & Science Ops	15%	225
ESA Project	11.5%	175
Margin	16.5%	250
	Total	1500

Mission envelope

Element	Request	Comments	Status				
ESA Cost at Completion	≤ 550 M€ - M-Class ~1500 M€ - L-Class	Includes all elements to be funded by ESA	Not Anticipated Expected				
Science objectives and instruments	Any science objective can be proposed - M-Class Specific themes - L-Class	The science instruments must be defined in relation with the science objectives.	Objectives well aligned with Voyage 2050 Senior Committee Report				
Launcher	Ariane 62 (M) Ariane 64 (L)	Non European launcher excluded.	Ariane 64 probably required				
Spacecraft dry mass	≤1500 kg - M-Class ~6000kg - L-Class	Recommended upper limit in view of the cost target	Not Anticipated Expected				
Platform and Science Payload TRL	TRL 5-6 by mission adoption		Yes, all TRL ≥ 6				
International collaboration	Can be envisaged		Possible, not required				
Spacecraft and science operations	Nominal duration of science operations typically <3 years	Other schemes may be considered subject to feasibility.	Yes for primary science objectives				

L-Class Plus required due to mass and complexity

Space Safety for Astronauts on Mars

Encourage interest in STEM

OUTREACH OBJECTIVES

Social responsibility

Value for money

m5_space_mission

Follow •••

1000 posts 1M followers 1 following

Mars Magnetospheric Multipoint Measurement Mission 2030 🛠 First Multipoint Mars Space mission 💋

⊞ POSTS

図 TAGGED

<u>Science:</u> Leonard Schulz (Lead), Pietro Dazzi, Sara Östman, Daniel Teubenbacher

Payload: Markus Baumgartner-Steinleitner (Lead), Marianne Brekkum, Adam Cegla, Sofia Lennerstrand

System Engineering: Ville Lundén (Lead), Vasco Castro Pires, Alessia De Iuliis, Jonas Gesch, Inés Terraza Palanca

Mission Lead: Cormac Larkin

Tutors: Florine Energl and Markus with a c Hallmann

(c) 2022 SummerSchool Alpbach/FFG/ESA-MA Jakob o

Backup Slides - Science

Orbit Time in Tail

	Magnetic field	Energy	Gyroradius
Solar Wind	3 nT	1 keV	2400 km
Magnetosheath	10 nT	50-500 eV	160-500 km
Near tail	20 nT	10 eV	30 km

$$r_g = \frac{\sqrt{2Em}}{|q|B}$$

m is the mass, E is the energy, q is the electric charge, and B is the strength of the magnetic field

Additional source r_{gi,tail}: Harada, Y., et al. (2015)

Source Magnetosheath E_{H+} ; Nilsson, H., Stenberg, G., Futaana, Y. et al. (2012)

Backup Slides - Engineering

Structure - Details and General Dimensions

- Safe Mode: Used to travel to Mars to ensure the power for different subsystems is off and power is saved.
- **Commissioning Mode:** Turn on instruments and payloads to perform testing and health check.
- Orbital control Mode: Maneuvering with thrusters.
- Science Mode: Instruments are on and measuring.
- Burst Mode: Science Mode with increased data rate (only MFO).
- Sun Safe Mode: Entered automatically when battery voltage drops below the setted voltage threshold. Several high-consuming energy functions cannot be performed, such as payload and downlink execution, in order to extend operating life.
- Downlink Mode: Transmit data.

- Strict magnetic cleanliness required to comply with magnetic field accuracy and resolution requirements
 - All fluxgate magnetometers on 5 m long booms
 - All soft magnetic materials should be avoided on the spacecraft, in particular close to the magnetometers
 - All current loops should be minimized and compensated for where possible
 - Magnetic dipole moments of the spacecraft should be compensated for

Link Budget SWO

BEST CASE: Closest position

	LINK BUDGET	[dB]
	EIRP	21,7
	Antenna Pointing Loss	-1,1
<	Transmission Loss	-165,8
	Rx G/T	-13
	Boltzmann's constant (k)	228,6
	Data Rate	-53
	Final EB/EN	18,5
	LINK BUDGET (Mbps)	25,15

TRANSMISSION LOSS	
Range (km)	40000000
Transmission	0,65
Spaceloss (dB)	-267,6

WORST CASE: Furthest position

	[dB]
EIRP	66,8
Antenna Pointing Loss	-1,1
Transmission Loss	-284,8
Rx G/T	50,3
Boltzmann's constant (k)	228,6
Data Rate	-53
Final EB/EN	6,8
LINK BUDGET (Mbps)	0,48

TRANSMISSION LOSS	
Range (km)	5500000
Transmission	0,65
Spaceloss (dB)	-284,8

Mass Budget

Subsystem	SWO [kg]	1 MFO [kg]	Margin
Main Structure	288,0	35,0	1,20
Battery x 2	37,8	18,9	1,05
Payload (Instruments)	21,0	22,0	1,05
Antenna	12,7	10,5	1,05
On-board Computer	6,8	6,5	1,05
Attitude & Orbit Control (thrusters, star tracker, reaction wheels)	33,0	18,3	1,10
Thermal	32,8	10,8	1,20
Solar panels (panels + power system)	47,3	68,3	1,05

Subsystem	SWO [kg]	1 MFO [kg]	Margin
Rail Structure (we can delete this)	0,0	0,0	1,20
Launcher Adapter	100,0	0,0	
Overall Margins (20%)			1,20
Final mass budget	SWO [kg]	1 MFO [kg]	Margin
Dry mass (without margins)	546,6	179,5	
Dry mass (with margins)	695,3	228,3	
Propellant	764,8	251,2	1,10
TOTAL (kg):	1453,7	529,7	

- ~3000 Wh Silver-Cadmium batteries (heritage from Cluster)
 - Large capacity to ensure batteries are not depleted over 15 % per charge cycle to increase battery lifetime

MODE			Total production: 700 W						
	EPS (TBC)	OBC (RAD-750)	COMMS	PAYLOAD	ADCS (TBC)	PROPULSION	HEATER	TOTAL CONSUMPTION (W)	MARGINS (W)
Safe Mode	5	10	0	1	24	0	200,0	240	41,98
Science Mode	5	10	0	35	44	0	146,0	240	61,5
Commissioning Mode	5	10	0	1	24	0	200,0	240	41,98
Downlink mode	5	10	400	1	24	0	0,0	440	81,98
Sun Safe mode	5	10	0	1	24	0	200,0	240	41,98
Orbital control mode	5	10	0	1	44	30	150,0	240	35,38
MARGINS	10%	10%	20%	10%	20%	10%	20%		

- ~1500 Wh Silver-Cadium batteries (heritage from Cluster)
 - Large capacity to ensure batteries are not depleted over 15 % per charge cycle to increase battery lifetime

MODE			Total production	Total production: 250 W					
	EPS	OBC	COMMS	PAYLOAD	ADCS	HEATERS	PROPULSION	POWER BUDGET (W)	MARGINS (W)
Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Science Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Burst Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Downlink mode	5,0	10,0	200,0	1,0	10,0	24,0	0,0	250,0	44,1
Orbital control mode	5,0	10,0	0,0	1,0	10,0	74,0	50,0	150,0	14,1
Commissioning Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Sun Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	1,5
MARGINS	0,1	0,1	0,2	0,1	0,2	0,1	0,1		

MODE			HEAT D	DISSIPATION (V	V)			Allowed range: 80 W	Allowed range: 80 W to 280 W		
	EPS (TBC)	OBC (RAD-750)	COMMS	PAYLOAD	ADCS (TBC)	PROPULSION	HEATER	TOTAL DISSIPATION (W)	MARGINS (W)		
Safe Mode	5,0	10,0	0,0	1,0	24,0	0,0	200,0	240,0	42,0		
Science Mode	5,0	10,0	0,0	35,0	44,0	0,0	146,0	240,0	61,5		
Commissioning Mode	5,0	10,0	0,0	1,0	24,0	0,0	200,0	240,0	42,0		
Downlink mode	5,0	10,0	200,0	1,0	24,0	0,0	0,0	240,0	42,0		
Sun Safe mode	5,0	10,0	0,0	1,0	24,0	0,0	200,0	240,0	42,0		
Orbital control mode	5,0	10,0	0,0	1,0	44,0	30,0	150,0	240,0	35,4		
MARGINS	0,1	0,1	0,2	0,1	0,2	0,1	0,2				

MODE			Allowed range: 80 W to 280						
	EPS	OBC	COMMS	PAYLOAD	ADCS	HEATERS	PROPULSI ON	TOTAL DISSIPATION (W)	MARGINS (W)
Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Science Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Burst Mode	5,0	10,0	0,0	26,1	10,0	99,0	0,0	150,1	16,6
Downlink mode	5,0	10,0	100,0	1,0	10,0	24,0	0,0	150,0	24,1
Orbital control mode	5,0	10,0	0,0	1,0	10,0	74,0	50,0	150,0	14,1
Commissioning Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	14,9
Sun Safe Mode	5,0	10,0	0,0	1,0	0,0	134,0	0,0	150,0	1,5
MARGINS	0,1	0,1	0,2	0,1	0,2	0,1	0,1		

Alternative launch schedule

	Activities								Pha	ases					
	Activities	Ph	ase (0 Pł	nase A	Ph	ase B	Pha	se C	Phase D)	Phase E	Pha	se F	PoE
	Function														
	Requirements														
	Definition														
	Production														
	Utilisation														
	Disposal														
	Task	202		2023	2024	2025		2027	2028	2029-2035	2036	2037-2039	2040	2041	2042
	Task	H1 I	H2	H1 H2	H1 H2	H1 H2	2 H1 H2	H1 H2	H1 H2	2025-2055	H1 H2	2037-2033	H1 H2	H1 H2	H1 H2
MDR	Mission Design														
-	Preliminary Requirements														
SRR	System Requirements														
PDR	Preliminary Design														
CDR	Critical Design														
QR	Qualification														
	Acceptance														
	Operational Readiness														
FAR	Flight Acceptance														
LRR	Launch Readiness														
CRR	Commissioning Result														
SO	Science operations														
	Possibility of extension														
ELR	End of Life														
MCR	Mission Clouse-out														

MMMMM (M5) Science Traceability Matrix

Primary	Tier 1		Measurement	Requirements	Instrum ent	Instrument requirements	Orbital Requirements	Functional Requirements
Science Questions	Science Objectives	Measurement	General measurement requirements	Multi-point and scale requirements				
system's magnetotail and magnetospheri c boundary region structure and dynamics depend on solar wind	are the dynamics and orientation of	O1.1.1. The vector magnetic field at multiple points, separated below boundary scales, at the boundary regions.	Measure at the nose of the magnetospheric region: - Absolute range: 3000 nT - Absolute accuracy: 0.5 nT - Temporal resolution: 32 samples/sec	4 S/C. Measure with a distance of ~100km.	eter	 Range: 3000 nT Offset stability: 0.5 nT / 12h Absolute vector accuracy: 0.05% Resolution: 20 pT 32 vectors/s Attitude knowledge: <0.05° 	Measurements shall be made when the solar wind observatory is in the upstream solar wind. The measurements shall be made at the nose of the magnetospheric region from 1.2 RM to 1.8 RM, extending from the nose to at least -1 RM outside of the bow shock and inside of the IMB (using the empirical model of Trotignon et al., 2006). The crossing time from BS to IMB shall be in the order of 10 min. The spacecraft shall be in a 3D configuration with separations in the order of 100km.	A four spacecraft formation orbiting Mars as a 3D constellation of separations in the order of 100 km.

	O1.1.3. The ion density and bulk velocity at multiple points, separated below boundary scales, at the boundary regions.	Measure at the nose of the magnetospheric region: - Energy range: 1 eV to 30 keV. - Energy resolution (DeltaE/E): 25% - Temporal resolution: 5s - FOV: 360° x 90° - Detect H+, O+, O2+, CO2+	1 S/C	lon electrostati c and TOF velocity analyzer	 Energy range: 1 eV to 30 keV. Energy resolution (DeltaE/E): 25% Temporal resolution: 5s Angle coverage: 360° x 90° Carbon foil TOF analyzer: Proton flight of time 12 to 7 ns 	Measurements shall be made when the solar wind observatory is in the upstream solar wind. The measurements shall be made at the nose of the magnetospheric region from 1.2 RM to 1.8 RM, extending from the nose to at least -1 RM outside of the bow shock and inside of the IMB (using the empirical model of Trotignon et al., 2006). The crossing time from BS to IMB shall be in the order of 10 min. The spacecraft shall be in a 3D configuration with separations in the order of 100km.	A four spacecraft formation orbiting Mars as a 3D constellation of separations in the order of 100 km.
--	---	--	-------	--	--	--	---

O1.1.4. The vector magn field, in the upstream so wind.	olar	 Measure upstream of the solar wind: Absolute range: 500 nT Absolute accuracy: 0.5 nT Temporal resolution: 32 samples/sec 	1 S/C	3-axis fluxgate magnetomet er	 Range: 500 nT Offset stability: 0.5 nT / 12h Absolute vector accuracy: 0.05% Resolution: 20 pT 32 vectors/s Attitude knowledge: <0.05° 	The measurements shall be made with a distance to the boundary measuring spacecraft constellation of at least 4 RM. The measurements in the solar wind shall be taken at least 50% of the time.	A single spacecraft with a circular orbit around Mars of at least 5 RM, with instruments pointed at the solar wind, if applicable.
O1.1.6. The density and velocity of different ma species (to detect high mass ions i CME event the upstrea solar wind.	d bulk ass er in ts), in im	Measure upstream of the solar wind: - Energy range: 10 eV/q to 25 keV/q. - Energy resolution (DeltaE/E): 25% - Temporal resolution: 5s - FOV: 180° x 40° - Detect H+, He++, higher mass	1 S/C	lon energy spectromete r	Electrostatic analyzer: - Energy range: 10 eV/q to 25 keV/q. - Energy resolution (DeltaE/E): 25% - Temporal resolution: 5s - Angle coverage: 180° x 40° Differentiation between H+ and He++ by E/q	The measurements shall be made with a distance to the boundary measuring spacecraft constellation of at least 4 RM. The measurements in the solar wind shall be taken at least 50% of the time.	A single spacecraft with a circular orbit around Mars of at least 5 RM, with instruments pointed at the solar wind, if applicable.

01.1.6. The ion density and bulk velocity of different mass species (to detect higher mass ions in CME events), in the upstream solar wind.

1 S/C Measure upstream of the solar wind: - Energy range: 10 eV/q to 25 keV/q. - Energy resolution (DeltaE/E): 25% - Temporal resolution: 5s - FOV: 180° x 40° Detect H+, He++, higher mass

Ion energy Electrostatic analyzer: spectrome - Energy range: 10 eV/q to 25 keV/q. - Energy resolution (DeltaE/E): 25% - Temporal resolution: 5s - Angle coverage: 180° x 40° Differentiation between H+ and He++ by E/q

ter

The measurements shall be made with a distance to the boundary measuring spacecraft constellation of at least 4 RM. The measurements in the solar wind shall be taken at least 50% of the time.

A single spacecraft with a circular orbit around Mars of at least 5 RM, with instruments pointed at the solar wind, if applicable.

	O1.2.1 The vector	Measure in the tail	4 S/C. Measure	3-axis	- Range: 3000 nT	Measurements shall be made	A four spacecraft
O1.2. What is the	magnetic field at	region:	with a distance of	fluxgate	- Offset stability:	when the solar wind observatory	formation orbiting
structure of the	multiple points,	- Absolute range:	~100km. Also take	magnetom	0.5 nT / 12h	is in the upstream solar wind.	Mars as a
Martian	separated at ion	3000 nT	different	eter	- Absolute vector	The measurements shall be	tetrahedron
magnetotail on	kinetic scales,	- Absolute	maesurements in		accuracy: 0.05%	made inside the outer boundary	configuration of
different scales,	measured at	accuracy: 0.5 nT	the whole of the		- Resolution: 20	regions of the magnetotail. The	separations in the
with particular	different positions	- Temporal	tail.		рТ	spacecraft shall be in a	order of 100 km.
interest for its	in the tail region.	resolution: 32			- 32 vectors/s	tetrahedron configuration with	
dependence upon		samples/sec			- Attitude	separations in the order of	
solar wind					knowledge:	100km.The S/C constellation	
conditions?					<0.05°	shall stay in the tail for at least	
						1h.	

01.2.2. The electron density region: and temperature, measured at different positions in the tail region.

Measure in the tail 4 S/C. Measure with a distance of ~100km. Also take different maesurements in the wohle of the tail (~1000km scale).

Langmuir probe

Measurements shall be made when the solar wind observatory is in the upstream solar wind. The measurements shall be made inside the outer boundary regions of the magnetotail. The spacecraft shall be in a tetrahedron configuration with separations in the order of 100km.The S/C constellation shall stay in the tail for at least 1h.

A four spacecraft formation orbiting Mars as a tetrahedron configuration of separations in the order of 100 km.

	density, bulk velocity, temperature, measured at different positions in the tail region.	5 5 5 5 5	1 S/C. Also take different maesurements in the wohle of the tail (~1000km scale).	lon electrostati c and TOF velocity analyzer	analyzer:	The measurements shall be made inside the outer boundary regions of the magnetotail. The spacecraft shall be in a tetrahedron configuration with separations in the order of 100km.The S/C constellation shall stay in the tail for at least 1h.	A four spacecraft formation orbiting Mars as a tetrahedron configuration of separations in the order of 100 km.
--	---	------------------	--	--	-----------	--	---

Salt of